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Quantum machine learning aspires to overcome intractability that currently limits its applicability to practical
applications. However, quantum machine learning itself is limited by low effective dimensions achievable in state-
of-the-art experiments. Here, we demonstrate highly successful classifications of real-life images using photonic
qubits, combining a quantum tensor-network representation of hand-written digits and entanglement-based op-
timization. Specifically, we focus on binary classification for hand-written zeroes and ones, whose features are cast
into the tensor-network representation, further reduced by optimization based on entanglement entropy and
encoded into two-qubit photonic states. We then demonstrate image classification with a high success rate exceed-
ing 98%, through successive gate operations and projective measurements. Although we work with photons, our
approach is amenable to other physical realizations such as nitrogen-vacancy centers, nuclear spins, and trapped
ions, and our scheme can be scaled to efficient multi-qubit encodings of features in the tensor-product repre-
sentation, thereby setting the stage for quantum-enhanced multi-class classification. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.434217

1. INTRODUCTION

The interdisciplinary field of quantum machine learning (ML)
has seen astonishing progress recently [1,2], where novel algo-
rithms presage useful applications for near-term quantum com-
puters. A concrete example is pattern recognition, where
accurate modeling requires an exponentially large Hilbert-space
dimension, especially for quantum classifiers, which can lead to
unique advantages over their classical counterparts [3–5]. Such
a quantum advantage derives from the efficient exploitation of
quantum entanglement that also underlies the extraordinary in-
terpretability of tensor networks (TNs), a powerful theoretical
framework originating from quantum information science and
with wide applications in the study of strongly correlated many-
body systems [6–9]. Recent works on TN-based ML algo-
rithms, due to their quantum nature, exhibit competitive, if
not better, performance compared to classical ML models such
as supportive vector machines [3,10–13] and neural networks
[14–24]. It is, thus, tempting to demonstrate TN-based ML
algorithms in genuine quantum systems, with the hope of

tackling practical tasks. However, major obstacles exist, as
TN-based ML algorithms typically require an unwieldily large
Hilbert-space dimension to process real-life data. The problem
is made worse by the limited number of noisy qubits on cur-
rently available quantum platforms. So far, TN-based ML has
yet to be demonstrated on any physical system.

In this work, we demonstrate TN-based ML schemes with
single photons for the first time, to the best of our knowledge,
and apply the scheme to a popular problem—optical character
recognition, to classify real-life, hand-drawn images. As a key
element of our scheme, we combine the interpretability of TN
with an entanglement-based optimization [25], such that the
dimension of the required Hilbert space is dramatically re-
duced. We are then able to implement the corresponding
qubit-efficient quantum circuits [26] through single-photon
interferometry.

Focusing on the minimal task of binary classification of
hand-written digits of “0” and “1” [27], we demonstrate
two TN-based ML schemes (A and B), each with three- and
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five-layer constructions, corresponding to the dimension of the
quantum feature space. The gate operations for the classifier are
trained and optimized through supervised learning on classical
computers, and the results of the classification are read out
through projective measurements on the output photons.
Experimentally, we achieve an over 98% success rate with both
of our schemes for classifying all testing images of “0” and “1”
in the Modified National Institute of Standards and
Technology (MNIST) dataset [27].

We further demonstrate exemplary cases where the post-
training classifier correctly recognizes poorly written digits that
are not in the MNIST dataset, thus confirming the robustness
of our classifier. Together with recent progress of ML either on
quantum systems [3,12,28–33], or with classical-quantum hy-
brid setups [26,34–39], our experiment paves the way for
quantum advantages in solving real-world problems.

2. SUPERVISED MACHINE LEARNING BY
TENSOR NETWORK

One of the main challenges in dealing with real-life data using
quantum devices is the requirement of large numbers of qubits
[∼O�102� or more] [40,41]. To address the issue, we apply an
entanglement-based feature extraction [25,26] to implement a
TN-based, qubit-efficient image classifier using single photons.

