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High-resolution images are widely used in our everyday life; however, high-speed video capture is more chal-
lenging due to the low frame rate of cameras working at the high-resolution mode. The main bottleneck lies
in the low throughput of existing imaging systems. Toward this end, snapshot compressive imaging (SCI)
was proposed as a promising solution to improve the throughput of imaging systems by compressive sampling
and computational reconstruction. During acquisition, multiple high-speed images are encoded and collapsed to
a single measurement. Then, algorithms are employed to retrieve the video frames from the coded snapshot.
Recently developed plug-and-play algorithms made the SCI reconstruction possible in large-scale problems.
However, the lack of high-resolution encoding systems still precludes SCI’s wide application. Thus, in this paper,
we build, to the best of our knowledge, a novel hybrid coded aperture snapshot compressive imaging (HCA-SCI)
system by incorporating a dynamic liquid crystal on silicon and a high-resolution lithography mask. We further
implement a PnP reconstruction algorithm with cascaded denoisers for high-quality reconstruction. Based on the
proposed HCA-SCI system and algorithm, we obtain a 10-mega-pixel SCI system to capture high-speed scenes,
leading to a high throughput of 4.6 × 109 voxels per second. Both simulation and real-data experiments verify the
feasibility and performance of our proposed HCA-SCI scheme. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.435256

1. INTRODUCTION

Recent advances in machine vision with applications in ro-
botics, drones, autonomous vehicles, and cellphones have
brought high-resolution images into our daily lives. However,
high-speed high-resolution videos are facing the challenge of
low throughput due to the limited frame rate of existing cam-
eras working at the high-resolution mode, although they have
wide applications in various fields such as physical phenomena
observation, biological fluorescence imaging, and live broadcast
of sports. This is further limited by the memory, bandwidth,
and power. Thus, we aim to address this challenge here by
building a high-speed, high-resolution imaging system using
compressive sensing. Specifically, our system captures the
high-speed scene in an encoded way, thus maintaining the
low bandwidth during capture. Next, reconstruction algo-
rithms are employed to reconstruct the high-speed, high-reso-
lution scenes to achieve high throughput. Note that although
the idea of video compressive sensing has been proposed before,

scaling it up to 10 mega pixels in spatial resolution presents the
challenges of both hardware implementation and algorithm de-
velopment. Figure 1 shows a real high-speed scene captured by
our newly built camera.

While 10-mega-pixel lenses and sensors are both available,
the main challenge for high-speed and high-resolution imaging
lies in the deficient processing capability of current imaging
systems. Massive data collected from high-speed high-resolu-
tion recording imposes dramatic pressure on the system’s stor-
age and transmission modules, thus making it impossible for
long-time capturing. In recent decades, the boosting of com-
putational photography provides researchers with creative ideas
and makes breakthroughs in many imaging-related fields such
as super-resolution [1–3], deblurring [4–6], and depth estima-
tion [7–9]. Regarding the high throughput imaging, snapshot
compressive imaging (SCI) has been proposed and become a
widely used framework [10–12]. It aims to realize the
reconstruction of high-dimensional data such as videos and
hyper-spectral images from a single-coded snapshot captured
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by a two-dimensional (2D) detector. A video SCI system is typ-
ically composed of an objective lens, a temporally varying mask,
a monochrome or color sensor, and some extra relay lenses.
During every single exposure, tens of temporal frames are
modulated by corresponding temporal-variant masks and then
integrated into a single snapshot. The high-dimensional data
reconstruction in an SCI system can be formulated as an

ill-posed linear model. Although different video SCI systems
have been built [10,13–16], they are usually of low spatial res-
olution. By contrast, in this paper, we aimed to build a high-
resolution video SCI system up to 10 mega pixels.

As mentioned above, the 10-mega-pixel lenses (including
imaging lens and relay lens) and sensors are both commercial-
ized products. Off-the-shelf reconstruction algorithms such as
the recently developed plug-and-play (PnP) framework [17,18]
can also meet our demands in most real applications. However,
the 10-mega-pixel temporally varying mask is still an open chal-
lenge. Classical SCI systems usually rely on shifting masks pro-
duced by the lithography technique or dynamic patterns
projected by the spatial light modulator (SLM), such as the
digital micromirror device (DMD) or liquid crystal on silicon
(LCoS), as temporally varying masks. The shifting mask
scheme can provide high spatial resolution modulation, but
it relies on the mechanical movement of the translation stage,
which is inaccurate or unstable and can be hardly compact. For
the masks generated by SLM or DMD, they can switch quickly
with micro-mechanical controllers, but their resolution is gen-
erally limited to a mega-pixel level, which is difficult to scale up.
To the best of our knowledge, there are few SCI systems that
can realize 1000 × 1000 pixel-resolution imaging in real-world
scenes [19]. In addition, typically, the resolution in prior works
was mostly 256 × 256 [10] or 512 × 512 [15]. Therefore, it is
desirable to build a high-resolution video SCI system for real
applications. To bridge this research gap, in this paper, we came
up with, to the best of our knowledge, a novel coded aperture
imaging scheme, which leverages existing components to
achieve the modulation up to 10 mega pixels. Our proposed
modulation method is a hybrid approach using both a lithog-
raphy mask and SLM. As depicted in Fig. 2, during the encod-
ing capture process, two modulation modules, an LCoS and a
lithography mask, are incorporated in different planes of the
optical system. The LCoS with a low spatial resolution is placed
at the aperture plane of the imaging system, to dynamically
encode the aperture and change the directions of incident

