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Research interest in resonance and topology for systems at near-zero frequency, whose wavelength could be
2 orders larger than the scale of resonators is very rare, since the trivial effective-medium theory is generally
thought to be correct in this regime. Also, the complex frequency regime is generally thought to be irrelevant
to the topological properties of Hermitian systems. In this work, we find the general conditions to realize near-
zero frequency resonance for a resonator and theoretically propose two kinds of realizations of such resonators,
which are confirmed by numerical methods. The photonic crystals with such a resonator as the unit cell present
rich topological characteristics at the near-zero frequency regime. The topological singularity that corresponds to
the resonant frequency of the unit cell can be pushed to zero frequency at the bottom of the first band by tuning a
certain parameter to a critical value. Surprisingly, we find that, when the parameter is tuned over the critical value,
the singularity has disappeared in the first band and is pushed into the imaginary frequency regime, but now the
topology of the first band and gap is still nontrivial, which is demonstrated by the existence of the topological edge
state in the first gap, the negative sign of imaginary part of the surface impedance, and the symmetry property of
Wannier functions. So, we are forced to accept that the singularity in the imaginary frequency regime can in-
fluence the topology in the real frequency regime. So, for the first time, to the best of our knowledge, we find that
the singularity in the pure imaginary regime can still cause the observable topological effects on the real frequency
regime, even for the Hermitian systems. Now, zero frequency acts as a novel exceptional point for Hermitian
systems and the topology of the first band and first gap could be quite different from other bands and gaps,
since they are intrinsically connected with zero frequency. Other new phenomena are also observed when the
singularity is at the near-zero frequency regimes (real or imaginary), e.g., the cubic relationship between reflection
coefficient and the frequency, the robust wide-bandwidth high transmission at very low frequency, etc. Besides the
theoretical importance, some basic applications, such as the robust deep subwavelength wide bandwidth high-
transmission layered structures, the subwavelength wide bandwidth absorbers, and the cavity from the topological
subwavelength edge state are proposed, which can inspire new designs in many areas of optics, microwaves, and
acoustics. This work opens a new window for rich topological physics and revolutionary device designs at the near
and beyond zero-frequency regimes. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.423260

1. INTRODUCTION

In the traditional study of waves, the resonator is one of the
most important concepts. The resonators are significant, since
the stronger local field, the longer dwelling time, and the zero
scattering at the resonant frequency, permit it to be widely used
on devices of different applications. The complex media of
waves, such as crystal systems that could be periodically com-
posed of resonators, induce the revolution to understand

complex wave behaviors and to design new devices beyond
the traditional limit. Taking the photonic system as an exam-
ple, with the introduction of photonic crystals (PhCs) [1,2],
rich structural dispersion characteristics can be realized, such as
photonic bandgap [3], low group velocity [4], self-collimation
[5], and super prisms [6]. The needs for wave manipulation at
the low-frequency regime widely exist in many fields, and it is
worthwhile to devote more efforts to investigate this topic
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deeply. For the near-zero resonant frequency whose criterion is
that the wavelength is about 2 orders larger than the scale of
resonators, both concepts of resonators and crystal systems are
facing challenges generally. First, the scale of traditional reso-
nator design based on nondispersive (or weakly dispersive)
material is generally comparable with the wavelength, which
is obviously not suitable. For example, the smallest scale of
Fabry–Perot (FP) cavity [7] is the half-wavelength of lowest
resonant frequency. Recently, researchers have realized sub-
wavelength resonators [8] mainly through the use of metama-
terials [9]. The disadvantages of subwavelength metamaterial
resonators are strong absorption and strong dispersion, complex
microstructures, etc. Even more, the resonant wavelength of
metamaterial resonators is still hard to get to 2 orders larger
than the resonator scale. Second, for crystal systems, all designs
seem useless at near-zero frequency range, since all structural
materials turn out to be like some kind of homogeneous effec-
tive media. Actually, the effective medium theory [10] is widely
accepted by researchers at the very low-frequency regime and is
generally thought to be trivial in some way. For example, a PhC
is generally replaced by an effective medium at the near-zero
frequency, which is at the bottom of the first band.

On the other hand, the topology study of different physics
directions has grown into a burgeoning research area in recent
years, for both quantum waves [11–14] and classical waves
[15–20]. The topological singularity, which could be thought
of as the position of topological charge with a certain gauge, is
an important role for topology study. Especially for the periodic
systems, the evolution of topological singularities between
bands is the origin of topological phase transition, which are
signed by the gap-closing-reopening process and nontrivial
Chern number or Zak phase [21–23]. It should be emphasized
that the condition of the topological singularity of periodic sys-
tems is the zero amplitude wave function, which corresponds to
the zero-scattering of the unit cell at resonant frequency
[13,21]. Very recently, it was reported that the topological sin-
gularity could be observed on the first band [24,25]. The top-
ology is widely studied not only for Hermitian systems, but also
expanded to non-Hermitian systems [26]. For Hermitian sys-
tems, researchers generally are only concerned with the topol-
ogy at the real frequency regime, while for non-Hermitian
systems, the complex frequency is taken into account and
new phenomena are reported, e.g., the exceptional points
[27,28] in the complex frequency regime. So, there is an invis-
ible “domain wall” between the real frequency regime and the
complex frequency regime for Hermitian or non-Hermitian
systems. However, in contrast with the rapid expansion of topo-
logical study in many directions, there has been almost no top-
ology study of periodic systems at the near-zero frequency
regime. We think the reason is that the widely-accepted effec-
tive medium theory implies the topological triviality at the
near-zero frequency regime. To the best of our knowledge,
so far the resonators and the topological singularity of the peri-
odic systems, whose frequency can be tuned to zero and even be
pushed beyond zero frequency by changing certain structural or
material parameter(s), have not been investigated. For topology
physics, it would be very novel and original to reveal that,
beyond the effective medium theory, there are rich topological

phenomena at the near-zero frequency range. Even more, we
may have to pass through the “domain wall” between the real
frequency regime and the imaginary frequency regime for the
topological study of Hermitian systems at zero frequency, and
find that the topologies in these two regimes are correlated even
for Hermitian systems. Also the topology of the first band and
the first gap could present characteristics different from other
bands and gaps because they are intrinsically connected with
zero frequency. Besides these important theoretical concerns,
the deep-subwavelength resonators, the subwavelength low-
reflection structures, and the high-Q subwavelength cavities
based on the topologically protected edge states, are also fasci-
nating from the view of potential applications in the direction
of thin-film optics, lasers, enhanced subwavelength detectors,
and microwave absorbers, etc.

