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The Pancharatnam–Berry geometric phase has attracted great interest due to the elegant phase control strategy via
geometric transformation of optical elements. The commonly used geometric phase is associated with circular
polarization states. Here, we show that by exploiting the geometric phase associated with the two elliptical eigen-
polarization states in a racemic metallic helix array, exotic features including full range phase modulation for
linear polarization states, diverse polarization conversion, and full complex amplitude modulation can be ob-
tained with rotation of the helices. As a proof of concept, several devices for implementing polarization conver-
sion, vortex beam generating, and lateral dual focusing are built with a racemic helix array in the microwave
regime. The calculated and experimental results validate our proposals, which can stimulate various advanced
metadevices. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.440166

1. INTRODUCTION

The geometric phase refers to the phase difference obtained
when a system undergoing cyclic evolution returns to its initial
state [1–3]. This phenomenon was found in a wide range of
both quantum and classical systems, like the Aharonov–
Bohm effect and the motion of the Foucault pendulum [4,5].
The geometric phase of light that associated with the evolution
of polarization state was first discovered by Pancharatnam [6].
That is, for a beam with polarization state evolving along a close
loop on the Poincaré sphere, the final state shall differ from the
initial one with a geometric phase, namely the Phacharatnam–
Berry (PB) phase, which is equal to half of the solid angle of the
area enclosed by the loop. By further introducing nonlinearity
[7] or exploiting the rotational symmetric optical elements [8],
more flexible phase modulations can be acquired. The PB phase
has attracted enormous interest in subwavelength optics due to
the paradigm it presents in which simple and robust phase con-
trol can be implemented by rotation of the optical elements. A
variety of intriguing functionalities, such as flat lensing [9,10],
optical vortices generation [11–15] and measurement [16–18],
and holography [19], have been realized based on the PB phase.
In addition, strategies like superposition of two PB elements
[20,21] and integrating PB phase with propagation phase or

detour phase [22–27] have been proposed to achieve arbitrary
control of phase and amplitude, which stimulates various ad-
vanced functionalities, such as quality enhanced holograms
[20,24,25], customized radiation pattern shaping [21,23],
and full polarization cloaks [26]. In general, the PB phase ex-
ploited in most of these works is associated with circular polari-
zation states and relies on the circular polarization conversion
transmission or the co-circular-polarization reflection feature of
anisotropic structures.

Chiral structures that lack mirror symmetry intrinsically
possess selective response to circular polarization waves
[28–31], which makes them excellent platforms for PB-phase-
based applications. For example, chiral nematic liquid crystals
[32–34] and metallic helices [35,36] have been utilized for PB-
phase-based vortex beam generation. For a racemic system that
contains chiral structures of both handednesses, independent
PB-phase-based holography for circularly polarized waves of
opposite handednesses is achieved due to the orthogonality be-
tween left-handed and right-handed circularly polarized (LCP
and RCP) waves [37]. Furthermore, racemic systems are also
utilized for polarization manipulations in the terahertz (THz)
and infrared regime [38,39]. However, the underlying physics
of such a kind of chiral metamaterials is still under exploration.
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In this paper, we show that the PB phase associated with
elliptical eigen-polarization states in racemic metallic helix ar-
rays provides additional degrees of freedom for control of phase,
polarization, and amplitude. Namely, the two reflective ellipti-
cal eigen-polarization states are respectively controlled by the
orientations of helices in different handedness, resulting in
independent cyclic polarization evolution paths and PB phase
accumulations for these two states. This further leads to a re-
flective behavior similar to a linear birefringent element, and
the directions of the fast and slow axes as well as the phase re-
tardations along them can be manipulated by the orientations
of helices. Such features enable interesting properties such as
PB-phase-based full range phase modulation for linearly polar-
ized states, diverse polarization conversion, and arbitrary con-
trol of phase and amplitude. As a proof of principle, several
racemic helix array samples that operate in the microwave re-
gime are designed to implement functionalities of generating
vortex beams, lateral dual focusing, rotating the polarization
direction of linear polarization wave, and converting the circu-
lar polarization state to an arbitrary state on a hemisphere of a
Poincaré sphere. The experimental results, in good agreement
with theoretical calculations, demonstrate the proposed phase,
polarization, and amplitude modulation method, which may
find many applications in various advanced metadevices.

2. PRINCIPLES AND PROPERTIES OF THE
RACEMIC HELIX ARRAY

Figure 1 shows the schematic configuration of a unit cell of the
racemic metallic helix array. The unit cell with a lattice constant
2d � 20 mm includes two left-handed (LH) and two right-
handed (RH) copper helices, which are shown in golden and
silver gray, respectively. All helices are oriented along the z axis
and have identical geometric parameters, which are helix radius
a � 3 mm, wire diameter δ � 0.6 mm, and pitch p � 4 mm,
and each helix has three periods along the helical axis. As shown
in Fig. 1(b), the orientation angle of a helix is defined as the
azimuthal angle of the start point with respect to its own helix
axis. The orientation angles of helices with the same handed-
ness in a unit cell are the same and denoted as θL and θR for LH
and RH helices, respectively. Obviously, the racemic array can
be regarded as a combination of two subarrays with lattice con-
stant of

ffiffiffi
2

p
d that consist of RH and LH helices. For compari-

son and reference, we first investigate the features of the
subarrays. A unit cell of the RH subarray is shown in Fig. 2(a).
The geometric parameters of the helix are exactly the same as
those in the aforementioned racemic helix array, and the same

definition of helix orientation angle is adopted. As reported in
prior works [29,40,41], a metallic helix array only allows cir-
cularly polarized waves of opposite handedness to pass through
along the axial direction, while the matching handedness waves
are coupled with helices and reflected with the same handed-
ness. Reflection spectra of an RH subarray with 0° orientation
angle are calculated with finite-difference time-domain algo-
rithm. In these calculations, periodic boundary conditions
are applied at the x and y boundaries, and perfectly matched
layers at the z boundaries. The incident wave is set to be along
the −z direction. The reflection spectra are also obtained by
performing measurements inside an anechoic chamber through
a slab of RH subarray with the aforementioned parameters. The
sample is fabricated by embedding 30 × 30 RH helices in a
polyurethane foam slab, which is nearly lossless with εr ≈ 1.
The helices, which form a square array with a periodicity offfiffiffi
2