Fig. 1. Our 10-mega-pixel video SCI system (a) and the schematic
(b). Ten high-speed (200 fps) high-resolution (3200 × 3200 pixels)
video frames (c) reconstructed from a snapshot measurement (d), with
motion detail in (e) for the small region in the blue box of (d).
Different from existing solutions that only use an LCoS or a mask
(thus with limited spatial resolution), our 10-mega-pixel spatio-tem-
poral coding is generated jointly by an LCoS at the aperture plane and
a static mask close to the image plane.

Fig. 2. Pipeline of the proposed large-scale HCA-SCI system (left) and the PnP reconstruction algorithms (right). Left: During the encoded
photography stage, a dynamic low-resolution mask at the aperture plane and a static high-resolution mask close to the sensor plane work together
to generate a sequence of high-resolution codes to encode the large-scale video into a snapshot. Right: In the decoding, the video is reconstructed
under a PnP framework incorporating deep denoising prior and TV prior into a convex optimization (GAP), which leverages the good convergence
of GAP and the high efficiency of the deep network.
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lights. In addition, the static lithography mask with high spatial
resolution is placed in front of the image plane of the primary
lens, which can project different high-resolution patterns on the
image plane. When the LCoS changes its patterns, the lights
propagating toward the lithography mask will change their di-
rections accordingly, thus leading to a different pattern. In this
manner, we can implement dynamic modulation within one
exposure time, up to 10 mega pixels. Specifically, this paper
makes the following contributions.

• By jointly incorporating a dynamic LCoS and a high-
resolution lithography mask, we proposed, to the best of our
knowledge, a novel hybrid coded aperture snapshot compres-
sive imaging (HCA-SCI) scheme, which can provide multi-
plexed shifting patterns to encode the image plane without
physical movement of the mask.

• Inspired by the PnP algorithms for large-scale SCI in
Ref. [17], we implement a reconstruction algorithm that in-
volves cascading and series denoising processes of total variation
(TV) [20] denoiser and learning-based FastDVDNet [21] de-
noiser. Simulation results show that the proposed algorithm can
provide relative good reconstruction results in a reason-
able time.

• Based on our proposed HCA-SCI scheme and the devel-
oped reconstruction algorithm, we build a 10-mega-pixel large-
scale SCI system. Different compression rates of 6, 10, 20, and
30 are implemented, providing a reconstructed frame rate of up
to 450 frames per second (fps) for a conventional camera op-
erating at 15 fps, verifying the effectiveness of the proposed
scheme in real scenarios.

2. RELATED WORK

SCI has been proposed to capture high-dimensional data
such as videos and hyper-spectral images from a single low-
dimensional coded measurement. The underlying principle
is to modulate the scene at a higher frequency than the camera
frame rate, and then, the modulated frames are compressively
sampled by a low-speed camera. Following this, inverse
algorithms are employed to reconstruct the desired high-
dimensional data [12].

Various video SCI systems have been developed recently
[10,13–15,22–24], and the differences among these imple-
mentations mainly lie in the coding strategies. Typically, video
SCI systems contain the same components as traditional imag-
ing systems, except for several extra relay lenses and a modu-
lation device that generates temporal-variant masks to encode
the image plane. An intuitive approach is to directly use a
DMD [15,22] or an LCoS [13,14], which can project given
patterns with an assigned time sequence, on the image plane
for image encoding. A substitute approach in early work is to
simply replace the modulation device with a physically shifting
lithography mask driven by a piezo [10]. There are also some
indirect modulation methods proposed in recent work [23,24],
which takes advantage of the temporal shifting feature of rolling
shutter cameras or streak cameras for the temporal-variant mask
generation.