As illustrated in Fig. 1, our scheme breaks down into the
following steps (see more details in Appendix A). In step (i),
we map the full data of classical images to quantum states
and train the matrix product state (MPS) classifier using a su-
pervised TN-based ML algorithm with N features (pixels or
frequency components; N � 784 for each image in the
MNIST). Here, we consider a binary classification problem
to classify hand-written digits of “0” and “1” in the MNIST
dataset intoNc � 2 categories. In step (ii), we extract a handful
of the most important features using an entanglement-based
optimization. In step (iii), a new MPS is constructed and then
trained with the extracted features obtained in step (ii). A small
number of feature qubits (Ñ � 3 or 5 feature qubits corre-
sponding to three- or five-layer constructions of the classifier)
with the largest entanglement entropy in the quantum feature
space are retained [25], to represent and classify hand-written
digits of “0” and “1” in the MNIST dataset. These three steps
correspond to the classical optimization and feature extraction,
shown in Fig. 1.

In Fig. 2, with increasing Ñ , the testing accuracy and train-
ing accuracy for the MNIST dataset both increase quickly as
expected. More importantly, both accuracies converge for
Ñ ≥ 10. For Ñ � 3 or 5, both accuracies are higher than
0.98, which implies that the reduced number of the feature
qubits works well for the TN-based quantum classifier.

The subsequent experimental implementation involves the
following two steps (see Appendix B for more details). In step
(iv), we translate the tensors in the optimized MPS to a quan-
tum circuit, which form a circuit acting on Ñ qubits [42]. In
step (v), through the quantum-efficient scheme [26], the quan-
tum circuit is further simplified to the one with Ñ gates acting
on Ñ 0 qubits. We take Ñ 0 � 2, where two qubits are dubbed
as the operational and classifier qubits. This is achieved by
translating measurements on different qubits into those on only

two qubits at different times. The extracted features of an image
are input to the circuit by measuring the operational qubit at
different times. The output of the image classifier is accessed via
projective measurements on the classifier qubit.

We present two schemes of TN-based quantum classifiers,
each being the reverse of the other. In either case, we embed
core features of an image into the quantum feature space of
three or five feature states fjψ iig, which corresponds to a three-
or five-layer construction that involves their respective number
of unitary gate operations.

In Scheme A, we initialize the classifier and operational qu-
bits into feature states jψ1i and jψ2i, respectively. Other fea-
ture states jψ ii are used as successive inputs for the optimized
quantum circuit consisting of a series of single- and two-qubit
gates U i. Taking the three-layer construction as an example,
the classifier qubit is subject to the single-qubit operator
U 1, whose output is fed into the two-qubit operation U 2
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Fig. 1. Illustration of the main steps of implementing the TN-based
quantum classifier. In steps (i)–(iii), we map the images of N � 784
pixels (features) to quantum states and train the matrix product state
(MPS) classifier using these images in the MNIST dataset by a super-
vised learning algorithm. The MPS consists of N tensors represented
by squares, with the label index represented by a flag. We calculate the
entanglement entropies of the MPS and retain only Ñ � 3 or 5 fea-
tures with the largest entanglement entropies. Then, we train a re-
duced MPS with the Ñ retained features. In steps (iv) and (v), the
reduced MPS is translated to a circuit acting on Ñ qubits and further
to a circuit using the qubit-efficient scheme, which involves Ñ 0 � 2
qubits and Ñ gates, including a single-qubit gate U 1 and Ñ − 1 two-
qubit gates Ui (i � 2, 3 or i � 2,…, 5). We employ two schemes to
implement the classifier, whose orders of operations are indicated by
the red and blue arrows, respectively.
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Fig. 2. Training and testing accuracies of classifying the “0” and “1”
digits in the MNIST dataset as functions of Ñ . Data are obtained by
averaging the accuracies over 20 numerical simulations, and error bars
indicate the statistical uncertainty.
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together with the operational qubit. After projecting the opera-
tional qubit into the basis state j0i, the classifier qubit is char-
acterized by the density matrix,

ρ1 � Trop�U 2�U 1jψ1ihψ1jU †
1 ⊗ jψ2ihψ2j�U †

2�1 ⊗ j0ih0j��:

Here, Trop is the trace over the two-dimensional Hilbert
space of the operational qubit. The operational qubit is then
prepared in the feature state jψ3i, before the two-qubit oper-
ator U 3 is applied on both qubits. After projecting the opera-
tional qubit into the basis state j0i again, the classifier qubit is
given by

ρ2 � Trop�U 3�ρ1 ⊗ jψ3ihψ3j�U †
3�1 ⊗ j0ih0j��:

We perform a projective measurement of σz �
j0ih0j − j1ih1j on the output classifier qubit, yielding probabil-
ities P0 and P1. The image is recognized as “0” (“1”) for
P0 > P1 (P1 > P0).

In Scheme B, we initialize the classifier and operational qu-
bits into the two-qubit state j00i (or j10i), and successively
apply the optimized unitary gatesU †

i (in the reverse order com-
pared to that in Scheme A). A projective measurement jψ iihψ ij
is performed following the corresponding unitary operation
U †

i . The last projective measurement jψ1ihψ1j on the classifier
qubit yields the probability P 0

0 (P
0
1) for the initial state j00i (or

j10i). Since P0 � P 0
0 and P1 � P 0

1 (see the derivations in
Appendix C), the image is recognized as “0” (“1”) for
P 0
0 > P 0

1 (P 0
1 > P 0

0).

3. EXPERIMENTAL REALIZATION

Experimentally, we encode the classifier qubit in the polariza-
tion states of the signal photons, i.e., jH i � j0i and jV i � j1i
(see Fig. 3). The operational qubit is encoded in the spatial
modes of the photons, with jui � j0i and jd i � j1i represent-
ing the upper and lower spatial modes, respectively. While the
single-qubit gate U 1 is implemented using a half-wave plate
(HWP), the two-qubit gates U i (i � 2, 3) are implemented
through cascaded interferometers, consisting of HWPs and
beam displacers (BDs). In Scheme A, feature states jψ ii
(i � 2, 3) are introduced via a controlled beam splitter (CBS),
which consists of HWPs and BDs, with information of the fea-
ture states encoded in the setting angles of the HWPs.

The gates are trained by 12,665 hand-written digits of “0”
and “1” in the training set of the MNIST dataset [27]. After the
training process,U i are fixed for subsequent image recognition.
To assess the training process, we first use 2115 images in the
testing set of the MNIST dataset as input. Specifically, we use
all the training images of “0” and “1” for training and all testing
images for testing in the MNIST dataset, which are all down-
loaded from the official website. As illustrated in Fig. 4, under
the three-layer construction, the classifier fails to recognize only
30 out of the 2115 images, including 10 images of “0” and 20
images of “1”. The success probability of classification is
0.9858. Under the five-layer construction, the classifier fails
to recognize 19 images within the same testing set, including
four images of “0” and 15 images of “1”. The success proba-
bility is 0.9910.

Figure 5 demonstrates in detail the results of several
typical testing images as examples. For all chosen images,

the experimental results suggest that the classifiers are well-
trained, in the sense that their predictions have a high success
rate, even if the probability difference P0 − P1 (P 0

0 − P
0
1) can be

small for certain cases. Furthermore, some images that cannot
be classified under the three-layer construction can be success-
fully classified under the five-layer construction, confirming the
improvement in behavior of the quantum classifier with an in-
creased feature-space dimension.

To estimate the deviation of the experimental results and
theoretical predictions, we define a distance,
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Fig. 3. Experimental demonstration of quantum classifier with the
three-layer construction. For each pair of photons generated by spon-
taneous parametric down conversion, one photon serves as the trigger,
and the other, the signal photon, proceeds through the experimental
setup corresponding to the two schemes. Under Scheme A, the signal
photon is projected onto the polarization state jψ1i of the classifier
qubit via a PBS and an HWP H0. It is then sent through an inter-
ferometric network, composed of HWPs and BDs, before being de-
tected by APDs in coincidence with the trigger photon. The single-
qubit gate U 1 is realized by an HWP, and two-qubit gates U 2 and U 3