p
d , are manually inserted and rotated to the desired angle

according to our design. The measurements are performed with
a Keysight PNA-X 5242A network analyzer, and two linearly
polarized horn antennas that are placed next to each other are
used as the emitter and receiver, respectively. The x- and
y-polarized reflected electric field components under both
x- and y-polarized incidence are measured and then trans-
formed into reflection spectra in a circular basis. A polyure-
thane foam slab with the same size as the sample is backed
with a metallic plate and used as the calibration reference.
All the reflectance measurements are normalized to the reflec-
tance measured from it. The calculated and measured reflection
spectra of the 0° oriented RH subarray are shown in Fig. 2(b).
Clearly, in a wide frequency range, the RCP wave is mainly
reflected with polarization state unchanged, just as expected.
However, it can be noticed that certain amount of RCP inci-
dent wave is converted to an LCP state. As discussed in Ref.
[40], this is mainly due to the fact that finite-length helix must
end at some point, which breaks the full rotational symmetry
and introduces some degree of linear birefringence into pure
circular dichroism. In other words, the reflective eigen-polari-
zation states are not two circularly polarized states.

Following the approach in Ref. [42], we find that the eigen-
polarization states are a pair of orthogonal elliptical polarization
states, denoted as A and B with coordinates �2ψR , 2χR� and
�2�ψR � 90°�, − 2χR� on a Poincaré sphere, respectively.
(Details of the methods are presented in Appendix A.)
Figure 2(c) shows reflection spectra of 0° oriented RH subarray
in its eigenbasis, where no polarization conversion occurs. The
tilt angles ψR and ellipticity angles χR of state A are obtained
based on calculated and measured reflection spectra and
are shown in red color in Figs. 2(d) and 2(e), respectively.
The RH subarray shows clearly elliptical dichroism feature,
i.e., the RH elliptical state A is mainly reflected with polariza-
tion state unchanged, while state B is allowed to pass through
without reflection. Especially, the near perfect reflection of state
A is obtained around the frequency of 14.4 GHz. As for the LH
subarray, since it is mirror-symmetrical to the RH one, a hand-
edness flipped elliptical dichroism feature can be expected, that
is, the reflection spectra in the eigenbasis are identical while the
eigen-polarization states are mirror symmetrical to those of
the RH subarray. These properties have been confirmed by

Fig. 1. (a) Schematic of a unit cell of the racemic metallic helix array.
(b) Top view of the unit cell.
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our calculations (reflection spectra of LH subarrays are
presented in Appendix A). We denote the eigen-polarization
states of the 0° oriented LH subarray as A��2ψL, 2χL� and
B��2�ψL � 90°�, −2χL�. As shown in Figs. 2(d) and 2(e),
the tilt angles ψL and ellipticity angles χL of state A� (blue)
are just in opposite sign to those of state A, which indicates
that the two states are mirror-symmetrical to each other about
the xoz plane, just like the 0° oriented RH and LH subarrays.
In addition, as depicted in Fig. 2(f ), the reflection phase of state
A� from the LH subarray is also identical to that of state A from
the RH subarray, which further demonstrates the mirror-sym-
metrical relation between the two states. It is necessary to point
out that the eigen-polarization states are uniquely related to the
principal symmetry of helices. Therefore, when the orientation
angle of helices varies, the tilt angles of the eigen-polarization
states change by the same value, for example, the Poincaré
sphere coordinates corresponding to the eigen-polarization
states of the RH subarray with the orientation angle of θ being
�2�ψR � θ�, 2χR� and �2�ψR � θ� 90°�, −2χR�. Meanwhile,

the ellipticity angles and the reflection spectra in the new
eigenbasis are not affected.

As discussed above, the two subarrays respectively reflect
electromagnetic waves of elliptical states of their own handed-
ness. Since the proposed racemic array consists of both RH and
LH subarrays, one can intuitively expect electromagnetic
waves of both the two elliptical states to interact with matching
handedness subarrays and achieve near perfect reflection at
14.4 GHz. To avoid confusion with the eigen-polarization
states of subarrays, for the aforementioned racemic array com-
posed of RH and LH helices with orientation angles of θR and
θL, these two elliptical states at 14.4 GHz are defined by
Poincaré sphere coordinates as ER�2�ψ � θR�, 2χ� and
EL�−2�ψ − θL�, −2χ�, respectively. Then, under the above
assumption, the reflection Jones calculus (omitting a global
phase delay) of a racemic helix array in a linear polarization
basis can be derived as

M θr , θl � R�−β�
�
eiϕx,x 0
0 eiϕy,y

�
R�β�, (1)

with
ϕx,x � −2 arctan�tan�ψ � α� tan χ�, (2)

ϕy,y � 2 arctan�cot�ψ � α� tan χ�, (3)

where R�β� �
�
cos β sin β
−sin β cos β

�
denotes the rotation matrix,

and α � �θR − θL�∕2, β � �θR � θL�∕2 are half of the differ-
ence and summation of the orientation angles of the RH and
LH helices, respectively. More discussion about the reflection
response of racemic array can be found in Appendix B. As seen
from Eq. (1), the reflection feature of the racemic helix array
shows great resemblance to a linearly birefringent element.
Obviously, the directions of the fast and slow axes as well as
the phase retardations along them can be manipulated by tun-
ing the orientation angles of the RH and LH helices. Namely,
the directions of the fast and slow axes are determined by the
summation of the orientation angles of the RH and LH helices,
whereas the phase retardations are determined by the difference
between them. Since parameter αmay vary from −90° to 90°, it
can be obviously seen from Eqs. (2) and (3) that the reflection
phases ϕx,x and ϕy,y can be continuously tuned in the range of
0°–360°. It is noteworthy that this phase shift purely originates
from geometric transformation and is therefore a geometric
phase. In addition, the phase difference between the fast
and slow axes can also be manipulated by varying parameter
α. Especially, the 180° phase difference can always be acquired
when ψ � α equals zero. This provides an approach for polari-
zation conversion.