Parallel to these systems, different algorithms are proposed
to improve the SCI reconstruction performance. Since the in-
verse problem is ill-posed, different prior constrains such as TV

[25], sparsity [10,13,14,16], self-similarity [26], and Gaussian
mixture model [27,28] are employed, forming widely used
TwIST [29], GAP–TV [25], DeSCI [26], and some other
reconstruction algorithms. Generally, algorithms based on
iterative optimization have high computational complexity.
Inspired by advances of deep learning, some learning-based
reconstruction approaches are proposed and boost the
reconstruction performance to a large extent [15,30–34].
Recently, a sophisticated reconstruction algorithm BIRNAT
[30] based on recurrent neural network has led to state-of-
the-art reconstruction performance with a significant reduction
on the required time compared with DeSCI. However, despite
the highest reconstruction quality achieved by learning-based
methods, their main limitation is in the inflexibility resulting
from inevitable training process and requirement for large-scale
training data when changing encoding masks or data capture
environment. Other learning-based methods such as MetaSCI
[31] try to utilize meta-learning or transfer learning to realize
fast mask adaption for SCI reconstruction with different masks,
but the time cost is still unacceptable on the 10-mega-pixel SCI
data. To solve the trilemma of reconstruction quality, time con-
sumption, and algorithm flexibility, a joint framework of iter-
ative and learning-based methods called PnP [17] is proposed.
By integrating pre-trained deep denoisers as the prior terms into
certain iterative optimization process such as generalized alter-
nating projection (GAP) [35] and alternating direction method
of multiplier (ADMM) [36], PnP-based approaches combine
the advantages of both frameworks and realize the trade-off
between speed, quality, and flexibility.

In this paper, we build a novel video SCI system using a
hybrid coded aperture, composed of an LCoS and a physical
mask shown in Fig. 1. Moreover, we modify the PnP algorithm
to fit our system, leading to better results than the method pro-
posed in Ref. [17].

3. SYSTEM

A. Hardware Implementation
The hardware setup of our HCA-SCI system is depicted in
Fig. 1. It consists of a primary lens (HIKROBOT, MVL-
LF5040M-F, f � 50 mm, F# � 4.0−32), an amplitude-
modulated LCoS (ForthDD, QXGA-3DM, 2048 × 1536 pix-
els, 4.5 × 103 refresh rate), a lithography mask (5120 × 5120
pixels, 4.5 μm × 4.5 μm pixel size), a complementary metal-
oxide-semiconductor transistor camera (HIKROBOT, MV-
CH250-20TC, 5120 × 5120 pixels, 4.5 μm pixel size), two
achromatic doublets (Thorlabs, AC508-075-A-ML, f �
75 mm), a relay lens (ZLKC, HM5018MP3, f � 50 mm),
a polarizing beamsplitter (Thorlabs, CCM1-PBS251/M),
and two film polarizers (Thorlabs, LPVISE100-A). The inci-
dent light from a scene is first collected by the primary lens and
focused at the first virtual image plane. Then a 4f system con-
sisting of two achromatic doublets transfers the image through
the aperture coding module and the lithography mask, and sub-
sequently onto the second virtual image plane. The aperture
coding module positioned at the middle of the 4f system is
composed of a polarizing beamsplitter, two film polarizers,
and an amplitude-modulated LCoS, which are used to change
the open–close states (“open” means letting the light go

Research Article Vol. 9, No. 11 / November 2021 / Photonics Research 2279



through, while “close” means blocking the light) of the sub-
apertures and thus modulate the light’s propagation direction.
Finally, the image delivered by the 4f system is relayed to the
camera sensor being captured. Note that the 4f system used has
a magnification of 1, and the relay lens has a magnification of 2,
which on the whole provides a 1:2 mapping between the pixels
of the lithography mask and the sensor. Even though the im-
aging model involves pixel-wise encoding, there is no need for a
precise alignment for the lithography mask and the camera sen-
sor since the actual encoding mask will be calibrated before data
acquisition. During the acquisition process, the camera shutter
is synchronized with the LCoS by using an output trigger signal
from the LCoS driver board.

It is worth noting that the active area of the LCoS and the
position of the lithography mask should be carefully adjusted.
The active area of the LCoS should be as large as possible mean-
while to ensure it to serve as the aperture stop of the whole
system, so that it can provide a higher light efficiency. As
for the lithography mask, some fine tuning is needed to ensure
that the mask’s projection on the image plane can generate a
shifting when different parts of the aperture are open, and
meanwhile, the shifting masks can still keep sharp. In our im-
plementation, after extensive experiments, the mask is placed in
front of the second image plane with a distance of 80 μm,
which is a good trade-off between the sharpness and the shift.

B. Encoding Mask Generation
The aperture of the system (i.e., the activated area of the LCoS)
can be divided into several sub-apertures according to the res-
olution of the LCoS after pixel binning, and each sub-aperture
corresponds to a light beam propagating toward certain direc-
tions. As shown in Fig. 3, because the lithography mask is
placed in front of the image plane, when different sub-apertures
are turned on, the light beams from the corresponding sub-
apertures will project the mask onto different parts of the image

plane, which can thus generate corresponding shifting encoding
masks. In practice, to enhance the light throughput, multiple
sub-apertures will be turned on simultaneously in one frame by
assigning the LCoS with a specific multiplexing pattern to ob-
tain a single multiplexing encoding mask. In addition, in differ-
ent frames, different combinations of the sub-apertures are
applied to generate different multiplexing encoding masks.
Generally, we turn on 50% of the sub-apertures in one multi-
plexing pattern. In this multiplexing case, the final encoding
mask on the image plane will be the summation of those shift-
ing masks provided by the corresponding sub-apertures.