In this work, we systemically investigate the resonators with
near-zero resonant frequency and the exotic topology near and
beyond zero frequency for Hermitian PhCs that are composed
of such resonators periodically. First, we construct a resonator
model with a virtual interface in an FP cavity and find the re-
quired conditions for the zero resonant frequency through path
integral formulation [29]. The simplest realizations to satisfy
these conditions are to add a side-coupled subresonator or
an embedded subresonator to the FP cavity. Theoretically
and numerically, it is demonstrated that the resonant frequency
of such model can be tuned to zero by changing a certain
parameter to a critical value. Then, by periodically arranging
these resonators as PhCs, we find the topological singularity
at near-zero frequency, which is close to the bottom of the first
band and which means the topological nontriviality of the first
band and first gap. By changing the parameter to a certain criti-
cal value, we can tune the singularity to the zero frequency.
New phenomena, such as the cubic relation between the reflec-
tion coefficient and the frequency, are found, which means
the wideband high transmission is near zero frequency.
Surprisingly, when the parameter is tuned over the critical value
and the singularity is pushed beyond zero frequency and dis-
appears from the first band, we find that the first band and the
first gap are still topologically nontrivial, which is demonstrated
by the existence of the topological edge state, the sign of the
impedance imaginary part from the reflection, and the property
of Wannier function (WF). Such anti-intuitive results force us
to accept the mathematical explanation that the topological sin-
gularity still exists in the imaginary frequency regime even if our
systems are Hermitian. In other words, the zero-frequency
point is a special exceptional point for Hermitian systems,
and the singularity in the imaginary frequency regime can cause
detectable physical results, e.g., the topological edge state, the
change of the sign of the surface impedance imaginary part, and
the parity property of the Wannier function of the first band
(WFFB). Not only theoretical importance, but also different
engineering applications are presented in this work, such as
the robust deep subwavelength wideband high transmission
layers, the subwavelength wideband absorbers, and the lasers
based on the subwavelength topological edge states. These ap-
plications can bring new concept designs to various fields of
optics and microwaves, even other waves, e.g., acoustic waves.
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2. MODEL

The model we start with is a virtual interface embedded at the
center of the FP cavity, as shown in Fig. 1. The question is what
conditions can realize the near-zero frequency resonant trans-
mission in such a general model. We assume the FP cavity is a
dielectric layer with the relative permittivity and permeability
εb and μb and thickness db in the background medium with εa
and μa. We suppose μa � μb � 1. The transmission coefficient
t i and reflection coefficient ri of forward incidence and the
transmission coefficient t 0i and reflection coefficient r 0i of the
reverse incidence of the three interfaces are shown in Fig. 1
(where i � 1, 2, 3). In order to achieve near-zero frequency res-
onance, from the backscattering view, the reflection coefficient
of the virtual interface must satisfy a certain phase and ampli-
tude, such that the perfect canceling (destructive interference)
happens at all backscattering waves from the three interfaces.
We can use the path integral formulation to strictly analyze
the destructive interference; details are given in Appendix A.
The conclusion from the path integral analysis is that
there are two conditions to realize the near-zero frequency res-
onance: (i) r2 exp�ikbd b� is a pure imaginary number, where
kb � 2π

ffiffiffiffiffiffiffiffiffi
εbμb

p
f ∕c, f is frequency; (ii) r2 � r 02, which can

be easily satisfied if the spatial inversion symmetry [29] is guar-
anteed. If we suppose r2 has the general form r2 � iωα at near-
zero frequency [30], where ω � 2πf , α is independent of the
frequency; its physical meaning will be explained later. So, the
first condition of near-zero frequency resonance becomes
r2 exp�ikbd b� ≈ iωα�1� ikbd b� ≈ iωα.

The general model shown in Fig. 1 can be realized in many
ways, e.g., two partial reflectors and a side-coupled or em-
bedded subresonator, as schematically shown in Fig. 2(a). Two
concrete realizations are shown in Figs. 2(b) and 2(c): one is a
layered waveguide with a side-coupled stub, and the other is an
FP cavity with an embedded dielectric layer. Generally, the

scattering property of the side-coupled or embedded subreso-
nator at the near-zero frequency can be described by the trans-
fer matrix M [29],

M �
"
t 02 −

r2r 02
t2

r2
t2

−
r 02
t2

1
t2

#
≈
�
1� iωα iωα
−iωα 1 − iωα

�
: (1)

Actually, based on the strict transfer matrices, we can go
through the whole above discussion without any approxima-
tion and show that the resonant frequency can evolve from
the low-frequency range to the near-zero frequency range.
However, for the near-zero frequency range, the path integral
analysis can give a simple and intuitive picture to understand
such systems. We hope to emphasize here that this near-zero
frequency resonance phenomenon is based on a simple inter-
ference picture, so it should be universal for different waves, not
only for electromagnetic (EM) waves, but also acoustic waves,
mechanical waves, and other waves.

3. SIDE-COUPLED SUBRESONATOR EXAMPLE
WITH NEAR-ZERO FREQUENCY RESONANCE

In this section, we provide an example of near-zero frequency
resonance that satisfies the resonant conditions in Section 2. As
shown in Fig. 2(b), the model consists of a waveguide and a
side-coupled stub. Two mirrors of an FP cavity are from the
interfaces of two kinds of filled dielectric materials in the wave-
guide, whose relative permittivity and permeability are εa � 4
and μa � 1 (kind A) and εb � 6.25 and μb � 1 (kind B), re-
spectively, and the thicknesses of kind A and kind B are da and
db. The length of the stub is l s, and we suppose the material
filled in the stub is the same as B-kind material (not required)
with εs � εb � 6.25 and μs � μb � 1. Not only EM waves,
but also the transfer matrix of the side-coupled stub is also
widely studied in acoustic and matter waves [24,31,32]. For
both transverse electric (TE, Ez polarization) and transverse

Fig. 1. Abstract model that could have near-zero frequency reso-
nance, which can be regarded as a virtual interface embedded at
the center of the FP cavity.

Fig. 2. Physical realizations of the resonator with near-zero fre-
quency resonance. (a) General realization with two partial reflectors
and a side-coupled or embedded subresonator; (b) physical realization
of a side-coupled stub waveguide; (c) physical realization of a layered
structure with an embedded FP cavity.
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magnetic (TM, Hz polarization) modes of the EM wave, its
reflection coefficient can be described as r2 � −i tan ks l s

2�i tan ks l s
, where

ks � ffiffiffiffiffiffiffiffi
εsμs

p
ω∕c. When the frequency is close to zero, the re-

flection coefficient of the stub is purely imaginary, since
r2 ≈

−iks l s
2�iks l s

≈ − iks l s
2 . With the spatial inversion symmetry of

the structure, the conditions discussed in Section 2 are satisfied,
and we find α � −

ffiffiffiffiffiffi
εsμs

p
l s

2c for such a system. Based on the trans-
fer matrix of the whole system, we can easily obtain the strict
relation between the resonant frequency f c and the stub length
l s for the TM mode (similar derivation can be done for TE
mode) as

l s � −
1

ks
arctan

�
2
ks�k2a−k2b�

kb
sin�kbd b�

�k2a − k2b� cos�kbd b� � k2a � k2b

�
, (2)

where kj � 2π ffiffiffiffiffiffiffiffiεjμj
p f c∕c (j � a, b, s). For the low-frequency

approximation, the relation also can be approximated as

l s ≈
db�εb − εa�

εa

�
1 −

2εbπ
2d 3

bf
2
c

3c3

�
: (3)

It is interesting that the critical length of stub
l c � db�εb − εa�∕εa, which corresponds to zero resonant fre-
quency, is finite and independent from εs (in the Ez polariza-
tion case, it is dependent). The curve of resonant frequency
versus stub length when da � 0.5 mm and db � 1 mm is
shown in Fig. 3 with a black solid line. Obviously, by tuning
the l s to the critical value l c , the resonant frequency f c will
decrease to zero. With the parameters defined above, the critical
length of the stub is l s � l c � 0.563 mm. We notice that if
l s > l c , the resonant frequency is a pure imaginary number
from Eq. (3), which seems irrational from the general under-
standing of resonance. However, we will see in the next sections
that such imaginary resonant frequency is relevant for topologi-
cal study.