are realized by BDs and HWPs. The input states jψ2i and jψ3i are
encoded in the spatial modes of photons and prepared via the HWPs
(H1,H2,H9, andH10) in controlled beam splitters (CBSs), which, by
combining the spatial and polarization degrees of freedom, effectively
expand the dimension of the system. A 1 m long single-mode fiber
serves as a spatial filter in between successive modules of the two-qubit
gate, and a set of wave plates is introduced to offset the impact of the
fiber on the photon polarizations. For detection, photons are projected
onto the upper spatial mode jui by discarding those in the lower one,
and a projective measurement of σz is realized through an HWP, a
PBS, and APDs. Scheme B is the exact reverse process of Scheme
A, where photons are sent into the setup through the output port
of Scheme A.
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Fig. 4. Theoretical results of the testing set under the (a) three- and
(b) five-layer constructions, respectively. The output states are shown
in the x−z plane of the Bloch sphere associated with the classifier qubit.
The green squares (blue triangles) indicate successful recognition of the
hand-written digit “0” (“1”). Red symbols indicate cases in which the
classifier fails to recognize the image.
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where P0,1 and Pth
0,1 are the measured probabilities and theo-

retical probabilities, respectively. The distance varies between 0
and 1, with 0 indicating a perfect match. Of all eight distances
for the images in Fig. 5, the largest is 0.039� 0.003, which
indicates that our experimental results are in excellent agree-
ment with theoretical predictions.

The differences between the experimental data and theoreti-
cal predictions are caused by several factors, including fluctua-
tions in photon numbers, the inaccuracy of wave plates, and the
dephasing due to the misalignment of the BDs. To provide a
quantitative estimate of the success rate of our quantum clas-
sifier, we perform numerical simulations by taking experimen-
tal imperfections into account.

First, the imperfection caused by photon-number fluctua-
tions increases with decreasing photon counts. In our experi-
ment, the total photon count for each image classification is
larger than 104. Therefore, we adopt a total photon count
of 104 for our estimation, while assuming a Poissonian distri-
bution in the photon statistics. Second, parameters character-
izing the inaccuracy of wave plates and the dephasing are
estimated using experimental data in Fig. 5. Specifically, for
each wave plate, we assume an uncertainty in the setting angle
θ� δθ, where δθ is randomly chosen from the interval
�−1.588°, 1.588°� (�−1.180°, 1.180°�) under the three-layer
(five-layer) construction. The range of these intervals is deter-
mined through Monte Carlo simulations to fit the deviations of

experimental data from their theoretical predictions for the
eight images in Fig. 5. On the other hand, the dephasing
due to the misalignment of BDs affects the experimental results
through a noisy channel ε�ρ� � ηρ� �1 − η�σzρσz character-
ized by a dephasing rate η [43], where ρ [ε�ρ�] is the
density matrix of the input (output) state of the noisy
channel. By numerically minimizing the difference between the
numerical results and the corresponding experiment data, we
estimate η to be 0.9977 (0.9926) for three-layer (five-layer)
construction.

With these, we perform Monte Carlo simulations of our ex-
periments on all 2115 images in the testing set, from which a
success rate is estimated. We then repeat the process 100 times
and keep the lowest success rate as our final estimation. The
estimated success rates are the following: 0.9825 (Scheme A
with three-layer construction); 0.9820 (Scheme B with
three-layer construction); 0.9877 (Scheme A with five-layer
construction); 0.9877 (Scheme B with five-layer construction).
Thus, for all experiments, the success rates are above
98%.

In Fig. 6, we show the results of applying the trained clas-
sifier on two pairs of hand-written digits “0” and “1” that are
not in the MNIST dataset. The first pair of digits is written in a
standard way. The second pair is written such that the profile of
“0” resembles that of “1” in the first pair, and the profile of “1”
is much shorter and fatter compared to its counterpart in the
first pair. For both cases, our classifier correctly recognizes the
images with high confidence (large jP0 − P1j), demonstrating
the robustness and accuracy of the device.