C. Mathematical Model
Mathematically, the encoding mask generation process can be
modeled as a multiplexing of shifting masks. Let O denote the
center-view mask generated by opening the central sub-aper-
ture of the system; then each mask C generated by sub-aperture
multiplexing can be formulated as

C �
XN

i�1

miSi�O�, (1)

where Si denotes the mask-shifting operator corresponding to
the i-th sub-aperture; mi is the multiplexing indicator (a scalar)
for the i-th sub-aperture, with 0 and 1 for blocking or trans-
mitting the light, respectively; and N is the amount of
sub-apertures (i.e., the number of macro-pixels in the active
area of the LCoS after binning). Consider that a video
X ∈ Rnx×ny×B , containing B consecutive high-speed frames is
modulated by B encoding masks C ∈ Rnx×ny×B and integrated
by the sensor to generate a snapshot-coded measurement Y .
Then Y can be expressed as

Y �
XB

k�1

C k⊙X k �G, (2)

where ⊙ denotes the Hadamard (element-wise) product;
G ∈ Rnx×ny is the measurement noise; and C k � C �∶, ∶, k�
and X k � X �∶, ∶, k� represent the k-th multiplexed mask
and corresponding frame, respectively. Through a simple der-
ivation, the coded measurement in Eq. (2) can be further ex-
pressed by

y � Hx � g , (3)

where y � Vec�Y � ∈ Rn and g � Vec�G� ∈ Rn with
n � nxny . Corresponding video signal x ∈ RnB is given by
x � �x⊤1 ,…, x⊤B �⊤, where xk � Vec�X k� ∈ Rn. Different with
traditional CS, the coding matrix H ∈ Rn×nB in video SCI is
sparse and has a special structure, which can be written as

H � �D1,…,DB �, (4)

where Dk � diag�Vec�C b�� ∈ Rn×n. Therefore, the compres-
sive sampling rate in video SCI is equal to 1∕B. Theoretical
analysis in Refs. [37,38] has proved that the reconstruction er-
ror of SCI is bounded even when B > 1.

D. System Calibration
Although pixel-wise modulation is involved in SCI systems,
there is no need for pixel-to-pixel alignment during system
building, as we can get the precise encoding patterns through
an end-to-end calibration process prior to data capture. To be
specific, we place a Lambertian white board at the objective

Fig. 3. Illustration of the multiplexed mask generation. For the
same scene point, its images generated by different sub-apertures
(marked as blue, yellow, and red, respectively) intersect the mask plane
with different regions and are thus encoded with corresponding
(shifted) random masks before summation at the sensor. The multi-
plexing would raise the light flux for high SNR recording, while doing
so only with slight performance degeneration.
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plane, and provisionally take away the lithography mask. Then,
an illumination pattern I and a background pattern B are cap-
tured with LCoS projecting white and black patterns, respec-
tively. After that, we put on the lithography mask and capture
each dynamic encoding mask C with LCoS projecting corre-
sponding multiplexing patterns directly. To eliminate the influ-
ence of background light and nonuniform illumination caused
by light source or system vignetting on the actual encoding
masks, we conduct calibration to obtain the accurate encoding
mask C 0 following Eq. (5). In addition, after encoding acquis-
ition, the encoded measurements will also subtract the back-
ground pattern to accord with the providing mathematical
model, and illumination will be regarded as a part of the scene
itself:

C 0 � C − B
I − B

: (5)

4. RECONSTRUCTION ALGORITHM

The reconstruction of high-speed videos from the snapshot-
coded measurement is an ill-posed problem. As mentioned be-
fore, to solve it, different priors and frameworks have been em-
ployed. Roughly, the algorithms can be categorized into the
following three classes [12]: i) regularization (or priors)-based
optimization algorithms with well-known methods such as
TwIST [29], GAP–TV [25], and DeSCI [26]; ii) end-to-
end deep-learning-based algorithms [15,32,34], such as
BIRNAT [30], which reaches state-of-the-art performance,
and recently developed MetaSCI [31] that uses meta-learning
to improve adaption capability for different masks in SCI
reconstruction; and iii) PnP algorithms that use deep-denoising
networks in the optimization framework such as ADMM
and GAP.

Among these, regularization-based algorithms are usually
too slow, and end-to-end deep learning networks need a large
amount of data and also a long time to train the network, in
addition to showing inflexibility (i.e., re-training being required
for a new system). Although recent works such as MetaSCI [31]
try to mitigate this problem with meta-learning or transfer
learning and thus march forward to a large-scale SCI problem
with a patch-wise reconstruction strategy, it still takes a long
time for the training and adaption of 10-mega-pixel-scale
SCI reconstruction. For example, MetaSCI takes about 2 weeks
for the 256 × 256 × 10 base model training on a single
NVIDIA 2080Ti GPU, and further adaption performed on
more than 570 256 × 256 × 10 sub-tasks (overlapped patches
extracted from a 10-mega-pixel image) takes about two
months, which is impractical in real applications (more GPUs
can be used to mitigate this challenge). By contrast, PnP has
achieved a good balance of speed, flexibility, and accuracy.
Therefore, we employ a PnP framework in our work and fur-
ther develop the PnP–TV–FastDVDNet to achieve promising
results for our high-resolution HCA-SCI scheme. Meanwhile,
we use GAP–TV and BIRNAT as baselines for comparison.