The reflection spectra of the racemic helix array are calcu-
lated and measured to verify our prediction. The calculation
settings and the experimental setup are with the same as those
for subarray reflection spectra measurement. All samples for
racemic helix array reflection spectra measurement are the same
size and consist of 30 × 30 unit cells. Figure 3(a) shows the re-
sult of the racemic array with both RH and LH helices orien-
tation angles being 0°. Clearly, the racemic array is opaque to
both the x- and y-polarized electromagnetic waves at
14.4 GHz, and no polarization conversion occurs. We further
investigate the amplitude and phase responses of the racemic

Fig. 2. (a) Schematic of a unit cell of the 0° oriented RH subarray.
(b) Calculated (lines) and measured (circles) reflection spectra of the 0°
oriented RH subarray in circular basis. The first and the second sub-
scripts of reflection spectra refer to the polarization states of the re-
flected and the incident waves, respectively. The reflection spectra
are normalized to the power of incidence. (c) Reflection spectra of
the RH subarray in its eigen-polarization basis. The calculated (d) tilt
angles and (e) ellipticity angles of the RH and LH subarrays with ori-
entation angles of 0°. (f ) Reflection phase of states A and A� from the
RH and LH subarray, respectively. The circles in (c) and (d) show the
corresponding results of the eigen-polarization basis calculated from
experimentally measured reflection spectra.
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array with β fixed to be 0° but a varying parameter α. As shown
in Figs. 3(b) and 3(c), when parameter α is changed from −90°
to 90°, the reflective amplitude constantly retains near unity for
both x and y polarizations, whereas both the reflection phases
ϕx,x and ϕy,y have a 360° range variation. To show phase re-
sponse to parameter α more clearly, the reflection phases ϕx,x
and ϕy,y are shown in Fig. 3(d) as phase shifts, and the reflection
phase of x polarization for the racemic array with both param-
eters α and β being 0° is set to be the reference value. Clearly,
the reflection phase from 0° to 360° can be achieved for both
polarizations by tuning parameter α. Following Eqs. (2) and
(3), we find that, for the two nearly perfectly reflected elliptical
states at 14.4 GHz, the tilt and ellipticity angles are ψ ≈ 0° and
χ ≈ 22.5°, respectively. It can be noticed that these two ellip-
tical states are slightly different from the states A and A� of the
RH and LH subarrays at 14.4 GHz. This is due to the mutual
coupling between helices of different handedness, though
rather weak (more discussions can be found in Appendix B).
The reflection phases ϕx,x and ϕy,y obtained from Eqs. (2)

and (3) with ψ � 0° and χ � 22.5° are shown in Fig. 3(d) with
solid lines, which are in excellent agreement with calculated and
measured ones. It is necessary to point out that such phase
modulation is achieved purely by exploiting the PB geometric
phase. Consider the case in which β is fixed to be 0°; the two
near perfectly reflected elliptical states at 14.4 GHz are
ER�2α, 2χ� and EL�−2α, −2χ�. Since the incident wave is
along the opposite direction, these two states are E�

R�2α, −2χ�
and E�

L�−2α, 2χ� in the incident coordinate system. For exam-
ple, the incident x-polarized wave can be regarded as the super-
position of electromagnetic waves of E�

R and E�
L states with the

same amplitude and phase. As shown in Fig. 3(e), the two parts
of incident wave respectively experience the polarization evo-
lution paths of x − E�

R − ER − x and x − E�
L − EL − x, and they

accumulate the same geometric phase, which can be quantified
by Eq. (2). Then, the reflected x-polarized wave exhibits a
phase shift with the parameter α. It is worth noting that,
due to the difference in polarization evolution path, the phase
difference between the reflective x- and y-polarized compo-
nents is also varying as parameter α changes. As shown in
Fig. 3(f ), the phase difference Δϕ � ϕy,y − ϕx,x can roughly
cover the ranges of � −180°, −90°� and [90°, 180°], which in-
dicates that the proposed racemic array possesses various reflec-
tive polarization conversion abilities including but not limited
to the functions of the half-wave plate and quarter-wave plate.
In addition, combined with parameter β, which decides the di-
rections of the fast and slow axes, the versatile modulations of
polarization, phase, and amplitude of the electromagnetic
waves can be achieved, and a variety of wavefront manipula-
tions can also be obtained. In the following sections, we shall
discuss these features in detail.

3. PHASE MODULATION FOR LINEAR
POLARIZATION

As discussed in the previous section, the reflection features of a
racemic helix array are essentially similar to linearly birefringent
elements. Especially, arbitrary phase retardations along the fast
and slow axes can be obtained by exploiting the geometric
phase introduced by the orientation angles of the RH and
LH helices. Unlike the traditional PB phase elements, which
are limited to circularly polarized waves, the phase modulation
mechanism we find in a racemic helix array is capable of full
phase range coverage for linearly polarized waves. To demon-
strate the validity of our phase modulation approach, we design
and characterize a reflective vortex beam generator built with a
racemic helix array. Vortex beams with orbital angular momen-
tum have attracted great interest due to the fascinating proper-
ties and numerous applications, such as high-resolution
imaging [43,44], particle manipulation [45,46], and optical
communications [47–49]. Such beam has a helical phase front
of exp�ilφ�, where φ is the azimuthal angle and l is the topo-
logical charge of the beam. The desired helical phase front can
be realized by arranging optical elements with azimuthally
evolving transmission or reflection phase.