To verify the correctness of our results from the transfer-ma-
trix method (TMM), we use the finite-element method (FEM)
as the numerical experiments to obtain the resonant frequency
of the system. The waveguide and the stub in Fig. 2(b) are sup-
posed to be covered by the perfect electrical conductor (PEC),
which generally is a good approximation for metals in the mi-
crowave frequency range. In Fig. 3, the resonant frequencies
versus the stub length l s with different widths of the waveguide
and stubW � 1, 5, and 10 μm are shown by blue squares, red
circles, and a green line with asterisks. From the numerical re-
sults of Fig. 3, we emphasize that all results from FEM simu-
lation with different W will go to zero frequency at a certain
critical length, which shows the near-zero frequency resonance
is a very robust phenomenon for such systems. For deviation
between TMM and FEM results for large W , it can be ex-
plained that, when the W is large, “the effective length” l eff
of the stub is a little larger than its real length l s, so that
the strict resonant frequency of the whole system shifts to a
lower one for a stub with larger W in Fig. 3.

To test this phenomenon on real systems, we have also done
the FEM calculation with real material, e.g., silver. With silver
substituting the PEC and setting all other parameters the
same as before, the resonant frequency versus stub length l s

for W � 100 μm is shown in Fig. 3 by cyan diamonds.
Obviously, the results of silver are very similar to those of PEC.

4. TOPOLOGICAL SINGULARITY WITH
FREQUENCY APPROACHING AND BEYOND
ZERO OF PERIODIC SYSTEM

The topology of the bandgap structure from periodic systems
has attracted much attention in recent years. The topological
phase transition of the bandgap structure can be explained by
the evolution of topological singularity. Physically, the zero-
scattering property [21] and the phase vortex point of the re-
flection coefficient in parameter space [22,33] are the signs of
topological singularity. If we can construct a periodic system
(crystal structure) by the unit cell that is the same as the
near-zero frequency resonator discussed above, can we find
new topological phenomena in such systems? Even more,
can we go beyond zero frequency and find new topologies
for the bandgap structure? Next, we will show that new phe-
nomena and special topology are found for such periodic sys-
tems with near-zero frequency singularity.

First, a periodic system is constructed by the unit cell, which
is shown in Fig. 4. Now, we set the distance Δ from the center
of the stub to the center of layer-A as a free parameter, also
called the “synthetic dimension” for topological study. So,
the phase and the amplitude of reflection coefficient r of half-
infinite periodic model can be analyzed at the two-dimensional
parameter space ff ,Δ∕ag [22,33], where a is the lattice con-
stant. Other parameters are set as da � db � 1 mm,
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l
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H
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Fig. 3. Resonant frequencies versus the stub length l s with
da � 0.5 mm, db � 1 mm, εa � 4, εb � εs � 6.25, and
μa � μb � μs � 1. The black solid line represents the calculated re-
sult of TMM, and the blue square, red circles, and green line with
asterisks represent the result of FEM with different widths of wave-
guide and stub W � 1 μm, 5 μm, and 100 μm, respectively. The re-
sult of silver substrate withW � 100 μm is plotted as cyan diamonds.

Δ

N cells

Fig. 4. Periodic arrangement of the structure in Section 3. We set
the distance Δ from the center of the stub to the center of layer-A as a
free parameter, also known as synthetic dimension.
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l s � 0.56 mm, εa � 4, εb � εs � 6.25, μa � μb � μs � 1,
and the lattice constant is a � 2 mm. By using TMM, the dia-
grams of the phase of reflection coefficient r and the reflection
of a half-infinite periodic structure at ff ,Δ∕ag space can be
obtained. The results are shown in Fig. 5. The phase vortex
point in the reflection phase map and the almost zero reflection
can be clearly seen at the low-frequency resonant point with the
conditions that we have discussed in previous sections. This
point is a topological singularity that will be demonstrated later.
The ratio of frequency f s of topological singularity to the fre-
quency of the upper edge of the first band is about 1/12.95 and
can be tuned to zero step by step. This is the first time to find a
topological singularity near the bottom of the first photonic

band that can be very close to zero frequency. According to
the path integral formulation in Appendix A and the trajectory
of singularity in Fig. 3, we can see that the near-zero frequency
topological singularity could widely exist for periodic systems
with the unit cell, which is composed of an FP cavity and a side-
coupled or embedded subresonator.

The topological singularity can be strictly verified for such
periodic systems with several methods. The first method is
more mathematical, in which we can judge the topological
properties of the band by the number of resonant peaks in each
band [34]: a band with a topological singularity has N peaks,
and a band without topological singularity has N − 1 peaks,
where N is the number of PhC cells. The second method is
more physical, in which two kinds of PhCs with opposite topo-
logical properties in a common gap frequency range will have
the different sign of the imaginary part of the surface imped-
ance and a topological edge state will appear at the interface if
we connect two PhCs together [21]. So, we construct four
kinds of finite PhCs with 10 cells by fixing Δ∕a � 0.5,
μa � μb � μs � 1 and changing other parameters, whose first,
second, and third bands are marked as B1, B2, and B3, respec-
tively. The first PhC-A, with parameters of da � 1.35 mm,
db � 0.75 mm, εa � 4, εb � εs � 6.25, and l s � 0 mm,
has no topological singularity at the first and second bands,
but has a topological singularity at the third band, as shown
in Fig. 6(a). The second PhC-B, with da � 1.05 mm, db �
1 mm, εa � 4, εb � εs � 6.25, and l s � 0 mm, has a topo-
logical singularity at the second band and no singularity at the
first and third bands, as shown in Fig. 6(b). The third PhC-C,
with da � 0.8 mm, db � 1 mm, εa � 4, εb � εs � 6.25,
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and l s � l c � db�εb − εa�∕εa � 0.563 mm, has a topological
singularity at the zero frequency and no singularity at the sec-
ond and third bands, as shown in Fig. 6(c). The fourth PhC-D,
with da � 1 mm, db � 1 mm, εa � 4, εb � εs � 6.25, and
l s � 0.6 mm > lc , which means the singularity is pushed over
the zero frequency, is shown in Fig. 6(d).

With the first judgment, we can count the number of res-
onant peaks, which are signified by the almost zero reflectivity
of the four kinds of PhCs with N � 10 cells. When we tune l s
length gradually and the PhC evolves from PhC-B type to
PhC-C type, it is found that the first gap will close and reopen
when the topological singularity moves from the second band
to the first band, and the resonant peaks of the first band will
change from 9 to 10 and vice versa. So a typical topological
phase transition is demonstrated in this process.

With the second judgment by the topologically protected
edge state, we can splice PhC-A, PhC-C, and PhC-D (5 cells)
with PhC-B (10 cells), respectively; the absolute value of the
reflection coefficient is shown in Figs. 7(a)–7(c). According
to the well known “bulk-edge correspondence,” when two
kinds of PhCs with the same gap frequency range but opposite
topological properties are connected, there must be a topologi-
cal edge state in the corresponding gap. In the PhCs, the
“opposite topological properties” mean the difference sign of
ς � Z s∕�iZ 0�, where Z s is the surface impedance of a half-in-
finite PhC and Z 0 is the vacuum impedance, which is consis-
tent with Zak phases and the evolution of singularities on
different bands [21]. The condition for the occurrence of
the topological edge states is Z SR � Z SL � 0, where R and
L mean the right and left sides for the interface between the
spliced PhCs. With this condition, we can accurately predict
the specific frequency of the edge state appearing. We present
the field distribution jH �x�j of the edge states in the insets of
Fig. 7, and the interface between PhCs is marked with red
dashed lines. We can find that these field distributions satisfy
the characteristics of the edge states, which should be localized
at the interfaces.