(a)

(c)

(b)

Fig. 5. Experimental classification of images within the testing set. Measured probabilities of the projective measurements on output states of
quantum classifiers with the (a) three- and (b) five-layer constructions. Left, Scheme A; right, Scheme B. Colored bars represent experimental results,
while hollow bars represent their theoretical predictions. Error bars indicate the statistical uncertainty, obtained by assuming Poissonian statistics in
the photon-number fluctuations. (c) The classification results for eight typical hand-written digits in the testing set. Rows represent the index of
images, namely the hand-written digits, the experimental and theoretical probability differences, and classification results. P3

0,1 and P5
0,1 represent

probabilities associated with the three- and five-layer constructions, respectively.
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4. DISCUSSION

We report the first, to the best of our knowledge, experimental
demonstration of quantum binary classification of real-life,
hand-drawn images with single photons. The experimental
scheme adopts a TN-based ML algorithm, which benefits from
the powerful interpretability of TNs, as well as the efficient en-
tanglement-based optimization in the quantum feature space.
After training and optimizing the classifier on classical com-
puters, we use single photons to achieve the binary classification
with a success rate over 98%. Our experiment can be readily
extended to multi-category classification by taking advantage of
the multiple degrees of freedom of photons and specially de-
signed interferometric network for single- and two-qubit oper-
ations. The hybrid quantum-classical scheme demonstrated
here can be upgraded to be fully quantum mechanical, if
the optimization in the ML process is performed on device
parameters (such as the setting angles of wave plates), rather
on the overall design of quantum circuits. Furthermore, the
TN-based ML algorithm is general and directly applicable to
a wide range of physical systems that have full control of qu-
bits/qudits, including nitrogen-vacancy centers [39], nuclear
magnetic resonance systems [12], and trapped ions [29]. In par-
ticular, with the rapid progress in quantum computers based on
superconducting quantum circuits [30], it is hopeful that TN-
based ML can be demonstrated for a larger feature space with
more qubits, such that it can find utilities in more complicated
real-world tasks.

APPENDIX A: TENSOR-NETWORK MACHINE
LEARNING ALGORITHM

For a classical gray-scale image consisting of N features (pixels
or frequency components), we follow the general recipe of TN-
based supervised learning [17,18] and map the classical image
to a product state of N qubits in the quantum Hilbert space:

jϕi � ⊗
N

n�1
jsni, (A1)

with the feature map given by

jsni � cos
xnπ
2

j0i � sin
xnπ
2

j1i: (A2)

Here, 0 ≤ xn ≤ 1 characterizes the nth feature and determines
the superposition coefficients of the nth qubit jsni in the
basis fj0i, j1ig.

To classify a set of images into Nc categories, we introduce a
quantum classifier state jΨi in a joint Hilbert space
Hprod ⊗ Hc , where Hprod denotes the Hilbert space of the
product state in Eq. (A2), and Hc is the N c-dimensional
Hilbert-space encoding the information of different categories.
The classifier state should be constructed in such a way that,
for any given unclassified image with the mapped quantum
state jϕi, the probability of this image belonging to the cth
category is

Pc � jhΨj�jϕi ⊗ jci�j2, (A3)

where fjcig (with c � 0,…,Nc − 1) represents the orthonor-
mal basis in the Hilbert space Hc . Hence, Pc constitutes
the probability distribution for different categories of a given
classical image, which, as we demonstrate later, can be
probed via projective measurements. The prediction of the clas-
sifier is given by the category with the largest probability
(i.e., argmaxcPc).

Following common practice in TN-based ML, we use the
MPS [6,44] to represent the classifier state as

jΨi �
X
fsg

X
fag

X
c

A�N �
sN , caN−1…A�2�

s2, a2a1A
�1�
s1, a1 ⊗

N

n�1
jinijci: (A4)

For the subscripts of tensors A�i� (i � 1,…,N ), fing are physi-
cal indices labeling feature qubits in the Hilbert space with
in � 0 or 1. The virtual indices fang will be contracted in
the simulation, and the label index c is unique to A�N � in Hc
and represents the categories.