As shown in Fig. 3, by tuning the parameter α, the full range
control of reflection phase can be obtained for both x- and
y-polarized waves. Intuitively, the helical phase front of the vor-
tex beam can be obtained by azimuthally varying parameters α

Fig. 3. (a) Reflection spectra of a racemic array with both RH and
LH helices’ orientation angles being 0°; (b) reflectance and (c) reflec-
tion phase responses as functions of parameter α at 14.4 GHz (the
parameter β is fixed to be 0°); (d) reflection phase shift of x and y
polarizations as functions of parameter α, compared to the reflection
phase of x polarization for a racemic array with both parameters α and
β being 0°; (e) polarization evolution paths of x polarization on the
Poincaré sphere; (f ) the reflection phase difference Δϕ � ϕy,y − ϕx,x
as functions of parameter α. The theoretical results in (d) and (f ) are
obtained from Eqs. (2) and (3) with ψ � 0° and χ � 22.5°. Circles in
Fig. 3 show the corresponding measured results.
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of unit cells in a racemic helix array. For example, to generate an
x-polarized vortex beam with topological charge l , the param-
eters β for all unit cells are fixed to be 0°, i.e., the orientation
angles of the RH and LH helices are in opposite signs in each
unit cell. Meanwhile, the parameters α of unit cells are deter-
mined by Eq. (2) to ensure the reflection phase of unit cells
equals to l · φu (φu is azimuthal angle of the unit cell).
Then, a normally incident x-polarized beam will be reflected
with polarization state unchanged, and the wavefront is con-
verted to helical wavefront that carries an orbital angular mo-
mentum of lℏ per photon.

Figures 4(a) and 4(b) show the photo of the device for gen-
erating an x-polarized vortex beam with topological charge
l � 1 and the enlarged view of a unit cell. For simplifying
the calculation and experiment, the device is designed with only
eight racemic helix unit cells with aforementioned parameters,
which form a 3 × 3 square array (the center is left to be empty)
and are counterclockwise labeled as unit cells 0–7. Following
the scheme states above, the orientation angles of RH helices in
0–7 unit cells are set to be 0°, −45°, −67.2°, −80.2°, −90°, 80.2°,
67.2°, and 45°, respectively. The orientation angles of LH heli-
ces in each unit cell is in opposite sign to the RH ones to ensure
that the reflection phases of the unit cells have a phase shift that
varies azimuthally from 0° to 360° with a step of 45°. The per-
formances of vortex beam generator are also measured in an

anechoic chamber with a Keysight PNA-X 5242A network ana-
lyzer. A linearly polarized horn antenna is used as emitter to
generate an x-polarized wave that is normally incident to the
sample. To characterize the generated vortex beam, the re-
flected fields are detected with a small dipole antenna as probe
and the measuring plane is 100 mm away from the sample sur-
face. The electric field amplitude and phase of reflected
x-polarized components are measured as a function of trans-
verse position in a precision of 1 mm per step. More details
about the experimental setup can be found in the Appendix C.
The calculated and measured results at 14.4 GHz, which are in
good agreement, are shown in Figs. 4(c)–4(f ). In the simula-
tions, perfectly matched layers with a vacuum spacer are applied
at all boundaries. An x-polarized plane wave along the −z
direction is used to excite the sample, and the scattered
x-polarized electric field is recorded. The helical phase feature
and the characteristic doughnut shape amplitude distributions
can be clearly recognized. In addition, as indicated by Eq. (1),
the directions of fast and slow axes can be changed by altering
the parameter β. Then, full range of phase control can be
achieved for arbitrary linear polarization by tuning the param-
eter α. Furthermore, the racemic helix array can also be used for
phase modulation of circular polarizations. As discussed above,
180° phase difference between the fast and slow axes can always
be acquired, which implies that the racemic array behaves like a
reflective half-wave plate that reflects circularly polarized waves
without polarization state change. Obviously, additional geo-
metric phase can be introduced to the reflected circularly
polarized waves by altering the parameter β.

4. POLARIZATION CONVERSION

An important feature we found in the racemic helix array is the
ability of polarization conversion. As mentioned in previous
sections, the racemic helix array behaves like a linearly birefrin-
gent element with tunable orientation and phase retardation
along the fast and slow axes. Moreover, the phase difference
between field components polarized along the fast and slow
axes can also be modulated by rotation of the helices, which
provides a variety of polarization conversion possibilities.

We first investigate the feature of racemic helix array rotat-
ing the polarization direction of a linearly polarized wave. As
can be seen in Fig. 3, when both the parameters α and β
are 0°, the proposed racemic helix array behaves like a reflective
half-wave plate with fast and slow axes along the x and y direc-
tions, respectively. In addition, as implied by Eq. (1), the fast
and slow axes can be rotated by tuning the parameter β. Then, a
linearly polarized incident waves can be reflected with polari-
zation rotation of arbitrary angle. As verification, reflection
measurements are performed inside an anechoic chamber with
two racemic helix array samples of the aforementioned geomet-
ric parameters. Both samples consist of 30 × 30 unit cells (all
polarization conversion samples are in the same size), and the
parameter α is set to be 0° for both samples, while the parameter
β is 45° and 22.5°, respectively. For comparison, numerical sim-
ulations are also conducted to calculate the reflection spectra. In
these calculations, the settings are the same as those used in
Section 2. As shown in Figs. 5(a) and 5(b), x- and y-polarized
incident waves are near perfectly reflected with a 90°

Fig. 4. (a) Photograph of the device for generating vortex beam with
topological charge l � 1; (b) enlarged view of a unit cell; (c), (d) cal-
culated and (e), (f ) measured electric field amplitude and phase
distribution of the vortex beam with topological charge l � 1 at
14.4 GHz on the transverse plane 100 mm away from the device
surface. The electric field distributions are normalized to the global
maximum.
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polarization rotation by the racemic helix array of β � 45° at
14.4 GHz, and the measured results are in good agreement
with the calculated ones. As for the sample of β � 22.5°, it
can be seen from the results in Figs. 5(c) and 5(d) that the
polarization angles of the x- and y-polarized incident waves
are perfectly transformed to 45° and −45°, respectively.