We compute the sign of ς and show the results in Table 1.
From Fig. 6 and Table 1, the second gap of PhC-A and PhC-B
and the first gap of PhC-B and PhC-C have opposite topologi-
cal properties. Hence, the topological edge states are found in
these gaps, as shown in Figs. 7(a) and 7(b). So, the existence of
topological edge state in the first gap in Fig. 7(b) shows that the
near-zero frequency topological singularity really can change

the topological property of the first band, and there is a
topological phase transition in the evolving process from
PhC-B type to PhC-C type. It should be emphasized that
the sign of ς for the first gap will not change when the topo-
logical singularity is tuned from zero frequency to another fre-
quency of the first band.

Interestingly, there are topological edge states in the first gap,
as shown in Figs. 7(b) and 7(c) because the first bands are non-
trivial in PhC-C and PhC-D. Since the wavelength in the first
gap is much longer than other gaps, it is possible to realize the
subwavelength edge states, as shown in Fig. 7(b). This phe-
nomenon has not been reported in the photonic topological
edge state, since the first band is generally trivial. More particu-
larly, the edge state is very robust and topologically protected.
The high-Q cavity based on the subwavelength topological
edge state with enhanced field density at the interface can
be widely used in a subwavelength laser, enhanced subwave-
length detector, etc.

We notice that there are new phenomena for the zero-
frequency singularity. The first interesting phenomenon for
the zero-frequency singularity is that the derivative of the ab-
solute value of reflection coefficient ∂jrj∕∂f could be zero
around the singularity, as shown in Fig. 6(c). This property is
quite different from the singularities with the finite derivative of
jrj shown in Figs. 6(a), 6(b), and 6(d). Theoretically, we can
derive that jrj ∝ f 3 at the neighbor frequency range of a zero-
frequency singularity; the detailed derivation is given in
Appendix B. Physically, such a cubic function is from the de-
structive interference of the backscattering between the stub
and the FP cavity. For zero frequency, the backscattering of a
cavity is generally composed of a linear frequency term and cu-
bic frequency term, etc. For our system with zero-frequency
singularity, since the linear frequency terms of the FP cavity
and the stub are canceled out by each other, the cubic terms
become dominant. This abnormal phenomenon ensures that
the reflectivity is very low through the whole neighborhood
of the low-frequency range, which also means robustness for
observing the zero-frequency singularity.

Fig. 7. Reflection coefficient and magnetic field of the edge state. (a) Splice PhC-A (5 cells) with PhC-B (10 cells); (b) splice PhC-C (5 cells) with
PhC-B (10 cells); (c) splice PhC-D (5 cells) with PhC-B (10 cells).

Table 1. Sign of ς for Different PhCs and Different Gaps

Gap PhC-A PhC-B PhC-C PhC-D

First gap <0 <0 >0 >0
Second gap >0 <0 <0 <0
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Another interesting phenomenon is revealed to answer the
question “What will happen for the topological properties of
the bandgap structure if we tune the stub length l s over (larger
than) l c and push the singularity beyond the zero frequency?”.
This is the reason we constructed the PhC-D in this work.
From the view of no-singularity at the first band as shown
in Fig. 6(d) by the jrj, there seems to be a topological phase
transition in the process. However, from another view of
gap-closing-reopening, there seems no topological phase tran-
sition. We check the topological edge state in Fig. 7(c) and sur-
prisingly find that there is still a topological edge state even
when we push the singularity over the zero frequency.
Obviously, the topological edge state is physically observable,
so we have to accept the conclusion that there is no topological
phase transition, even if we push the singularity beyond the
zero frequency and the topological property of the first band
keeps nontrivial in the process. How to understand this
counterintuitive conclusion is very tricky. First, from Table 1,
we can see that the signs of ς of the first gap is the same for both
PhC-C and PhC-D, which means the first gap of both PhCs are
topologically nontrivial compared with the first gap of
“common” PhCs. Second, if we still hope to explain the topo-
logical nontriviality of the PhC-D first gap from the evolution
of singularity, we need to go back to Eq. (2) and find the further
evolution of singularity for the cases with l s > l c . It is found
that, for l s > l c, Eq. (2) still can be sustained
if we extend our real-valued frequency regime to the complex
frequency regime. In the complex frequency regime f �
f r � if i, the trajectory of singularity can be drawn in space
ff r , f i, l sg, as shown in Fig. 8. From the trajectory in the com-
plex regime of frequency, the singularity is pushed beyond the
zero frequency into the pure imaginary regime with f r � 0.
We argue that the real frequency regime is always intrinsically
connected with the pure imaginary frequency regime at the ori-
gin point with f r � 0 and f i � 0, so that pushing singularity
from the real frequency regime into the pure imaginary regime
does not change the topological properties of PhC. Generally,
the complex frequency regime is of concern only for the
non-Hermitian systems. For our system, we suppose it is a
Hermitian one, since the absorption of PEC is zero, and the
Hermitian property is more obvious for the dielectric layered

system, to be discussed in the next section. But now, to explain
the topological property of the first band and the topological
edge state in the first gap from the evolution of singularity, we
have to face the singularity in the pure imaginary regime. In
other words, we find a specific case in which the system is sup-
posed to be a Hermitian one, and the singularity in the pure
imaginary frequency regime can cause the physically detectable
effects on the topology of the bandgap structure, i.e., the exist-
ence of topological edge state. Mathematically, we show that
the zero-frequency point is a special exceptional point for
Hermitian systems, and the singularity in the imaginary
frequency regime is connected to the first band in the real
frequency regime.

5. SINGULARITY OF LAYERED PHOTONIC
CRYSTALS AND APPLICATIONS

As discussed above, the near-zero frequency resonance can be
realized not only for the model with the side-coupled cavity, but
also for the model with an embedded cavity, as shown in
Fig. 2(c). We will demonstrate that the resonance frequency
of such a simple dielectric layered model can be tuned to zero,
and the PhCs with such a model as a unit cell also can exhibit
exotic topological properties for the first bandgap. The advan-
tages of the dielectric layered model are that (i) no PEC or
metal substrate is needed for the model, and the Hermitian
property of the model is obvious; (ii) the structure is very sim-
ple so that it could be easily realized by real material; (iii) wide
usages, such as the subwavelength perfect absorber or the deep
subwavelength no-reflection film at wide frequency range,
could be expected for some special applications, even consid-
ering the technology limit.

For the layered model shown in Fig. 2(c), we assume a layer-
C with thickness d c , which substitutes the abstract mirror
shown in Fig. 1, and is embedded in the middle of the FP cavity
that is composed of a layer B with thickness db � 1 mm in the
background material-A with thickness da � 1 mm. The per-
mittivity and permeability of layer-A, layer-B, and layer-C
are fixed as εa � 4, εb � 1.5, εc � 9, and μa � μb �
μc � 1. We set d c as a variable to compute the resonant fre-
quency of this layered model in space ff , d cg by TMM, and
the result is shown in Fig. 9(a) with the black dashed line. We
find that the trajectory of resonant frequency could go to zero
when tuning the thickness of layer-C to the critical thickness
d c � d 0

c . Through theoretical derivation, we can obtain the
relation between the layer-C thickness d c and the resonant fre-
quency f c with low-frequency approximation as

d c ≈
�εb − εa�dbc2

�εa − εc�c2 � π2�ε2b − εaεc�d 2
bf

2
c
: (4)

For zero-resonant frequency, we can obtain the critical thick-
ness of layer-C as d 0

c � �εb−εa�db
εa−εc

. With the structural and
material parameters defined above, we can obtain the critical
thickness as d 0

c � 0.5 mm. Similar to the side-coupled cavity
model in the previous section, we also notice that Eq. (4) can
still be satisfied when d c > d 0

c if the imaginary frequency is
considered.

