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Recently developed single-photon avalanche diode (SPAD) array cameras provide single-photon sensitivity and
picosecond-scale time gating for time-of-flight measurements, with applications in LIDAR and fluorescence life-
time imaging. As compared to standard image sensors, SPAD arrays typically return binary intensity measure-
ments with photon time-of-arrival information from fewer pixels. Here, we study the feasibility of implementing
Fourier ptychography (FP), a synthetic aperture imaging technique, with SPAD array cameras to reconstruct an
image with higher resolution and larger dynamic range from acquired binary intensity measurements. Toward
achieving this goal, we present (1) an improved FP reconstruction algorithm that accounts for discretization and
limited bit depth of the detected light intensity by image sensors, and (2) an illumination angle-dependent source
brightness adaptation strategy, which is sample-specific. Together, these provide a high-quality amplitude and
phase object reconstruction, not only from binary SPAD array intensity measurements, but also from alternative
low-dynamic-range images, as demonstrated by our simulations and proof-of-concept experiments. © 2021

Chinese Laser Press

https://doi.org/10.1364/PRJ.427699

1. INTRODUCTION

Single-photon avalanche diodes (SPADs) are highly sensitive
optical detectors that can detect and count individual photons.
Recently, SPAD arrays, which contain thousands to millions of
individual detectors, can be manufactured at scale via current
CMOS technology and are entering the larger commercial mar-
ket [1]. Coupled with a pulsed light source, SPAD array cam-
eras are often implemented in “time-correlated single-photon
counting” (TCSPC) schemes that offer picosecond-scale detec-
tion resolution for photon time-of-arrival. This has led to
impressive 3D imaging capabilities for autonomous vehicles
[2], fluorescence lifetime imaging experiments in microscopy
[3], as well as computational imaging tasks such as three-
dimensional imaging and ranging [4,5], high-speed correction
[6], imaging/sensing through scattering media such as fog or
tissue [7–9], transient image sensing [10], and forming images
of objects hidden by occlusions or around corners [11]. One
current limitation of existing SPAD array cameras, as compared
to traditional charged-coupled device (CCD) or CMOS camera
sensors, is a limited total pixel count. While recent academic
work has demonstrated SPAD arrays with up to one million
pixels [12,13], commercially available SPAD arrays typically in-
clude hundreds to thousands of pixels. CCD or CMOS sensors,

on the other hand, are now commonly available with tens of
megapixels. If the goal is to form a high-resolution image over a
large area with an SPAD array camera, then one typically has to
resort to some form of mechanical scanning, either of the image
sensor, imaging assembly, or the object of interest, to produce a
high pixel count final image [14]. Such mechanical scanning
can be slow and lengthens the imaging process.

One alternative method that we study here, termed Fourier
ptychography (FP) [15,16], can improve image resolution
without requiring any mechanical scanning. FP is a synthetic
aperture imaging technique that acquires standard intensity-
only images of an object under illumination from different
angles, as shown in Figs. 1(a) and 1(b). An iterative phase
retrieval algorithm [17] is then used to convert the sequence
of captured low-resolution images into a high-resolution image
reconstruction, while simultaneously recovering the missing
phase of the scattered light. In the past, FP has primarily been
implemented with an LED array for illumination [see Fig. 1(a)]
to improve the space–bandwidth product [15] of microscopes
by a factor of 25× or more, leading to gigapixel-sized high-
resolution image reconstructions over large fields of view. FP
also recovers the sample’s phase and provides the capability to
correct for lens aberrations [18], which has led to low-cost yet
high-performance digital microscopes [19,20], and also extends
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to macroscopic imaging of large objects [21,22]. Over the past
several years, FP has been implemented with several types of
imaging sensor, including standard CMOS [15], scientific
CMOS (sCMOS) [23], intensified CCD (ICCD) cameras
[24], and low-cost mobile phone sensors [20]. As SPAD arrays
offer a limited pixel count and are also commonly used with
rapid active illumination schemes, it appears that FP offers a
useful means to improve SPAD array imaging performance
in a procedure that is compatible with many use cases.