It is noteworthy that, as indicated by Eqs. (2) and (3), 180°
phase difference between field components polarized along the
fast and slow axes can always be achieved. Then the feature of
rotating the polarization direction of a linearly polarized wave
can be implemented with a racemic helix array of arbitrary geo-
metric parameters. However, suitable chosen parameters can
expand the range of phase difference and provide various polari-
zation conversion features. For example, as shown in Fig. 3, the
proposed racemic helix array can introduce phase difference in
the ranges of � −180°, −90°� and [90°, 180°]. Conspicuously,
linear-to-circular polarization conversion (or vice versa) of a
quarter-wave plate can also be realized with the proposed rac-
emic helix array. Based on the analysis stated above, we inves-
tigate a racemic helix array sample of which both parameters α
and β are 45°. As shown in Figs. 6(a) and 6(b), just as expected,
both the calculations and measurements demonstrate that the
reflected waves are transformed to be LCP or RCP, respectively,
under x- or y-polarized incidence at 14.4 GHz. In fact, since
the phase difference and the directions of the fast and slow axes
are tunable with the parameters α and β, diverse polarization
conversion can be obtained with the racemic helix array.
Consider the RCP incidence case; the reflected wave can be
expressed with its Jones vector as

E � M θr , θl ·
�

1
−i

�
� ei�ϕx−β�R�−β�

�
1

ei�Δϕ−π∕2�

�
: (4)

Note that the Jones vector for incident RCP wave is �1, − i�T
in the incident coordinate system. The last term represents a

polarization state with tilt angle of either 45° or 135°, and
the ellipticity angle is determined by the phase difference
Δϕ, or in other words, determined by parameter α and the
two near perfectly reflected elliptical states ER and EL according
to Eqs. (2) and (3). In addition, since the second term in Eq. (4)
represents a rotation operation, it is clear that the tilt angle of
reflected polarization waves is linearly dependent on the param-
eter β. The theoretical and calculated tilt angles ψ 0 and ellip-
ticity angles χ 0 of the reflected waves of the proposed racemic

Fig. 6. (a), (b) Reflection spectra of racemic helix array sample as a
reflective quarter-wave plate. The parameters α, β of the sample are
both 45°. (c), (d) Theoretical and (e), (f ) calculated tilt angles ψ 0

and ellipticity angles χ 0 of the reflected waves under RCP incidence
as functions of parameters α and β. The theoretical results are obtained
from Eqs. (2)–(4) with ψ � 0° and χ � 22.5°. (g), (h) Reflection
spectra of the racemic helix array sample that converts circular polari-
zation states to elliptical polarization states. The parameters α, β of the
sample are 12° and 15°, respectively. The tilt angle and ellipticity angle
of polarization state γ are 60° and 22.865°, respectively. State γ 0 is
orthogonal to γ, and its tilt angle and ellipticity angle are 150° and
−22.865°.

Fig. 5. Reflection spectra of racemic helix array samples as a reflec-
tive half-wave plate. Reflection spectra are calculated and measured for
two samples with parameter β of (a), (b) 45° and (c), (d) 22.5°. The
parameter α for both samples is 0°. The symbol 45 or −45 denotes
linear polarization with a polarization angle of 45° or −45° about the
x axis. The reflection spectra are normalized to the power of incidence.
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helix array under RCP incidence are shown in Figs. 6(c)–6(f ).
The results are presented at 14.4 GHz as functions of param-
eters α and β. As expected, the arbitrary tilt angle can be ob-
tained by tuning parameter β, whereas the ellipticity angle can
be modulated in the range of [0°, 45°] by tuning parameter α.
This indicates that by tuning the parameters α and β, RCP
waves can be converted to any right-handed elliptical polariza-
tion or any linear polarization states, that is, all the polarization
states on the equator and northern hemisphere of the Poincaré
sphere. Similar discussions are also applicable to the LCP in-
cidence case, and it can be found that the reflected wave
can be converted to any polarization state on the equator
and southern hemisphere of the Poincaré sphere. In addition,
the polarization state of the reflected wave under LCP incidence
is always orthogonal to the one under RCP incidence.

Without loss of generality, a racemic helix array of which the
parameters α and β are 12° and 15° is chosen to demonstrate
the polarization conversion from a circular to an elliptical state.
Based on the above theory, an RCP incident wave will be con-
verted to an elliptical state γ, of which the tilt angle and ellip-
ticity angle are 60° and 22.865°, respectively. An LCP incident
wave will be converted to the orthogonal state γ 0 with tilt angle
and ellipticity angle of 150° and −22.865°. The calculated and
measured results are shown in Figs. 6(g) and 6(h). Clearly, the
incident RCP and LCP waves are perfectly converted to γ and
γ 0 states at 14.4 GHz, respectively. It is necessary to point out
that the polarization conversion capabilities for circular inci-
dence are directly related to the phase difference Δϕ between
field components polarized along the fast and slow axes. Take
the RCP incidence case for example: the possible polarization
states of the reflected wave can be expanded to cover all states
above a specific latitude line of the southern hemisphere of the
Poincaré sphere. This can be realized with racemic array of
smaller pitch size, of which the ellipticity angles χ of the
two near perfectly reflected elliptical states are smaller.
Although we only demonstrate some typical polarization con-
version features of the racemic helix array, it is possible to
achieve more diverse polarization conversion functionalities
by optimizing geometric parameters or designing a racemic unit
cell that breaks the mirror symmetry.