For our purpose of using only two qubits, we consider
binary classification problems with dim�c� � Nc � 2 and
take the dimensions of the virtual indices dim�an� � 2
(n � 1,…,N − 1). The binary classifications exemplified in
this work can be readily extended to digits other than “0”

(a)

(b)

Fig. 6. Classification of images outside the MNIST dataset. (a) Measured probabilities of the output states of quantum classifiers.
(b) Classification results.
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and “1” and to multi-category classifications with Nc > 2,
where higher-level qudits would be needed. With the MPS rep-
resentation, the complexity of the state classifier scales only lin-
early with N , which enables us to efficiently optimize the
classifier on classical computers.

Training the MPS on classical computers as in steps (i) and
(iii) amounts to optimizing the tensors in Eq. (A4). To this end,
we define the loss function as the negative logarithm of the
probability of correctly categorizing all images in the training
set,

f � −
X
m∈I

ln Pc�m� , (A5)

where I denotes the training set, Pc�m� is defined by Eq. (A3),
and c�m� denotes the correct category of the mth image. The
training process thus involves the minimization of f from
the training set, which is equivalent to the maximization of
the accuracy of classifying the training samples [45].

To translate the MPS into executable quantum circuits
[26,42], we apply the environment method [18], in which ten-
sors are isometries in the training process. Gate operations in
the quantum circuit are then directly determined by the tensors
A�i�. Specifically, the tensors in the MPS satisfy the right-to-left
orthogonal conditions,X

iN aN−1

A�N �
iN , caN−1

A�N �
iN , c 0aN−1

� 1cc 0 , (A6)

X
inan−1

A�n�
in, anan−1A

�n�
in, a 0nan−1

� 1ana 0n , (A7)

X
i1

A�1�
i1, a1A

�1�
i1, a 01

� 1a1a 01 , (A8)

where 1 denotes the identity and n � 2,…,N − 1.
Under these orthogonal conditions, the MPS represents a
renormalization-group flow from the right to the label index
located at the left end.

However, obviously, the MPS given by Eq. (A4) contains as
many qubits as the number of features in an image, which is far
too large to implement on currently available quantum hard-
ware. Therefore, in step (ii), we reduce the required number
of qubits by performing an entanglement-based optimization
of the MPS architecture [25]. In essence, in the product state
of Eq. (A4), we only retain a handful of core feature qubits, de-
noted as fjψ iig (note fjψ iig⊆fjsiig), which possess the largest
entanglement with other qubits in the classifier state jΨi. The
number of the extracted features Ñ � fjψ iig would be much
smaller than N . Under a similar construction as Eq. (A1),
the product state for an image becomes⊗i jψ ii, and the number
of tensors in the resulting MPS is significantly reduced from N
to Ñ . Here, for any feature qubit jsni, we characterize its bipar-
tite entanglement using the entanglement entropy,

S �n� � −Trρ̂�n� ln ρ̂�n�, (A9)

where ρ̂�n� � Tr∕sn jΨihΨj, and Tr∕sn traces over all degrees of
freedom except sn.

The entanglement-based optimization outlined above
would work well, provided that the key information of an im-
age should be carried by a small number of features. We ensure
this by transforming the images into a data-sparse space using
discrete-cosine transformation (DCT), such that the feature
qubit jsni is constructed from frequency components rather
than pixels. This is achieved as follows.

Consider a square, gray-scale image consisting of N pixels,
with the value of the pixel on the ith row and jth column char-
acterized by xi,j (0 ≤ xi,j ≤ 1). To lower the required number
of features for image classification, we transform the classical
image data in the pixel space fxg to the frequency space fyg
using a DCT:

yp,q �
2

H
α�p − 1�α�q − 1�

XH
i�1

XH
j�1

xi,j cos
��2i − 1��p − 1�π

2H

�

× cos
��2j − 1��q − 1�π

2H

�
: (A10)

Here, H is the height/width of the square image (in units of
pixels), p, q ∈ f1,…,Hg, and 0 ≤ yp,q ≤ 1. The factor
α�p� � 1∕

ffiffiffi
2

p
for p � 1, and α�p� � 1 otherwise. In our case,

we have H � 28 for images in the MNIST dataset. The prod-
uct state in Eq. (A1) is therefore obtained by applying the fea-
ture map to the frequencies fyg.