In this work, we aim to study the feasibility of performing
FP using SPAD array cameras. To begin down this path, we
must consider and account for a relatively unique characteristic
of SPAD array cameras—a significantly limited image bit depth
—which is the primary focus of this investigation. There are
two general modes of SPAD array cameras, as outlined in
Fig. 1(c): (1) the photon-counting mode, which simply counts
photon-triggered events, and (2) the TCSPC mode, which re-
cords and digitizes time-of-arrival information about photon-
triggered events. Both of these modes effectively report low
dynamic range or binary spatial intensity information.

There has been prior work considering the dynamic range of
images in such computational imaging setups. For example,
work within compressive sensing [25–27] has examined the dy-
namic range problem at the extreme of binary image measure-
ments. In addition, several recent works have considered the
general problem of phase retrieval from binary measurements
in mathematical context [28–30]. Likewise, work has explored
phase retrieval from measured intensities of speckle quantized
to 1-bit [31]. However, none of these prior studies consider
synthetic aperture imaging-type scenarios such as FP, which
uses multiple low-resolution binary images to generate a recon-
structed image that simultaneously has a higher resolution
and higher dynamic range. Prior work with FP has indirectly

accounted for dynamic range challenges with a number of strat-
egies, for example, by varying the image exposure time for each
LED [32], ensuring high-dynamic-range capture with an
sCMOS camera [23], or employing an high dynamic range
(HDR) image capture method with multiple exposures per
LED [15]. However, without a priori knowledge of the spec-
imen’s scattering properties, it is generally challenging to select
an appropriate set of exposure times for all acquired images (see
Section 2.B).

Here, we present a new “quantized” FP image
reconstruction procedure that maps low-dynamic-range image
data to high-resolution complex-valued image reconstructions.
By accounting for each acquired image’s bit depth and exposure
duration, we verify both in simulation and experiment that FP
can effectively produce a high-dynamic-range reconstruction at
expected resolution from raw binary intensity images. We also
experimentally demonstrate FP using SPAD array image data,
pointing the way toward implementation with novel 3D rang-
ing and time-gating imaging applications in the future.
However, our findings here may also be used to improve
any general FP imaging setup on standard image sensors as well,
as sensor dynamic range is often an important factor that has
received limited attention to date.

2. METHODS

A. Quantized FP Forward Model
In FP, we assume that we are imaging a thin sample represented
by a complex function s�~r�, with amplitude describing the sam-
ple’s absorption, and phase describing its imparted phase shift
due to the sample’s thickness variation. We treat the illumina-
tion generated by each LED at the sample plane as a quasi-
monochromatic plane wave of uniform intensity that travels

Fig. 1. (a) Schematic of an FP imaging system. Time-sequential illumination from different angles is provided by an illumination array. Each LED
shifts a unique part of the sample’s Fourier spectrum [shown by circles in (b)] into the imaging lens, producing corresponding bandpass-filtered
sample images [example images in (d)]. The three LEDs are chosen as examples in (a), (b), (d), and (e) with a common color scheme. (c) Both
operating modes of SPAD array cameras can generate binary images. (d) Experimental FP data and reconstructions using 12-bit image data.
(e) Quantized FP performed with binary image measurements provides reconstruction image quality closely matching 12-bit data in (d).
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at a particular angle θn: eiϕ�~r,θn�, where n denotes light from the
nth LED. Since we have a thin sample, the resultant field emerg-
ing from the sample surface is given by the elementwise product
s�~r� · eiϕ�~r,θn�. This field then propagates through the lens pupil
plane (i.e., back focal plane) and then onto the image sensor.
Following principles of Fourier optics, we can represent this
field directly before the pupil plane as the Fourier transform

of the above product: O�~kn� � F �s�~r� · eiϕ�~r,θn��. Assuming the

pupil has a transmission function P�~k�, the field immediately

after the pupil plane is given by the product of P�~k� and O�~kn�.
Finally, by modeling propagation to the image sensor with an
inverse Fourier transform, we can denote the entire expression
for formation of the nth image as

zn�~r� � jF −1fF �s�~r�:eiϕ�~r,θn�� · P�~k�gj2, (1)
where the modulus square is due to the detector’s ability to only
detect incident intensity. According to the Fourier shift theo-
rem, the tilted plane wave illumination eiϕ�~r,θn� results in a shift
in the Fourier transform of the sample (kn � 2π