In the following, we review the main steps of PnP–GAP [17]
and then present our PnP–TV–FastDVDNet algorithm for
HCA-SCI in Algorithm 1.

A. PnP–GAP
In GAP, the SCI inversion problem is modeled as

arg minx,v
1

2
∥x − v∥22 � λR�x�, s:t: y � Hx, (6)

where R�x� is a regularizer or prior being imposed on x, which
can be a TV, sparse prior, or a deep prior [39], and v is an
auxiliary parameter. Let k index be the iteration number;
through a two-step iteration, the minimization in Eq. (6)
can be solved as follows.

• Solving x:

x�k� � v�k−1� �H⊤�HH⊤�−1�y −Hv�k−1��: (7)

By utilizing the special structure of H shown in Eq. (4), this
subproblem can be solved efficiently via element-wise operation
rather than calculating the inversion of a huge matrix.

• Solving v:

v�k� � Dσ�x�k��, (8)

where Dσ�·� represents a denoising process with σ �
ffiffiffi
λ

p
.

Here, different denoising algorithms can be used, such as
TV (thus GAP–TV), WNNM [40] (thus DeSCI [26]), and
FFDnet [39] (thus PnP–FFDnet [17]).

B. PnP–TV–FastDVDNet
Recall that solving v following Eq. (8) is equivalent to perform-
ing a denoising process on x. By plugging various denoisers into
the GAP iteration steps, we can make a trade-off between dif-
ferent aspects of reconstruction performance. In fact, more than
one denoiser can be employed in a series manner (i.e., one after
another in each iteration), or in a cascading manner (i.e., the
first several iterations using one denoiser, while the next several
iterations using another). In this way, we can further balance
the strengths and drawbacks of different denoisers.

Algorithm 1. PnP–TV–FastDVDNet for HCA-SCI

Require H , y.
1: Initialize: v�0�, λ0, ξ < 1, k � 1,K 1,KMax.
2: while Not Converge and k ≤ K Max do
3: Update x by Eq. (7).
4: Update v:
5: if k ≤ K 1 then
6: v�k� � DTV�x�k��
7: else
8: v 0 � DTV�x�k��
9: v�k� � DFastDVDNet�v 0�

In this paper, considering the high video denoising perfor-
mance of recently proposed FastDVDNet [21], we jointly em-
ploy the TV denoiser and the FastDVDNet denoiser in a PnP–
GAP framework, implementing a reconstruction algorithm of
PnP–TV–FastDVDNet, which involves cascading and series
denoising processes. The algorithm pipeline is shown in
Algorithm 1. In each iteration, the updating of x follows
Eq. (7), and the updating of v (i.e., the denoising process), dif-
fers in different periods. To be specific, in the first period, a
single TV denoiser is employed, while in the second period,
joint TV and FastDVDNet denoisers are involved one after
another.
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5. RESULTS

In this section, we conduct a series of experiments on both sim-
ulation and real data to validate the feasibility and performance
of our proposed HCA-SCI system. Four reconstruction algo-
rithms, including iterative-optimization-based algorithm
GAP–TV [25], plug-and-play-based algorithm PnP–FFDNet
[17], our proposed PnP–TV–FastDVDNet, and the state-of-
the-art learning-based algorithm BIRNAT [30] are employed.

A. Multiplexing Pattern Design
Multiplexing pattern design plays an important role in our
HCA-SCI system. In simulation, we used the random squares
multiplexing scheme (shown in the first row of Fig. 4), which
contains 12 sub-apertures with each sub-aperture containing
512 × 512 binning pixels. In each multiplexing pattern, there
are 50% randomly selected sub-apertures being open. In real
experiments, the optical aberration and diffraction that are
not considered in simulation experiments will cause blur to
the encoding mask, and thus introduce more correlation among
the encoding masks, which degrades the encoding effect.
Considering the fact that the calibration process is conducted
in an end-to-end manner in real experiments, we thus have
enough degree of freedom to design any possible multiplexing
patterns without being limited by the binning mode or the sub-
aperture amount. We empirically tried many different schemes
and finally found that the “rotating-circle” scheme (shown in
the second row of Fig. 4) can realize a good balance between the
system’s light throughput and the encoding masks’ quality
when taking the physical factors into account.

Currently, the design of the multiplexing patterns is
heuristic, and the challenge of the algorithm-based multiplex-
ing pattern design mainly lies in the large size of the multiplex-
ing pattern (1536 × 2048) and the coded measurement
(3200 × 3200) in our system. Both traditional optimization-
based methods and learning based methods have difficulty
in dealing with data of this scale. Thus, the design of the opti-
mal multiplexing pattern is still an open challenge that is
worthy of future investigation.