Next, we will study the topological properties of the PhCs
with the model shown in Fig. 2(c) as the unit cell. Three kinds
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of PhC structure are constructed, with the rules that we fix the
permittivity and permeability of all layers and the layer-B thick-
ness db as before, and change the thickness of layer-A da and
layer-C d c to control the overlapping frequency range of the
first gap and to tune the position of singularity. The three PhCs
are: the PhC-E with da � 1.4 mm and d c � 0.2 mm, which
has a singularity at the second band and no singularity at the
first band; the PhC-F with da � 1 mm and d c � d 0

c �
0.5 mm, which has a singularity at the zero frequency; and
the PhC-G, with da � 1.2 mm and d c � 0.55 mm > d 0

c ,
whose singularity is pushed beyond the zero frequency into
the pure imaginary frequency regime. The absolute value of
the reflection coefficient jrj of those PhCs with 10 cells is
shown in Figs. 9(b)–9(d), while the first three bands are also
marked as B1, B2, and B3. Many characteristics of jrj are sim-
ilar to the PhCs composed of the side-coupled model, such as
the jrj ∝ f 3 and ∂jrj∕∂f is zero if the singularity is close to
zero as shown in Fig. 9(c), and the sign of the imaginary part
of the surface impedance ς keeps the same from PhC-F to
PhC-G, which reminds us the unchanged topological proper-
ties when the singularity is pushed beyond zero frequency.

Furthermore, we connect the PhC-F and the PhC-G with 5
cells with PhC-E with 15 cells, respectively, to verify the exist-
ence of edge states, whose reflection spectra are shown in
Figs. 9(e) and 9(f ), while the field distribution jE�x�j of the
edge states is also shown in the insets. The edge states can
be found at the first gap in both systems with two connected
PhCs. Hence, for the dielectric layered PhCs, which are
obviously Hermitian, we also have to face the phenomenon
that the singularity in the imaginary frequency regime will
cause the detectable physical effects in the real frequency re-
gime, e.g., the existence of topological edge state in the first

gap. We would note that it is also possible to realize the sub-
wavelength high-Q cavity owing to the topologically protected
edge state in the first gap, which can be widely used in different
areas of optics and microwaves.

Because of the simplicity of the layered system, we have also
investigated the WF of such systems. It is widely known that if
we choose a certain spatial-inversion-symmetry center as the
Wannier center, the well-localized WF with certain parity
symmetry around that Wannier center is the judgment of
the topological triviality for a band [35–37]. In other words,
if we cannot find such a well-localized WF around a chosen
Wannier center for a certain band, that means the topological
nontriviality of that band. We find that this judgment is correct
for other bands, but it will face a new challenge for the first
band, which is intrinsically connected with zero frequency.
We set the parameters to da � db � 1 mm, and permittivity
and permeability are the same as before. When we choose the
center of the C-kind layer in our layered model as the symmetry
center and tune the singularity from the second band to the first
band, then to the pure imaginary frequency continuously
(through the zero frequency) by changing the thickness d c
of layer-C, we find that the WFFB evolves in the following
way. The WFFBs in this process are shown in Figs. 10(a)–
10(g). First, when the singularity is at the second band with
d c � 0.2 mm, both the first band and first gap are topologi-
cally trivial and the WFFB is a real well-localized odd function,
which is shown in Fig. 10(a). When we increase d c to 0.35 mm,
the singularity is at the center of the first band. Now, the real
part and the imaginary part of WFFB shown in Figs. 10(b) and
10(c) have different parity symmetry and are not well localized
because of the topological nontriviality of the first band. But
when we tune the singularity to a very low frequency at the

Fig. 9. (a) Black dashed line, the trajectory of singularity in space fd c , f g; parameters are set as d a � db � 1 mm, εa � 4, εb � 1.5, and εc � 9;
color map, reflectivity of layered structure in space fd c , f g with loss and randomness; parameters are set as ε̂m � εm � 0.003iεm,
d̂ m � dm�1�W · γ�, wherem � a, b, c,W � 0.01 is random strength, γ is an evenly distributed random number in the range �−1,1�; (b) reflection
coefficient of PhC-E with da � 1.4 mm, db � 1 mm, d c � 0.2 mm, εa � 4, εb � 1.5, εc � 9, and N � 10; (c) reflection coefficient of PhC-F
with da � 1 mm, db � 1 mm, d c � d 0

c � 0.5 mm, εa � 4, εb � 1.5, εc � 9, and N � 10; (d) reflection coefficient of PhC-G with
d a � 1.2 mm, db � 1 mm, d c � 0.55 mm > d 0

c , εa � 4, εb � 1.5, εc � 9, and N � 10; (e) reflection coefficient and electric field of the edge
state by splicing PhC-F (5 cells) with PhC-E (15 cells); (f ) reflection coefficient and electric field of the edge state by splicing PhC-G (5 cells) with
PhC-E (15 cells).
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first band with d c � 0.49 mm, the real part of the WFFB
shown in Fig. 10(d) decreases to a very small value, while
the imaginary part of the WFFB shown in Fig. 10(e) becomes
dominant and more localized. When the singularity is tuned to
zero frequency with d c � d 0

c � 0.5 mm, the real part of the
WFFB is almost zero and negligible, as shown in Fig. 10(f )
by the red line, so that the WFFB only has the imaginary part,
which is a well-localized even function, as shown in Fig. 10(f )
by the black line. When the singularity is tuned further into the
imaginary frequency regime with d c � 0.6 mm, the WFFB
stays as the well-localized even imaginary function, as shown
in Fig. 10(g). Comparing the WFFB with that in Fig. 10(a)
of the topologically trivial case, we can clearly see the parity
difference even if there is no singularity on the first band.
Such parity difference of the WFFB assures us of the topologi-
cal nontriviality when there is a singularity at imaginary fre-
quency regime from the view of the WF and could also be
used to explain the existence of the topological edge state, as
shown in Fig. 9(f ). So, the first band could be very special from

other bands since its WFFB can have certain parity symmetry
and still is topologically nontrivial, as shown in the case of
Fig. 10(g). Based on the observation of the WFFB evolving,
we still have to accept that the topology of the first band
and the first gap could be influenced by the singularity in
the imaginary frequency regime.

Besides the theoretical importance of the near-zero fre-
quency resonance and the exotic topological phenomena for
PhCs, several applications with such simple structures can
be considered directly. The first application is a deep subwave-
length film with high transmittance and low reflectivity whose
thickness could be one percentage of wavelength. Even with the
randomness of the thickness of all layers and the small absorp-
tion of materials (ε̂m � εm � 0.003iεm, where m � a, b, c),
which is determined by the technology limit, we can still obtain
a very low average reflectivity in a wide frequency range near-
zero frequency. We calculate the average reflectivity for 1000
configurations of randomness, as shown in Fig. 9(a), with
the thickness of layer-A, layer-B, and layer-C set to
da�1�W · γ�, db�1�W · γ�, and d c�1�W · γ�, respec-
tively, where W � 0.01 is random strength and γ is an evenly
distributed random number in the range �−1,1�. The reflectivity
can be as low as −50 dB in the frequency range from almost 0
to 5 GHz, as the black dashed arrow shows in Fig. 9(a). So,
such a high-transmission phenomenon is very robust in the
wide frequency range against randomness. Comparing low-re-
flection range lower than −50 dB of random systems (dashed
arrow) with that of the normal one (solid arrow), we find that
the high-transmission frequency range is even enhanced by ran-
domness in some way, which is also an interesting phenomenon
for the near-zero frequency resonant systems. We think this
occurs because the resonant trajectory of the periodic system,
shown by the dashed line in Fig. 9(a), is perpendicular to the
horizontal axis near-zero frequency, and randomness extends
the strict resonant condition into quasi-resonance in a wider
range. This application would be useful in thin-film optics.