To complete the feature extraction of the image, we retain a
small number of feature qubits (three or five feature qubits cor-
responding to three- or five-layer constructions) that have the
largest entanglement entropy in the quantum feature space, ac-
cording to Eq. (A9) [25], to represent and classify hand-written
digits of “0” and “1” in the MNIST dataset. It is crucial for
implementing the classifier on our photonic simulator under
three- or five-layer constructions, respectively. We note that
since high-frequency components of the original image are
mostly discarded in the cosine transformation, our scheme
should also be robust to high-frequency noise in the hand-
drawn image.

In our practical simulations of the “0” and “1” MPS clas-
sifier, the tensors in the MPS are initialized randomly. In con-
sideration of efficiency, we randomly take 2000 images from
the training set to train the MPS. The testing accuracy is evalu-
ated by all the “0” and “1” digits in the testing set. The results
can be reproduced by the code from Ref. [46].

APPENDIX B: QUBIT-EFFICIENT QUANTUM
CIRCUITS

TheMPS can be translated to a quantum circuit that consists of
Ñ gates on Ñ qubits [step (iv)]. It follows that some matrix
components of the gates are given directly by the tensors in
the MPS as

h0cjUN jiN aN−1i � A�N �
in, caN−1

, (B1)

h0anjUnjinan−1i � A�n�
in, anan−1 , (B2)
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hi1jU 1ja1i � A�1�
i1, a1 : (B3)

Other components are determined by satisfying the follow-
ing orthonormal conditions:

h0cjUNU
†
N j1c 0i � 0, (B4)

h0anjUnU †
nj1a 0ni � 0, (B5)

h1cjUNU
†
N j1c 0i � 1cc 0 , (B6)

h1anjUnU †
nj1a 0ni � 1ana 0n : (B7)

After getting the matrix elements of all gate operations, we
numerically determine the parameters of the photonic interfer-
ometry network.

The circuit still requires as many qubits as the retained fea-
tures. To further reduce the number of qubits to two, we adopt
the quantum-efficient scheme [26] [step (v)], which is achieved
by translating measurements on different qubits into those on
only two qubits (the operational and classifier qubits) at differ-
ent times. The extracted features of an image are input to the
circuit by measuring the operational qubit at different times,
while the information is carried by the classifier qubit, which
can be extracted using projective measurements.

APPENDIX C: EQUIVALENCE BETWEEN TWO
SCHEMES OF QUANTUM CLASSIFIERS

The experimental setup for Scheme B is illustrated in Fig. 7,
which is essentially the reverse process of Scheme A shown in
Fig. 3 of the main text. Under Scheme B with the initial state
j00i, the probability P 0

0 given by the last projective measure-
ment can be written as (not normalized)

P 0
0 � Tr�U †

1ρ20U 1jψ1ihψ1j�
� Tr�Trop�U †

2�ρ10 ⊗ j0ih0j�
× U 2�1 ⊗ jψ2ihψ2j��U 1jψ1ihψ1jU †

1�
� Tr��ρ10 ⊗ j0ih0j�ρ̃�, (C1)

where ρ̃ � U 2�U 1jψ1ihψ1jU †
1 ⊗ jψ2ihψ2j�U †

2. Hence, P 0
0

can be regarded as the joint probability of two local, projective
measurements on ρ̃, with the outcome of the classifier qubit
given by ρ10 and that of the operational qubit given by j0i.