5. COMPLEX AMPLITUDE MODULATION

Another interesting feature of the racemic helix array is the abil-
ity of modulation over the amplitude of reflected waves. As dis-
cussed above, a 180° phase difference between electric field
components polarized along the fast and slow axes can be ob-
tained for a racemic helix array of arbitrary geometric param-
eters, that is, the racemic helix array behaves like a reflective
half-wave plate. Then, its reflection Jones calculus (omitting
a global phase delay) can be derived from Eq. (1) as

M � R�−β�
�
1 0
0 −1

�
R�β� �

�
cos 2β sin 2β
sin 2β −cos 2β

�
: (5)

Clearly, for x- or y-polarized incident waves, the cross-
polarized reflection coefficient is sin 2β, which implies a con-
tinuous amplitude modulation from zero to unity along with
binary phase 0° or 180°. As mentioned above, the proposed
racemic helix array of parameter α � 0° meets the criteria of

a reflective half-wave plate. Figure 7(a) shows the calculated
reflection amplitude spectra of x−to−y conversion components
of a racemic helix array with parameter β of 0°, 15°, 30°, and
45°, while the parameter α is fixed to be 0°. It is obvious that the
reflection amplitude of the x-to-y conversion component varies
from zero to unity at 14.4 GHz as the parameter β changes. To
show the relationship between the reflection coefficient and
parameter β more clearly, the reflection amplitude and phase
of the x-to-y conversion component versus parameter β at
14.4 GHz are shown in Fig. 7(b). Clearly, good agreements
can be observed between the calculated results and the theo-
retical predictions.

In fact, similar continuous amplitude modulation with
binary phase response has been discovered with anisotropic el-
ements and utilized for exotic application like Airy beam gen-
eration [50–52]. Obviously, a racemic helix array is also capable
of implementing similar wavefront manipulations. However,
since the reflection feature of the proposed racemic helix array
is also determined by the parameter α, through this extra degree
of freedom, more flexible complex amplitude modulations can
be achieved. Consider the co-polarized reflection component of
racemic helix array under x-polarized incidence; its reflection
coefficient can be derived from Eq. (1) as

rx,x � cos2βeiϕx,x � sin2βeiϕy,y : (6)

Obviously, the complex amplitude modulation feature is
closely related to the phase difference Δϕ � ϕy,y − ϕx,x , which
is mainly determined by the ellipticity angle χ of the two near
perfectly reflected elliptical states E�

R and E
�
L. Although the am-

plitude and phase of reflection coefficient rx,x usually cannot be
expressed with a simple function of parameters α and β, a full
range of complex amplitude modulation can always be imple-
mented with a racemic helix array. The amplitude and phase of
reflection coefficient rx,x at 14.4 GHz are obtained by both

Fig. 7. (a) Calculated reflection amplitude of the x-to-y polarization
conversion component for a racemic helix array with β � 0°, 15°, 30°,
and 45°. The parameter α is fixed to be 0°. (b) Reflection amplitude
(blue squares) and phase (black circles) of the x-to-y polarization
conversion component as a function of parameter β at 14.4 GHz.
Theoretical and calculated (c), (e) amplitude and (d), (f ) phase of
the reflected co-polarized components under x-polarized incidence
as a function of parameters α and β at 14.4 GHz. The theoretical re-
sults are obtained from Eqs. (1) and (2) with ψ � 0° and χ � 22.5°.
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theoretical analysis and numerical calculation for the proposed
racemic helix array, which are shown in Figs. 7(c)–7(f ). Clearly,
the calculated results show good agreement with the theoretical
ones. In addition, through more careful analysis, we find that a
free combination of reflection amplitude from 0 to 1 and re-
flection phase of −180° to 180° can be achieved by tuning the
parameters α and β.

To further demonstrate the full range complex amplitude
modulation feature, we design and characterize a bifocal metal-
ens with two laterally aligned foci, which demands continuous
full range control of amplitude and phase. The required com-
plex amplitude distributions on a bifocal metalens aperture can
be expressed as

A�x, y, λ0� � A1e
i2πλ0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x−x1�2��y−y1�2�f 2

1

p
−f 1

�

� A2e
i2πλ0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x−x2�2��y−y2�2�f 2

2

p
−f 2

�
, (7)

where A1 and A2 are the amplitudes of two foci with focal
lengths f 1 and f 2, respectively, �x1, y1� and �x2, y2� are lateral
positions of two foci with respect to the lens center, and λ0
represents the free space wavelength of operating frequency.
For simplifying the calculation and experiment, a cylindrical
metalens in the x direction is designed for demonstration, and
the required complex amplitude distributions are reduced to

A�x, λ0� � A1e
i2πλ0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x−x1�2�f 2

1

p
−f 1

�
� A2e

i2πλ0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x−x2�2�f 2

2

p
−f 2

�
:

(8)

The lateral bifocal metalens is designed at 14.4 GHz, and
contains a total of 961 aforementioned racemic helix unit cells,
which form a 31 × 31 square array. The two foci are set with
the same amplitude and the same focal length f 1 � f 2 �
540 mm, with 150 mm lateral distance (x1 � −75 mm and
x2 � 75 mm). The designed amplitude and phase distribu-
tions along the x direction are shown in Figs. 8(a) and 8(b).
The red solid lines show the continuous distribution calculated
by Eq. (8), whereas the blue squares correspond to the discre-
tized ones by sampling Eq. (8) with a period of 20 mm. The
orientation angles of helices in each unit cell are determined by
searching for values of Eq. (6) in the space of parameters α and
β to achieve the desired amplitude and phase that are decided
by its position on the x direction. Once the required parameters
α and β are found, the orientation angles θR and θL can be
obtained. For example, the unit cell at x � 0 mm is required
to generate an amplitude of 1 and a phase of −88.6°, and by
searching parameters α and β based on Eq. (6), it can be found
that the parameters α and β are 67° and 0°, and then the ori-
entation angles θR and θL can be determined as 67° and −67°.
The unit cells along the y direction are identical. The experi-
mental setup is the same as those we employed to characterize
the generated vortex beam in Section 3, except that the mea-
surements are performed on the xoz plane.