B. Reconstruction Comparison between Different
Algorithms on Simulation Datasets
To investigate the reconstruction performance of different al-
gorithms on the proposed HCA-SCI system, we first perform
experiments on simulated datasets, which involve three differ-
ent scales of 256 × 256, 512 × 512, and 1024 × 1024, and two
compression rates (Cr) of 10 and 20. Two datasets named
Football and Hummingbird used in Ref. [17] and three datasets
named ReadySteadyGo, Jockey, and YachtRide provided in
Ref. [41] are employed in our simulation. According to the for-
ward model depicted in Section 5.C, to simulate the encoding
masks, we first calculate the mask-shifting distance with respect
to the center-view mask for each sub-aperture in the current
multiplexing pattern (shown in the first row of Fig. 4) based on
geometry optics. Then we shift the center-view mask accord-
ingly to get each sub-aperture’s shifting mask. Finally, the shift-
ing masks are added together to obtain the final multiplexing
encoding mask on the image plane. After that, we can generate
six groups of simulation datasets by modulating different scales
of videos (containing 10 or 20 frames) with multiplexed shift-
ing masks generated from the HCA-SCI system and then col-
lapsing the coded frames to a single (coded) measurement.

The reconstruction peak signal to noise ratio (PSNR) and
structural similarity index measure (SSIM) for each algorithm
are summarized in Tables 1 and 2 for Cr � 10 and 20, respec-
tively. It is worth noting that due to the limited memory of our
GPU (GeForce RTX 3090 with 24 GB memory), we only test
BIRNAT on 256 × 256 scale datasets with Cr equal to 10 and
20, and the adversarial training was not involved. For GAP–TV
and PnP–TV–FastDVDNet, the reconstruction is conducted
on a platform equipped with an Intel Core i7-9700K CPU
(3.60GHz, 32Gmemory) and aGeForce RTX2080GPUwith
8 Gmemory; 160 and 250 iterations are taken forCr � 10 and

Table 1. Average Results of PSNR in dB (left entry in each cell) and SSIM (right entry in each cell) by Different Algorithms
(Cr � 10)a

Scales Algorithms Football Hummingbird ReadySteadyGo Jockey YachtRide Average

256 × 256

GAP–TV 27.82, 0.8280 29.24, 0.7918 23.73, 0.7499 31.63, 0.8712 26.65, 0.8056 27.81, 0.8093
PnP–FFDNet 27.06, 0.8264 25.52, 0.6912 21.68, 0.6859 31.14, 0.8493 23.69, 0.7035 25.82, 0.7513

PnP–TV–FastDVDNet 31.31, 0.9123 31.19, 0.8264 26.18, 0.8276 31.36, 0.8817 28.90, 0.8841 29.79, 0.8664
BIRNAT 34.67, 0.9719 34.33, 0.9546 29.50, 0.9389 36.24, 0.9711 31.02, 0.9431 33.15, 0.9559

512 × 512
GAP–TV 29.19, 0.8854 28.32, 0.7887 25.94, 0.7918 31.30, 0.8718 26.59, 0.7939 28.27, 0.8263

PnP–FFDNet 28.57, 0.8952 28.02, 0.8363 24.32, 0.7457 29.81, 0.8248 23.45, 0.6793 26.83, 0.7963
PnP–TV–FastDVDNet 30.92, 0.9333 32.24, 0.8834 27.04, 0.8246 32.11, 0.8839 27.87, 0.8487 30.04, 0.8748

1024 × 1024
GAP–TV 30.63, 0.9022 29.16, 0.8459 28.92, 0.8698 31.59, 0.8953 29.03, 0.8470 29.87, 0.8720

PnP–FFDNet 29.87, 0.9023 27.70, 0.7869 27.70, 0.8483 29.88, 0.8412 25.55, 0.7211 28.14, 0.8200
PnP–TV–FastDVDNet 30.35, 0.9265 31.71, 0.8909 29.42, 0.8913 31.59, 0.9014 30.44, 0.8713 30.70, 0.8963

aBIRNAT fails at large-scale due to limited GPU memory.