λ sin θn, where λ
is the wavelength), which allows us to express the intensity ob-
served at the image plane for FP as

zn�~r� � jF −1�O�~k − kn� · P�~k��j2, (2)

where O�~k� � F �s�~r��. This equation represents the standard
FP forward model with zn�~r� in units of W∕m2 as irradiance
immediately before the image detector, which we also assume is
spatially discretized to the sensor pixel spacing. A typical digital
image is formed via an exposure of some finite duration Δt
across a finite pixel area, which converts the irradiance to radi-
ant energy that is detected as an electronic signal. This signal is
typically quantized to generate a digital image. To account for
the dynamic range of the digital images in FP, we write the
quantization process introduced by a general image sensor
array as

yn�~r� � QM �β · zn�~r�Δtn�: (3)

Here, the product of zn and the exposure Δt follows from
the reciprocity property [33] and β is a constant scalar that ac-
counts for factors involved in the mapping of radiant energy per
pixel to an electronic signal (pixel fill factor, quantum efficiency,
etc.). In the above two equations, we assume that both shot
noise and sensor read noise are negligible so that the two sce-
narios (standard FP and quantized FP models) can be easily
compared. QM �x� is a quantization function that maps a con-
tinuous quantity to a discrete set of 2M positive integer values
within the range �0, 2M − 1�, which corresponds to M bits of
information:

QM �x� �
�
bx · 2Mc if x < 1
2M − 1 if x ≥ 1

, (4)

where bxc is a flooring function that gives the largest integer less
than or equal to x. In other words, the quantization function
QM �x� outputs a non-negative integer that is a function of the
detected radiant energy with a maximum value 2M . The second
line of Eq. (4) typically represents the scenario of image satu-
ration. Finally, adopting a “relative” per-image exposure time,
αn � Δtnβ, leads to the following simple expression for the nth

detected image:

yn�~r� � QM �αn · zn�~r��: (5)

B. Adaptive Threshold Method
The above forward model provides a straightforward expression
for discretized images captured on limited dynamic range sen-
sors. However, it assumes a priori knowledge of an adaptive
exposure time, αn, which is typically manipulated to ensure that
quantized images formed under illumination from the nth LED
are well exposed. For example, With the particular selection of
αn � 1∕max�zn�, we can see that the argument of QM cannot
exceed 2M . Accordingly, all captured images will be exposed up
to (but will not exceed) the maximum dynamic range of the
image sensor to produce images without any saturation.

There are three general issues surrounding the experimental
specification of αn. First, the maximum intensity reaching the
image sensor for each LED, max�zn�, is typically an unknown
quantity and must be estimated. Second, this quantity will
clearly vary as a function of LED illumination angle, as
LEDs toward the optical axis will often generate brighter im-
ages than those illuminating the sample from higher angles.
And third, in many imaging scenarios, image saturation can
actually be beneficial. An extreme example of this is in the
binary image detection case (e.g., with an SPAD array). In this
extreme case, from an information collection perspective, it
should typically be desirable to select a relative exposure
time to ensure that approximately half of the pixels output a
quantized measurement of 1, while the remaining pixels
output 0. Satisfying this condition will typically require over-
exposure (i.e., saturation) of a large fraction of pixels. To ex-
plore the above issues, we consider four different methods
of selecting the relative exposure time αn for each captured im-
age (see Fig. 2).

• Uniform: without any a priori knowledge of the specimen,
one might ensure that the center-illuminated image (i.e., n � 1
LED) is well exposed, and then apply this exposure time to all
other captured images such that αn � 1∕max�z1�. We refer to
this as the uniform exposure strategy, where the same exposure
is used for images taken from different LEDs.