Another application is the broadband subwavelength
absorbers, which can absorb waves almost perfectly. A finite
1D PhC of such layered structure as a unit with the absorbing
material can easily realize an ideal absorber. To show this prop-
erty, we designed the absorber of EM waves with the ideal PEC
as the base. Our goal is to realize reflectivity of less than −20 dB
in a broad frequency range around the central frequency
10 GHz. In our calculation, the lossy materials of different
layers are set as εa � 16� 3i, εb � 9� 1i, εc � 25� 8i,
and μa � μb � μc � 1, the thickness of layer-A and layer-B
as da � db � 0.8 mm, and the total thickness of finite PhC
is chosen as 10 periods. The reflectivity of the layered structure
with EM waves input from layer-A is shown in Fig. 11 with the
thickness of layer-C set as 0.4 mm (black dotted-dashed line),
0.5 mm (black solid line), and 0.6 mm (black dashed line),
respectively. All of those 1D PhCs show the subwavelength ab-
sorption property, and their lattice constants are only about 8%
of the wavelength corresponding to 10 GHz. From the results
of d c � 0.5 mm shown in Fig. 11, the range of reflectivity
lower than −20 dB is wider than 9 GHz, which means 90%
bandwidth of high absorption. When the thickness of layer-
C increases to d c � 0.6 mm, the absorption frequency moves

0

20

0

5

10

-10

0

10

0

5

10

-10

0

10

0

5

10

-2

0

2

0

5

10

0

10

20

0

5

10

20

-10

0

10

20

0

5

10

WF

WF

-40   -20      0     20    40

0

10

20

0

5

10

Fig. 10. WFFB with da � db � 1 mm, εa � 4, εb � 1.5, and
εc � 9. (a) Real part of WFFB with d c � 0.2 mm; (b) real part of
WFFB with d c � 0.35 mm; (c) imaginary part of WFFB with
d c � 0.35 mm; (d) real part ofWFFB with d c � 0.49 mm; (e) imagi-
nary part of WFFB with d c � 0.49 mm; (f ) imaginary part (black
line) and real part (red line) of WFFB with d c � 0.5 mm; (g) imagi-
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to a lower-frequency range, and there is an almost perfect ab-
sorption point whose reflectivity can be less than −50 dB at
frequency 8.74 GHz. Such perfect absorption phenomena have
also been reported in the high-frequency range [22,28] and are
for the first time being found in the subwavelength case. The
application could be used in the microwave anechoic chamber,
reducing radar cross section, etc.

6. CONCLUSIONS

In summary, we have studied the resonance of the cavity and
the singularity of PhCs near and beyond zero frequency. The
results, such as the general conditions of resonance near-zero
frequency and different designs to realize such resonance,
e.g., an FP cavity with a side-coupled or embedded subreso-
nator, are presented, which are confirmed by both theoretical
and numerical methods. The PhCs with such a cavity as a unit
cell are also studied. The topological singularities that can be
tuned to zero frequency by changing certain structural (or
material) parameters are found, and the topological nontrivial-
ity of the first band and gap is confirmed by the topological
edge state. Counterintuitively, we observe that when the
parameter is tuned over the critical value, which corresponds
to the zero-resonant frequency, the topology of the first band
and gap is still topologically nontrivial because of the existence
of the topological edge state and the negative sign of the imagi-
nary part of PhC surface impedance. From the mathematical
analysis, we conclude that the singularity is pushed beyond zero
frequency into the pure imaginary frequency regime. So, for the
first time, we find the cases that the singularity in the pure
imaginary regime can still cause observable effects on the real
frequency regime, even if the systems in our study are
Hermitian. Other new phenomena are also observed, e.g., the
cubic relation between reflection and frequency when the sin-
gularity is tuned near-zero frequency, the wideband high trans-
mission, which is robust against randomness. Besides the
theoretical importance, some basic applications, e.g., the deep
subwavelength wideband layered structures, the subwavelength
wideband absorbers, and the high-Q cavities based on the

subwavelength topological edge state, are proposed. Since
the study of (extremely) low-frequency range is generally domi-
nated by the effective medium theory, this work opens a new
window to view the new topological physics and the possible
revolutionary designs near and beyond zero frequency. Based
on this work, various fields of optics and microwaves can be
enlightened, e.g., thin-film optics, microwave anechoic cham-
bers, subwavelength lasers, and enhanced subwavelength detec-
tors, which also could be extended to the use of other waves,
such as the biomedical imaging based on acoustic waves. Our
topological research on near-zero frequency can also be helpful
to further simplify and downscale compact systems, e.g., the
coaxial waveguide and dielectric resonator antenna [38].
Further topics, such as what conditions we need to consider
because of the influence from the imaginary frequency regime,
other observable topologically nontrivial phenomena in the real
frequency domain because of the singularity in the imaginary
frequency regime for Hermitian or non-Hermitian systems,
and the special role of zero frequency in the topology study, are
waiting to be investigated. The related phenomena for high-
dimensional systems and other waves, e.g., acoustic waves, ma-
chine waves, and matter waves, are also interesting topics.

APPENDIX A: PATH INTEGRAL FORMULATION
OF NEAR-ZERO FREQUENCY RESONANCE

In this Appendix, we show the condition of near-zero frequency
resonance by using path integral formulation. According to the
paths as shown in Fig. 12, all possible paths are divided into
four categories:
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Fig. 11. Reflectivity of periodic structure with εa � 16� 3i,
εb � 9� 1i, εc � 25� 8i, d a � db � 0.8 mm, and N � 10.
The black dotted-dashed line, black solid line, and black dashed line
represent d c � 0.4 mm, 0.5 mm, and 0.6 mm, respectively.

Fig. 12. (a) Type A, which represents the direct reflection of inci-
dent wave by interface 1 (r1); (b) type B, which represents the coupled
reflection between interface 1 (r 01) and interface 2 (r2) or interface 2
(r 02) and interface 3 (r3); (c) type C, which represents the coupled re-
flection between interface 1 (r 01) and interface 3 (r3); (d) type D, all
other possible paths that include the coupled reflection from all three
interfaces.
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1. type A, which represents the direct reflection of incident
wave by interface 1 (r1);

2. type B, which represents the coupled reflection between
interface 1 (r 01) and interface 2 (r2) or interface 2 (r

0
2) and inter-

face 3 (r3);
3. type C, which represents the coupled reflection between

interface 1 (r 01) and interface 3 (r3);
4. type D, all other possible paths that include the coupled

reflection from all three interfaces.

Next, we will discuss the approximations (which are not
needed actually for more strict derivation) for our analysis.
First, because we consider the cases with the frequency ap-
proaching zero, all terms with O�ωn� where n ≥ 2 will be ne-
glected, e.g., exp�ikbd b� ≈ 1� ikbd b. Second, the value of jr2j
should be very small, so that we need only keep the terms with
the order of O�jr2j� and can neglect all terms with higher-order
O�jr2jn�, where n ≥ 2. The small value of jr2j can be derived
from its goal to cancel the reflection of the original FP cavity,
and the reflection of the FP cavity is proportional to ω in our
zero-frequency limit [30].

Because of the space-inverse-symmetry, we have r 01 � r3
and r2 � r 02. We will analyze the values of each path one
by one.