The calculated and measured results of lateral bifocal lens at
14.4 GHz are shown in Figs. 8(c)–8(e). In these calculations,
periodic boundary conditions are applied at the y boundaries,
perfectly matched layers with vacuum spacer are applied at the
x boundaries, and perfectly matched layers are applied at the z

boundaries. The other settings are the same as those used
in Section 3. The two maxima at the preset focal plane
(i.e., f 1 � f 2 � 540 mm) can be clearly observed in both
results. The amplitude distribution across the two foci on the
focal plane (along the line of y � 0 mm ) is shown in Fig. 8(e),
from which the lateral distance between two foci is calculated.
As expected, the measurement and calculation agree well with
each other and confirm the design goals. Note that the continu-
ous amplitude and phase pattern required for a 2D bifocal met-
alens are also achievable with the proposed racemic helix array.
In addition, similar to the polarization conversion feature, it is
possible to realize more diverse complex amplitude modulation
with a racemic array by further design development.

6. CONCLUSION

In summary, we have shown that, based on the PB phase as-
sociated with the two elliptical eigen-polarization states, novel
properties including full range phase modulation for linearly
polarized states, diverse polarization conversion, and full com-
plex amplitude modulation can be achieved by tuning the heli-
ces’ orientation of the racemic array. As verification, several
racemic helix array samples that are capable of generating vortex

Fig. 8. Required (red solid lines) and sampled (blue squares) nor-
malized (a) amplitude and (b) phase distributions of the designed lat-
eral bifocal cylindrical metalens. (c) Calculated and (d) measured
x-polarized electric field amplitude distributions on the xoz plane
at 14.4 GHz. (e) Calculated and measured x-polarized electric field
amplitude along the white dashed line (y � 0 mm, z � 540 mm)
shown in (c) and (d). All amplitude distributions are normalized to
their global maximum.
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beams, polarization conversion, and lateral dual focusing are
fabricated and characterized in the microwave regime. The pro-
posed modulation strategy on phase, polarization and ampli-
tude may stimulate various novel and high-performance
metadevices. In addition, utilizing advanced fabrication tech-
nology [31,53] and discrete chiral systems like twisted cascaded
structures [28] and chiral nematic liquid crystals [32–34], our
findings can be generalized to other frequency regimes such as
THz, infrared, and even visible light.

APPENDIX A: REFLECTIVE EIGEN-
POLARIZATION STATES OF SUBARRAYS

Similarly to the approach in Ref. [42] for transmission case, to
determine the reflective eigen-polarization states is to solve the
following eigenvalue problem:

M sub

�
1 0
0 −1

��
ex
ey

�
� κ

�
ex
ey

�
, (A1)

where M sub �
�
rx,x rx,y
ry,x ry,y

�
is the reflection Jones calculus in

linear polarization basis, matrix
�
1 0
0 −1

�
represents the trans-

formation from an incident to a reflective coordinate system,
and �ex , ey �T and κ are the eigenvector and eigenvalue, respec-
tively. By solving Eq. (A1), we obtain

κ1,2 �
rx,x − ry,y 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�rx,x � ry,y�2 − 4rx,yry,x

q
2

: (A2)

Then, ex and ey can be solved by simply inserting κ1,2 into
Eq. (A1), and the reflective eigen-polarization states can be
derived as

e1 �
�

1
R1eiη1

�
, e2 �

�
1

R2eiη2

�
, (A3)

with R1eiη1 � rx,x−κ1
rx,y

, and R2eiη2 � rx,x−κ2
rx,y

. Though the eigenvec-

tors are not normalized, the tilt and ellipticity angles of the re-
flective eigen-polarization states can be derived from them as

ψ1 �
1

2
arctan

�
2R1 cos η1
1 − R2

1

�
, χ1 �

1

2
arcsin

�
2R1 sin η1
1� R2

1

�
,

ψ2 �
1

2
arctan

�
2R2 cos η2
1 − R2

2

�
, χ2 �

1

2
arcsin

�
2R2 sin η2
1� R2

2

�
:

(A4)

The eigenvalues κ1,2 are just the co-polarization reflection
coefficients for these two eigen-polarization states. Meanwhile,
there are no polarization conversions between these two states.
Note that this method of determining the reflective eigen-
polarization states is universal for all periodic metamaterials.
The results of subarrays shown in Figs. 2(c)–2(f ) are obtained
by the above method. Since the helix possess C2 symmetry,
as discussed in Ref. [42], the eigenvectors e1 and e2 are
orthogonal.

For the sake of completeness, additional calculation results
of subarrays are shown in Fig. 9. As mentioned above, the sub-
arrays will allow circularly polarized waves of opposite handed-
ness to pass through along the axial direction, while the

matching handedness waves are coupled with helices and
reflected with the same handedness. Figure 9(a) shows the
calculated transmission spectra in circular basis of an RH sub-
array with 0° orientation angle. Clearly, the LCP waves are
mainly transmitted in a wide frequency range as expected.
Calculated reflection and transmission spectra in the circular
basis of LH subarray with 0° orientation angle are shown in
Figs. 9(b) and 9(c). Compared to the corresponding results
of the RH subarray shown in Figs. 2(b) and 9(a), it can be
found that the reflection and transmission features of the LH
subarray are identical but in the opposite handedness. This is
due to the mirror symmetry between them. Figure 9(d) shows
the reflection spectra of the 0° oriented LH subarray in its
eigen-polarization basis. As expected, the results are also iden-
tical to those for the 0° oriented RH subarray shown in
Fig. 2(c).

APPENDIX B: REFLECTION RESPONSE OF THE
RACEMIC ARRAY

For the subarrays, the reflection of the matching handedness
elliptical state is a collective effect between local resonance
of a single helix and the scattering of the array, whereas the
opposite handedness state is not interacting with helices and
passes through. As for the racemic helix array, it combines
two subarrays in opposite handedness with a spatial deviation.
Therefore, when an electromagnetic wave is incident to the rac-
emic helix array, components of the two elliptical eigenstates
will respectively interact with matching handedness subarrays
and be perfectly reflected with polarization state unchanged.