• Max: to significantly increase the information preserved
through detection and quantization, we can instead apply a
strategy that scales the image acquired by each LED by its maxi-
mum intensity, such that αn � 1∕max�zn�. Here, each image
will be evenly quantized acrossM bits without saturation. This
strategy requires knowledge of the maximum intensity at the
image plane produced by each LED for the sample of interest,
which is typically not possible in practice.

• Informed: to address the experimental limitations of the
max method, we propose a third exposure time selection strat-
egy that is practically achievable. We assume that the object of
interest can be associated within a general category S of other
similar objects (e.g., with thin tissue sections or blood smears
in microscopic imaging applications) and that we have access to
the maximum image intensity per optical source max�zn,m�
generated by the other m objects within this category (e.g., ac-
quired during prior imaging experiments or in simulation). The
relative exposure time per LED is then set at

αn,S � 1

jSj
X
m∈S

1

max�zn,m�
, (6)
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where jSj is the cardinality of the image set S. The exposure
time is selected as the average per-LED image intensity gener-
ated by a set of similar specimens S that have been examined in
the past.

• Median: one optimal quantization strategy, from an infor-
mation collection perspective, is to maximize the entropy of
each detected image, by making each detected histogram as
uniform as possible across all possible quantized values. For
the M -bit discretization case, it is generally typically not pos-
sible to achieve histogram uniformity without the ability to cre-
ate a quantization function with non-uniform bin widths,
which is not possible with current image sensors. For the binary
quantization case, however, it is possible to select a per-image
exposure time that generates an even histogram (i.e., pixels of
the same number are quantized to 0 as to 1). This is achieved
when the normalized exposure time is

αn �
1

2 ×median�zn�
: (7)

This “median” exposure time method could be imple-
mented with a variety of binary imaging schemes that utilize

a separate photodetector to trigger the exposure on/off period,
for example.

As shown in Fig. 2, each strategy above will expand or con-
tract the histogram of measured intensities in a unique way. In
this example, it can be seen that max and informed methods
have a similar effect. The median method shows a significant
improvement in relaying specimen information over the max
method for binary FP imaging. While we selected to examine
these four methods due to their conceptual simplicity and ef-
ficiency, more sophisticated exposure strategies are certainly
possible and should be explored in future work. We will refer
to these four strategies at different points during our simula-
tions and experiments presented below.

C. Quantized FP Reconstruction Algorithm
Algorithm 1 encapsulates the proposed reconstruction algo-
rithm for quantized FP. The key differences between the pro-
posed method and the original FP algorithm [15] are in
steps 5–7. The FP reconstruction algorithm starts with an es-
timate of the high-resolution image reconstruction s�~r� and its
Fourier spectrum O�~k� as shown in the flowchart of Fig. 3.

Fig. 2. Example images from a simulation dataset demonstrating four exposure strategies considered in this work based on 32 by 32 LED array.
LED positions for selected images (a), (b), (c) are shown in (e). The full high-dynamic-range nature of the dataset can be observed in (1). In (2),
uniform exposure method results in most of the image pixel values rounding to zero due to quantization. In (3) and (4), max and informed methods
use exposures that are dependent on the sample’s frequency spectrum distribution, leading to low quantization error. (5) Max or informed methods
are not sufficient when the extreme case of binary is considered, in which case (6) the median method is chosen.
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Standard FP algorithms iterate between the Fourier spectrum
domain plane and the image domain while executing updates.
Once all iterations from t � 1 to T are complete, the final
Fourier spectrum of the object is inverse Fourier transformed
to produce a final high-resolution image reconstruction. Each
iteration consists of a sub-loop from n � 1 to L that runs
through all of the unique illumination angles that are used
in the experiment. There are three key stages in the loop:
(1) generation of a low-resolution image estimate, (2) updating
the low-resolution image estimate, and (3) updating the Fourier
spectrum of the object.