The probability can be re-arranged as

P 0
0 � Tr�Trop�ρ̃�1 ⊗ j0ih0j��ρ10�
� Tr�ρ1Trop�U †

3j00ih00jU 3�1 ⊗ jψ3ihψ3j���
� Tr�U †

3j00ih00jU 3�ρ1 ⊗ jψ3ihψ3j��
� Tr�j00ih00jU 3�ρ1 ⊗ jψ3ihψ3j�U †

3�: (C2)

On the other hand, for Scheme A, the probability of the
projective measurement σz on the output classifier qubit is
(not normalized)

P0 � Tr�ρ2j0ih0j�
� Tr�Trop�U 3�ρ1 ⊗ jψ3ihψ3j�U †

3�1 ⊗ j0ih0j��j0ih0j�
� Tr�U 3�ρ1 ⊗ jψ3ihψ3j�U †

3j00ih00j� � P 0
0: (C3)

Similarly, as P0 � P1 � P 0
0 � P 0

1 � 1, we have P1 � P 0
1.

Thus, we prove the equivalence of the two schemes.

APPENDIX D: EXPERIMENTAL DETAILS

Experimentally, we create a pair of photons via spontaneous
parametric down conversion, of which one serves as a trigger,
and the other serves as the signal [47]. The signal photon is
then sent to the interferometry network. For both of our
schemes, we encode the classifier qubit in the polarization of
the signal photon, with jH i and jV i corresponding to the hori-
zontally and vertically polarized photons, respectively. The op-
erational qubit is encoded in the spatial modes of the signal
photon, with jui and jd i representing the upper and lower
spatial modes.

For all 2115 images in the testing set, the mean success
probability (the probability of obtaining the state after post-
selections) is 92.1% (84.4%) for the three-layer (five-layer)
constructions of the classifier. The efficiencies of the single-
photon detectors are typically 66%. Furthermore, considering
the losses caused by the optical elements and the coupling ef-
ficiencies, the typical success rate (defined as the ratio of de-
tected to produced particles) of our setup is about 19.7%.
For convenience, we tune the pump power to set the single-
photon generation rate at about 2 × 104 per second. With
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Fig. 7. Experimental demonstration of quantum classifier under Scheme B (three-layer construction). The classifier and operational qubits are
initialized in jH i ⊗ jui or jV i ⊗ jui via a PBS and an HWP. After each gate operation U †

i (i � 1, 2, 3), a projective measurement jψ iihψ ij is
performed on the operational qubit via a CBS. This is the reverse process of the setup in Fig. 1 of the main text.
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the measurement time fixed at 3 s, we obtain the total photon
count over 104 for each image classification. Note that the
measurement time can be drastically reduced if we upgrade
the pump power of the single-photon source.

For both schemes, the single-qubit gate U 1 is realized by an
HWP on the polarization of photons. In Scheme A, to prepare
for the input of the two-qubit gates Ui (i � 2, 3), the feature
states, encoded in the spatial modes of photons as γjui � ηjdi,
are introduced by CBSs that expand the dimensions of the sys-
tem: αjH i � βjV i → �αjH i � βjV i� ⊗ �γjui � ηjd i�. A
CBS is realized by three BDs and five HWPs. The first BD
splits photons into different spatial modes depending on their
polarizations. The following HWPs and BDs realize a con-
trolled two-qubit gate on the polarizations and spatial modes
of photons. Note that parameters of the unitary operators
U i are fixed during the training process, which are encoded
through the angles of HWPs.

The two-qubit gate Ui is implemented by a cascaded inter-
ferometer. As an arbitrary 4 × 4 matrix, U i can be decomposed
using the cosine-sine decomposition method [48], where
U 2 � LSR, with L, R, and S the controlled two-qubit gates.
L and R are realized by inserting the HWPs in the correspond-
ing spatial mode, in which the spatial mode serves as the control
qubit, and the polarization is the target qubit. For S, the polari-
zation is the control qubit, and the spatial mode is the target
qubit. Thus, it can be further decomposed into an SWAP gate
and a controlled gate, in which the spatial mode is the control
qubit, and the polarization is the target one. These are realized
by four BDs and several HWPs. In between the two-qubit
gates, we use a 1 m long single-mode fiber to connect cascaded
interferometers and act as a spatial filter.
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