Fig. 4. Multiplexing pattern schemes used in our experiments (tak-
ing Cr � 6 for an example). Top row: multiplexing patterns for sim-
ulation experiments. Each pattern contains 50% open sub-apertures,
and each sub-aperture is a 512 × 512 binning macro pixel on the
LCoS. Bottom row: multiplexing patterns for real experiments.
Each pattern contains an open circle with a radius of about 400 pixels,
and the circles in adjacent patterns have a rotation of 360/Cr degrees.
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20, respectively. It can be observed that i) on all six groups of
simulated datasets, our proposed PnP–TV–FastDVDNet out-
performs GAP–TV and PnP–FFDNet for about 1.5 and
4 dB on average, respectively. ii) On the 256_Cr10 and
256_Cr20 datasets, BIRNAT shows the best performance (with
sufficient training), exceeding the PnP–TV–FastDVDNet for
about 3.4 and 0.4 dB, respectively. iii) BIRNAT is the fastest
algorithm during the inference period that is hundreds times
shorter than that of GAP–TV and PnP–TV–FastDVDNet.
However, the training process of BIRNAT is quite time-con-
suming, and it takes about a week to train the network without
adversarial training for 25 epochs. iv) From the selected
reconstruction video frames in Fig. 5, we can see that our pro-
posed PnP–TV–FastDVDNet provides higher visualization
quality with sharp edges and less artifacts. By contrast, GAP–
TV produces noisy results, while the PnP–FFDNet leads to
some unpleasant artifacts.

C. Validation of Multiplexed Shifting Mask’s Noise
Robustness on Simulation Datasets
As mentioned in Section 5.B, our proposed HCA-SCI system
leverages multiplexing strategy for the improvement of light

throughput, which can thus gain a higher signal-to-noise ratio
(SNR) and enhance the system’s robustness to noise in
real-world applications. In this subsection, we conduct a series

Table 2. Average Results of PSNR in dB (left entry in each cell) and SSIM (right entry in each cell) by Different Algorithms
(Cr � 20)a

Scales Algorithms Football Hummingbird ReadySteadyGo Jockey YachtRide Average

256 × 256
GAP–TV 25.01, 0.7544 26.33, 0.6893 20.48, 0.6326 28.13, 0.8318 23.56, 0.7129 24.70, 0.7242

PnP–FFDNet 21.67, 0.6657 22.13, 0.5835 17.27, 0.5340 27.78, 0.7994 20.39, 0.6024 21.85, 0.6370
PnP–TV–FastDVDNet 27.83, 0.8459 28.65, 0.7520 23.28, 0.7381 29.51, 0.8597 26.34, 0.8235 27.12, 0.8038

512 × 512

BIRNAT 27.91, 0.9021 28.58, 0.8800 23.79, 0.8279 31.35, 0.9467 26.14, 0.8585 27.55, 0.8830
GAP–TV 23.97, 0.8179 24.50, 0.6719 22.12, 0.6975 26.99, 0.8297 23.13, 0.6930 24.14, 0.7420

PnP–FFDNet 22.00, 0.7661 23.62, 0.7245 19.35, 0.6133 25.32, 0.7924 19.48, 0.5418 21.95, 0.6876
PnP–TV–FastDVDNet 25.63, 0.8852 28.36, 0.7778 23.80, 0.7499 28.79, 0.8553 25.36, 0.7784 26.39, 0.8093

1024 × 1024
GAP–TV 24.82, 0.8353 25.53, 0.7296 24.98, 0.8128 26.63, 0.8388 25.80, 0.7759 25.55, 0.7985

PnP–FFDNet 23.55, 0.8098 23.02 0.6039 22.48, 0.7702 24.48, 0.7968 21.67, 0.6414 23.04, 0.7244
PnP–TV–FastDVDNet 26.26, 0.8729 28.68, 0.8076 26.31, 0.8399 29.18, 0.8773 28.07, 0.8194 27.70, 0.8434

aBIRNAT fails at large-scale due to limited GPU memory.

Fig. 5. Reconstruction results and comparison with state-of-the-art algorithms on simulated data at different resolutions (left: 256 × 256, middle:
512 × 512, right: 1024 × 1024) and with different compression ratios (top: Cr � 10, bottom: Cr � 20). The BIRNAT results are not available for
512 × 512 and 1024 × 1024 since the model training will be out of memory. See Visualization 1, Visualization 2, Visualization 3, Visualization 4,
Visualization 5, and Visualization 6 for the reconstructed videos.

Fig. 6. Noise robustness comparison between multiplexed and non-
multiplexed masks.
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of experiments on simulation datasets containing different lev-
els of noise to compare the reconstruction performance of mul-
tiplexed shifting masks used in HCA-SCI and non-multiplexed
ones. The 256 × 256 size dataset mentioned above is utilized
here as the clean original frames. In addition, we normalize the
masks with a light throughput factor calculated from the
proportion of the masks’ active area with respect to the whole

aperture. Zero-mean Gaussian noise with standard deviation
ranging from 0 to 20 is added to the measurements (with values
in [0,255]) to simulate the real-world acquisition process.