Under this assumption, we derived the reflection Jones cal-
culus of the racemic helix array in a linear polarization basis by
considering the reflection under x- and y-polarized incidence.
Considering a racemic array composed of RH and LH helices
with orientation angles of θR and θL, the two perfectly

Fig. 9. (a) Calculated transmission spectra of the 0° oriented RH
subarray in circular basis. (b) Calculated reflection spectra of the 0°
oriented LH subarray in circular basis. (c) Calculated transmission
spectra of the 0° oriented LH subarray in circular basis. (d) Reflection
spectra of the 0° oriented LH subarray in its eigen-polarization basis.
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reflected elliptical states are ER�2�ψ � θR�, 2χ� and
EL�−2�ψ − θL�, −2χ�, respectively. Then, for an x-polarized in-
cident wave, it can be regarded as superposition of field com-
ponents of ER and EL states in the incident coordinate system
and expressed as�

1

0

�
� AR · R�−ψ − θr�

�
1 0

0 −1

��
cos χ

i sin χ

�

� AL · R�ψ − θl �
�
1 0

0 −1

��
cos χ

−i sin χ

�
, (B1)

where AR and AL are the amplitude of components of the ER
and EL states. As discussed in Section 2, the reflection phases of
components of the ER and EL states are the same. Then, the
reflective field can be expressed with its Jones vector as

rx � AR · R�−ψ − θr�
�

cos χ

i sin χ

�

� AL · R�ψ − θl �
�

cos χ

−i sin χ

�
: (B2)

After some derivation, it can be obtained that

rx �
�

cos2βeiϕx,x � sin2βeiϕy,y

sin β cos βeiϕx,x − sin β cos βeiϕy,y

�
, (B3)

where ϕx,x and ϕy,y can be derived in this procedure as

eiϕx,x � cos�ψ � α� cos χ − i sin�ψ � α� sin χ

cos�ψ � α� cos χ � i sin�ψ � α� sin χ
,

eiϕy,y � sin�ψ � α� cos χ � i cos�ψ � α� sin χ

sin�ψ � α� cos χ − i cos�ψ � α� sin χ
, (B4)

and then be simplified to the expressions shown in Eqs. (2) and
(3). Similar analysis can also be applied for the y-polarized in-
cident wave, and the reflective field can be expressed as

ry �
�
sin β cos βeiϕx,x − sin β cos beiϕy,y

sin2βeiϕx,x � cos2βeiϕy,y

�
: (B5)

Obviously, the Jones vectors rx and ry contain the four
reflection coefficients of the racemic helix array, and hence
we can derive the expression shown in Eq. (1). In addition,
as discussed in Section 2, phase ϕx,x is the geometric phase
that accumulated along the polarization evolution path
x–E�

R–ER–x. Correspondingly, ϕy,y is the PB geometric phase
introduced with the y–E�

R–ER–y polarization evolution. These
two phases can also be calculated by the definition of PB phase,
which is calculating half of the solid angle of the area enclosed
by the polarization evolution loop. With the tilt and ellipticity
angles of all corresponding states, this can be implemented by
calculating a spherical excess.

To determine the two near perfectly reflected elliptical states
of racemic helix array, we first calculate reflection features of
racemic arrays with β fixed to be 0° and the parameter α being
changed from −90° to 90°. The tilt and ellipticity angles are
then obtained by data fitting according to Eqs. (2) and (3),
and they are found to be ψ ≈ 0° and χ ≈ 22.5°. This result is
further verified by comparing numerical calculations of the rac-
emic array with arbitrary α and β parameters and theoretical
predictions obtained from Eqs. (2) and (3) with ψ ≈ 0°
and χ ≈ 22.5°.

As mentioned in Section 2, the two near perfectly reflected
elliptical states of the racemic helix array are slightly different
from the states A and A� of the RH and LH subarrays at
14.4 GHz. This is mainly attributed to the weak coupling
between subarrays decided by the symmetry of the helix.
The helix possesses the continuous helical symmetry and perio-
dicity along the helical axis (z axis), and the field components
for the RH subarray can be expanded in the cylindrical coor-
dinate system by functions of the form f n�ρ,φ, z� �
eikz zFn�ρ�e−inφei�2nπ∕p�z [41], where kz is the Bloch vector along
the z axis, and Fn�ρ� is a radial function that obeys the
Helmholtz differential equation. The angular term will be
einφ for the LH subarray. Since f n�ρ,φ, z� is a serial of basis
functions that are orthogonal to each other and the difference
in angular term leads to orthogonality between basis functions
for RH and LH subarrays, it can be found that only the terms
with n � 0 for RH and LH subarrays will interact with each
other. Therefore, there will be rather weak coupling between
subarrays of different handedness, which results in a slight dif-
ference between the two near perfectly reflected elliptical states
of the racemic helix array and those of the subarrays. In addi-
tion, since the angular terms vanish when n � 0, the coupling
between subarrays is irrelevant to the helices’ orientations, and
the two near perfectly reflected elliptical states can be independ-
ently modulated by subarrays with matching handedness.

APPENDIX C: EXPERIMENTAL SETUP

Figure 10(a) shows the photograph of the experimental setup
for characterizing the vortex beam generation and the lateral

Fig. 10. Photograph of the experimental setup. (a) Experimental
setup for characterizing the vortex beam generation and the lateral bi-
focal lens; (b) experimental setup for reflection spectra and polarization
conversion measurement.
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bifocal lens. The horn antenna is also placed about 3 m away
from the sample to mimic an incident plane wave. The reflected
field is detected with a small dipole antenna as probe. The mea-
surements are performed with a three-dimensional motorized
translation stage to move the probe pixel by pixel on the pre-
designed scanning plane. The photograph of the experimental
setup for reflection spectra and polarization conversion mea-
surement is shown in Fig. 10(b). Two linearly polarized horn
antennas are placed close to each other and about 3 m away
from the samples.
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