1. type A,

A � r1 �
ε2b − ε

2
a

ε2b � ε2a
: (A1)

2. type B,

B � t1t 01r2 exp�ikbd b� � t1t 01r
2
2r

0
1 exp�2ikbd b�

� t1r3r 02r3t
0
1 exp�3kbdb� � t1r3r 022 r

2
3t

0
1 exp�4kbdb� �…

(A2)

Since we ignore the high-order terms of r2 �r 02�, type B can be
equal to

B � t1t 01r2 exp�ikbd b� � t1r3r 02r3t
0
1 exp�3kbd b�: (A3)

3. type C, the real part,

Cr � t1t 01�r3 � r23 � r53 �…� � t1t 01r3
1 − r23

� −r1, (A4)

the imaginary part,

Ci � t1t 01ikbd b�2r3 � 4r33 � 6r53 �…�

� t1t 01ikbd b

�
2r3�1 − r2n3 �
�1 − r23�2

−
2nr2n�1

3

1 − r23

�

� t1t 01ikbd b
2r3

�1 − r23�2
, (A5)

where n � 1,2,3....
4. type D, only one order of r2 (r 02) is considered, so,

D � t1r2r 01r3t
0
1 exp�3kbdb� � t1r3r 01r2t

0
1 exp�3kbd b� �…

(A6)

It is easy to find that the real parts of type A and type C can
cancel each other out. If we hope the contributions of all paths
are canceled by each other, the imaginary part contribution
from type C needs to be canceled by all paths with r2. After
tedious calculation, we find the required condition for the total
canceling is that r2 exp�ikbd b� needs to be a pure imaginary
number.

APPENDIX B: THE FORMULATIONS OF
TRANSFER MATRIX

In this Appendix, we will prove the reflection of the resonator is
proportional to cubic of frequency r ∝ f 3 at the resonance
neighboring frequency range when the resonant frequency is
very close to zero, which is discussed in the main text and
shown by Figs. 6(c) and 9(c).

We can compute the reflection coefficient at neighboring
frequency range accurately by using the structure of Fig. 2(b).
The transfer matrix of Fig. 2(b) can be described as�

a2
b2

�
� M

�
a1
b1

�
, (B1)

where a1 and b1 are the incoming and outgoing wave ampli-
tudes of the magnetic field on the left side of the system, and a2
and b2 are the incoming and outgoing wave amplitudes of mag-
netic field on the right side of the system. We focus on the Hz
polarization case, and the stub is at the central position of
layer B, so the transfer matrix M is

M �

2
64 exp

�
ikada
2

�
0

0 exp
�
− ikad a

2

�
3
75� 1 1

ka
εa

− ka
εa

�−1264 exp
�
ikb

db
2

�
exp

�
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db
2

�
kb
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�
ikb

db
2

�
− kb
εb

exp
�
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db
2

�
3
75�

1 1
kb
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�−1� 1 1
ks
εs

− ks
εs

�

×

2
4 1� i tan�ks l s�

2
i tan�ks l s�

2
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2
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The relationship between the stub length l s and the resonant frequency f c can be computed by setting M 12 � 0. When the
resonant frequency reaches zero, we have l s � db�εb − εa�∕εa and exp�ikad a� ≈ 1� ikad a, exp�ikad b� ≈ 1� ikad b, tan�ksl s� ≈ ksl s.

2034 Vol. 9, No. 10 / October 2021 / Photonics Research Research Article



The reflection coefficient at near-zero resonant frequency can be computed by r � M 12∕M 22,

r � iε2bd
3
bω
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aω

2 � 4c2��
i

ffiffiffiffi
εa

p
daω − 2c

�
2
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p 3 � 8id bεaεbc2ω� 2cd 2
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2
�
2

ffiffiffiffi
εa

p
ε2b − εb

ffiffiffiffi
εa

p 3
�
� id 3
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i : (B3)

We can simplify it by

r � iω3�C1 � C2ω
2�

C3ω
2 � C4ω

4 � i�C5ω� C6ω
3 � C7ω

5� � C8

:

(B4)

When ω is close to zero, we have jC1j ≫ jC2ω
2j and

jC8j ≫ jC3ω
2 � C4ω

4 � i�C5ω� C6ω
3 � C7ω

5�j, so,

r ≈
iC1ω

3

C8

� iε2bd
3
bω

3�εb − εa�
8

ffiffiffiffi
εa

p 3c3
: (B5)

Hence, jrj ∝ f 3 for the resonator at neighboring frequency
range when its resonant frequency is zero. A numerical exam-
ple, whose parameters are da � db � 1 mm, εa � 4,
εb � εs � 6.25, and l s � db�εb − εa�∕εa � 0.563 mm, is
given in which excellent agreement is found between TMM
(solid line) and Eq. (B5) (asterisk) results, as shown in Fig. 13.

When the resonator with the side-coupled stub is arranged
periodically with N cells, the transfer matrix can be computed
by MN, and the relationship jrj ∝ f 3 can be kept by simple
derivation. The transfer matrices of layered structure shown
in Fig. 2(c) are easier; one only needs to replace the transfer
matrix of a stub with that of a layer. The relationship
jrj ∝ f 3 of layered structure can also be obtained.

It should be emphasized that the transfer matrix is not only
applicable to EM waves, but also other waves. Similar deriva-
tion can be applied to acoustic waves and mechanical waves
[39], etc.

Funding. National High Technology Research and
Development Program of China (17-H863-04-ZT-001-035-
01); National Key Research and Development Program of
China (2016YFA0301103, 2018YFA0306201).

Disclosures. The authors declare no conflicts of interest.

REFERENCES AND NOTE
1. E. Yablonovitch and T. J. Gmitter, “Photonic band structure: the face-

centered-cubic case,” Phys. Rev. Lett. 63, 1950–1953 (1989).
2. S. John, “Strong localization of photons in certain disordered dielectric

superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
3. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic

gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155
(1990).

4. S. Kubo, D. Mori, and T. Baba, “Low-group-velocity and low-
dispersion slow light in photonic crystal waveguides,” Opt. Lett. 32,
2981–2983 (2007).

5. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T.
Sato, and S. Kawakami, “Self-collimating phenomena in photonic
crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).

6. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T.
Sato, and S. Kawakami, “Superprism phenomena in photonic crys-
tals,” Phys. Rev. B 58, R10096 (1998).

7. B. E. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley,
2007).

8. P. Cheben, R. Halir, J. H. Schmid, H. A. Atwater, and D. R. Smith,
“Subwavelength integrated photonics,” Nature 560, 565–572
(2018).

9. F. Capolino, Theory and Phenomena of Metamaterials (CRC Press,
2017).

10. T. C. Choy, Effective Medium Theory: Principles and Applications,
Vol. 165 of International Series of Monographs on Physics (Oxford
University, 2015).

11. M. He, H. Sun, and Q. L. He, “Topological insulator: spintronics and
quantum computations,” Front. Phys. 14, 43401 (2019).

12. S. Shen, Topological Insulators: Dirac Equation in Condensed Matter
(Springer, 2018).

13. A. Bansil, H. Lin, and T. Das, “Colloquium: topological band theory,”
Rev. Mod. Phys. 88, 021004 (2016).

14. C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, “Classification of
topological quantum matter with symmetries,” Rev. Mod. Phys. 88,
035005 (2016).

15. H. Wang, S. K. Gupta, B. Xie, and M. Lu, “Topological photonic crys-
tals: a review,” in Frontiers of Optoelectronics (2020), pp. 1–23.

16. T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C.
Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto,
“Topological photonics,” Rev. Mod. Phys. 91, 015006 (2019).

17. M. Kim, Z. Jacob, and J. Rho, “Recent advances in 2D, 3D and higher-
order topological photonics,” Light Sci. Appl. 9, 1 (2020).