The change of reconstruction PSNR over increasing noise
levels is shown in Fig. 6. As can be seen from the figure, shift-
ing masks with no multiplexing outperform the multiplexed
ones when there is no noise, which is probably because the

Fig. 7. Reconstruction results of the PnP–TV–FastDVDNet on real data captured by our HCA-SCI system (Cr � 6, 10, 20, and 30). Note the
full frames are of 3200 × 3200, and we plot small regions about 400 × 400 in size to demonstrate the high-speed motion.
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Fig. 8. Reconstruction comparison between the GAP–TV, PnP–FFDNet, and PnP–TV–FastDVDNet on real data captured by our HCA-SCI
system (Cr � 6, 10, 20, and 30). Note the full frames are of 3200 × 3200, and we plot small regions 512 × 512 in size to demonstrate the high-speed
motion. See Visualization 7 for the reconstructed videos.
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multiplexing operation brings in some correlation among the
masks that is not desired for the encoding and reconstruction.
However, as the noise increases, the superiority in SNR of the
multiplexing scheme shows up, and the reconstruction PSNR
of non-multiplexed shifting masks drops rapidly, while that of
the multiplexed masks decreases more slowly and exceeds the
PSNR of the non-multiplexed ones. In real scenes, noise is
inevitable, and as it increases, it will also have a significant im-
pact on the reconstruction process until totally disrupting the
reconstruction. Thus, the multiplexing strategy leveraged in
HCA-SCI can equip the physical system with more robustness
in real applications, especially those at relatively large noise
levels.

D. Real-Data Results
We built a 10-mega-pixel snapshot compressive camera proto-
type illustrated in Fig. 1 for dynamic video recording.
Empirically, the multiplexing patterns (shown in the second
row of Fig. 4) projected by the LCoS are designed to be rota-
tionally symmetric, which ensures the consistency in the final
coding patterns and provides an adequate incoherence among
these masks. Before acquisition, we first calibrate the groups of
coding masks with a Lambertian whiteboard placed at the ob-
jective plane, and each calibrated pattern is averaged over 50
repetitive snapshots to suppress the sensor noise. Then, during
data capture, the camera operates at a fixed frame rate of 20 fps
when Cr � 6, 10, and 20, providing reconstruction video
frame rate of 120, 200, and 400 fps, respectively. For
Cr � 30, the camera operates at 15 fps to extend the exposure
time and provide a higher light throughput, which can reach a
reconstruction frame rate up to 450 fps. We determine the spa-
tial resolution of our system as 3200 × 3200 pixels. We thus
have achieved the throughput of 4.6 × 109 voxels per second
in the reconstructed video.

Three moving test charts printed on A4 papers are chosen as
the dynamic objects. In Fig. 7, we show the coded measure-
ments and final reconstruction of the test charts. From that,
one can see that the proposed HCA-SCI system and PnP–
GAP–FastDVDNet reconstruction algorithm can effectively
capture and restore the moving details of dynamic objects,
which will be blurry when captured directly with conventional
cameras. For the reconstruction of real data, we also find that,
in some cases, the start and end frames tend to be blurry (refer
to real-data results of Cr � 10 and Cr � 30 in Fig. 7), which
might be caused by the synchronization imperfection and ini-
tialization delay of the LCoS when switching between the pro-
jection sequences.

We further compare the reconstruction of GAP–TV, PnP–
FFDNet, and PnP–TV–FastDVDNet on real datasets captured
by our HCA-SCI system. From the reconstruction results
shown in Fig. 8, we can find that when Cr � 6, all these three
algorithms can produce clear reconstruction frames with sharp
details, especially in the intermediate frames. However when Cr
gets larger, the reconstructed frames of GAP–TV tend to be
blurry and have more background noise. The PnP–FFDNet
will generate severe artifacts in the reconstructed frames and
make the motion invisible. But our proposed PnP–TV–
FastDVDNet can still reconstruct the motion details with a
little increasing of noise in the background.

6. CONCLUSION

We have proposed a new computational imaging scheme
capable of capturing 10-mega-pixel videos with low bandwidth
and developed corresponding algorithms for computational
reconstruction, providing a high-throughput (up to
4.6 × 109 voxels per second) solution for high-speed, high-res-
olution videos.

The hardware design bypasses the pixel count limitation of
available spatial light modulators via joint coding at aperture
and close to image plane. The results demonstrate the feasibility
of high-throughput imaging under a snapshot compressive
sensing scheme and hold great potential for future applications
in industrial visual inspection or multi-scale surveillance.

So far, the final reconstruction is limited to 450 Hz since the
hybrid coding scheme further decreases the light throughput to
some extent, compared with conventional coding strategies. In
the future, a worthwhile extension would be to introduce new
photon-efficient aperture-coding devices to raise the SNR for
coded measurements. Another limitation of the current system
lies in the non-uniformity of the encoding masks along the
radial direction, which is a common problem for large-scale
imaging systems due to non-negligible off-axis aberration.
Considering the challenge for improving optical performance
of existing physical components, designing novel algorithms
capable of SCI reconstruction with non-uniform masks
may be economical and feasible. Meanwhile, time-efficient
reconstruction algorithms and feasible multiplexing pattern
design methods for large-scale (like 10-mega-pixel or even
giga-pixel) SCI reconstruction are still an open challenge in
the foreseeable future. Moreover, extending proposed imaging
scheme for higher throughput (e.g., giga pixel) or other
dimensions (e.g., light field, hyperspectral imaging) may also
be a promising direction.
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