18. M. S. Rider, S. J. Palmer, S. R. Pocock, X. Xiao, P. A. Huidobro, and
V. Giannini, “A perspective on topological nanophotonics: current sta-
tus and future challenges,” J. Appl. Phys. 125, 120901 (2019).

19. L. Lu, J. D. Joannopoulos, and M. Soljačić, “Topological photonics,”
Nat. Photonics 8, 821–829 (2014).

20. A. B. Khanikaev and G. Shvets, “Two-dimensional topological photon-
ics,” Nat. Photonics 11, 763–773 (2017).

0 0.2 0.4 0.6 0.8 1
f(GHz)

0

0.5

1

|r
|

10-5

TMM
Eq. (B5)

Fig. 13. Results of TMM (solid line) and Eq. (B5) (asterisk)
with da � db � 1 mm, εa � 4, εb � εs � 6.25, and l s �
db�εb − εa�∕εa � 0.563 mm.

Research Article Vol. 9, No. 10 / October 2021 / Photonics Research 2035

https://doi.org/10.1103/PhysRevLett.63.1950
https://doi.org/10.1103/PhysRevLett.58.2486
https://doi.org/10.1103/PhysRevLett.65.3152
https://doi.org/10.1103/PhysRevLett.65.3152
https://doi.org/10.1364/OL.32.002981
https://doi.org/10.1364/OL.32.002981
https://doi.org/10.1063/1.123502
https://doi.org/10.1103/PhysRevB.58.R10096
https://doi.org/10.1038/s41586-018-0421-7
https://doi.org/10.1038/s41586-018-0421-7
https://doi.org/10.1007/s11467-019-0893-4
https://doi.org/10.1103/RevModPhys.88.021004
https://doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1103/RevModPhys.91.015006
https://doi.org/10.1038/s41377-019-0231-1
https://doi.org/10.1063/1.5086433
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1038/s41566-017-0048-5


21. M. Xiao, Z. Q. Zhang, and C. T. Chan, “Surface impedance and bulk
band geometric phases in one-dimensional systems,” Phys. Rev. X 4,
021017 (2014).

22. Q. Li and X. Jiang, “Singularity induced topological transition of differ-
ent dimensions in one synthetic photonic system,”Opt. Commun. 440,
32–40 (2019).

23. Q. Li, Y. Zhang, and X. Jiang, “Two classes of singularities and novel
topology in a specially designed synthetic photonic crystals,” Opt.
Express 27, 4956–4975 (2019).

24. W. Zhu, Y.-Q. Ding, J. Ren, Y. Sun, Y. Li, H. Jiang, and H. Chen, “Zak
phase and band inversion in dimerized one-dimensional locally res-
onant metamaterials,” Phys. Rev. B 97, 195307 (2018).

25. A. V. Poshakinskiy, A. N. Poddubny, and M. Hafezi, “Phase spectros-
copy of topological invariants in photonic crystals,” Phys. Rev. A 91,
043830 (2015).

26. E. J. Bergholtz, J. C. Budich, and F. K. Kunst, “Exceptional
topology of non-Hermitian systems,” Rev. Mod. Phys. 93, 015005
(2021).

27. X. Cui, K. Ding, J.-W. Dong, and C. T. Chan, “Exceptional points and
their coalescence of PT-symmetric interface states in photonic crys-
tals,” Phys. Rev. B 100, 115412 (2019).

28. W. Zhu, X. Fang, D. Li, Y. Sun, Y. Li, Y. Jing, and H. Chen,
“Simultaneous observation of a topological edge state and excep-
tional point in an open and non-Hermitian acoustic system,” Phys.
Rev. Lett. 121, 124501 (2018).

29. P. Markos and C. M. Soukoulis,Wave Propagation: From Electrons to
Photonic Crystals and Left-Handed Materials (Princeton University,
2008).

30. For example, when frequency is close to zero, the reflection coeffi-

cient of an FP cavity is r � 2i sin�kbd b��k2a−k2b �
�ka−kb�2 exp�ikbd b�−�ka�kb�2 exp�−ikbdb �≈

2ikbd b�εb−εa�
4
ffiffiffiffiffiffi
εaεb

p � iωdb�εb−εa�
2
ffiffiffi
εa

p
c .

31. L. Fan, Z. Chen, Y.-C. Deng, J. Ding, H. Ge, S.-Y. Zhang, Y.-T. Yang,
and H. Zhang, “Nonlinear effects in a metamaterial with double neg-
ativity,” Appl. Phys. Lett. 105, 041904 (2014).

32. J.-B. Xia, “Quantum waveguide theory for mesoscopic structures,”
Phys. Rev. B 45, 3593–3599 (1992).

33. Q. Wang, M. Xiao, H. Liu, S. Zhu, and C. T. Chan, “Optical interface
states protected by synthetic Weyl points,” Phys. Rev. X 7, 031032
(2017).

34. P.A.Kalozoumis,G.Theocharis,V.Achilleos,S.Félix,O.Richoux, and
V. Pagneux, “Finite-size effects on topological interface states in one-
dimensional scattering systems,” Phys. Rev. A 98, 023838 (2018).

35. W. Kohn, “Analytic properties of Bloch waves and Wannier functions,”
Phys. Rev. 115, 809–821 (1959).

36. K. Busch, C. Blum, A. M. Graham, D. Hermann, M. Köhl, P. Mack, and
C. Wolff, “The photonic Wannier function approach to photonic crystal
simulations: status and perspectives,” J. Mod. Opt. 58, 365–383
(2011).

37. M. B. de Paz, M. G. Vergniory, D. Bercioux, A. Garca-Etxarri, and B.
Bradlyn, “Engineering fragile topology in photonic crystals: topological
quantum chemistry of light,” Phys. Rev. Res. 1, 032005 (2019).

38. K.-M. Luk and K.-W. Leung,Dielectric Resonator Antennas (Research
Studies, 2003).

39. X. Hu, C. T. Chan, and J. Zi, “Two-dimensional sonic crystals with
Helmholtz resonators,” Phys. Rev. E 71, 055601 (2005).

2036 Vol. 9, No. 10 / October 2021 / Photonics Research Research Article

https://doi.org/10.1103/PhysRevX.4.021017
https://doi.org/10.1103/PhysRevX.4.021017
https://doi.org/10.1016/j.optcom.2019.02.015
https://doi.org/10.1016/j.optcom.2019.02.015
https://doi.org/10.1364/OE.27.004956
https://doi.org/10.1364/OE.27.004956
https://doi.org/10.1103/PhysRevB.97.195307
https://doi.org/10.1103/PhysRevA.91.043830
https://doi.org/10.1103/PhysRevA.91.043830
https://doi.org/10.1103/RevModPhys.93.015005
https://doi.org/10.1103/RevModPhys.93.015005
https://doi.org/10.1103/PhysRevB.100.115412
https://doi.org/10.1103/PhysRevLett.121.124501
https://doi.org/10.1103/PhysRevLett.121.124501
https://doi.org/10.1063/1.4892009
https://doi.org/10.1103/PhysRevB.45.3593
https://doi.org/10.1103/PhysRevX.7.031032
https://doi.org/10.1103/PhysRevX.7.031032
https://doi.org/10.1103/PhysRevA.98.023838
https://doi.org/10.1103/PhysRev.115.809
https://doi.org/10.1080/09500340.2010.526256
https://doi.org/10.1080/09500340.2010.526256
https://doi.org/10.1103/PhysRevResearch.1.032005
https://doi.org/10.1103/PhysRevE.71.055601

	XML ID funding