Algorithm 1. Proposed Quantized FP Reconstruction

1: input: initial guess O�~k�, system pupil P�~k�, measurements
ŷn�~r�, iteration number T , LED number L, and bit-depth M

2: for t � 1,2,…,T do
3: for n � 1,2,…, L do
4: ψ�~r� � F −1�P�~k�Ot−1,n�~k − ~kn��
5: zn�~r� � jψ�r�j2, yn�~r� � QM �αn · zn�~r��
6: E � jŷn�~r� − yn�~r�j0 ▹ Proposed error-map

7: ψ 0�~r� �
h ffiffiffiffiffiffiffiffiffi

ŷn�~r�
αn ·2M

q
E � jψ�r�j�1 − E�

i
exp�i∠ψ�~r��

8: Ot,n�~k − ~kn� � Ot−1,n�~k − ~kn� − δ �P†�~k��F �ψ 0�~r�−ψ�~r��
jP�~k�jmax �jP�~k�j2�ξ�

▹ Sequential
Gauss–Newton update

9: return: OT ,L�~k�

In stage 1, the Fourier spectrum estimate from the previous
t − 1 iteration, Ot−1,n�~k�, is shifted according to the illumina-
tion angle of the nth LED as Ot−1,n�~k − kn�. It is then low-pass
filtered by the pupil function P�~k� and Fourier transformed to
generate an estimate of the complex field at the image plane
ψ�~r�. The intensity zn�~r� of this complex field can then be cal-
culated as jψ�~r�j2, which corresponds to the forward model
shown in Eq. (2) and is an estimate of the high-dynamic-range
ground truth image ẑn�~r� (at the full precision of the
reconstruction software). However, this dynamic range rarely
matches that of the image sensor used in experiments, where

a quantized low-dynamic-range image ŷn�~r�, of the ground
truth image intensity ẑn�~r�, is recorded instead. To account
for this discrepancy, our proposed algorithm instead computes
a quantized image yn�~r� that is produced by the assumed de-
tector, as yn�~r� � QM �αn · jψ�~r�j2�, which corresponds to the
forward model in Eq. (5). We hypothesize that this quantized
image estimate yn�~r� provides a useful estimate of the experi-
mentally captured and quantized image, ŷn�~r�. The goal of the
quantized FP algorithm is to have yn�~r� match ŷn�~r� upon its
computation.

In stage 2, the amplitude of the estimated complex field at
the image plane, ψ�~r�, is updated using experimentally cap-
tured data. In standard FP, ψ�~r� is updated by directly replac-
ing the estimated amplitudes with measured amplitudes via the
following equation:

ψ 0�~r� �
ffiffiffiffiffiffiffiffiffiffi
ŷn�~r�

q
exp�i∠ψ�~r��: (8)

Here, ψ 0�~r� is the updated complex field in the image plane
and ∠ψ�~r� is the phase of ψ�~r�. Note that Eq. (8) does not
consider image quantization—that is, the measurement ŷn�~r�
is directly employed for reconstruction update and is not com-
pared to the image estimate in quantized form. In our proposed
model, we modify this update step to ensure effective and ac-
curate algorithm convergence with, for example, binary SPAD
array data. Specifically, we account for the discrepancy between
the current algorithm’s quantized image estimate yn�~r� and the
experimentally captured and quantized image ŷn�~r� to promote
accurate image update and account for update inconsistencies
[34]. We introduce an indicator called error map E between
actual and estimated discretized images as follows:

E �
�
0 ŷn�~r� � yn�~r�
1 ŷn�~r� ≠ yn�~r�

: (9)

If E is zero at a particular pixel, the corresponding estimate
jψ�~r�j’s associated detected and discretized intensity value at
that pixel has accurately converged to the correct quantized
value. Hence, we assume that particular value for ψ�~r� no
longer requires an intensity update. Otherwise, an update is still
necessary. To incorporate this observation into ptychography’s

Fig. 3. Flowchart of the proposed quantized FP reconstruction algorithm. Each step is detailed in Section 2.C.
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iterative phase retrieval cycle, quantized FP replaces Eq. (8)
with the following update function:

ψ 0�~r� �
� ffiffiffiffiffiffiffiffiffiffi

ŷn�~r�
αn

s
E � jψ�r�j�1 − E�

�
exp�i∠ψ�~r��: (10)

In the binary case, this modification ensures that at every
iteration the estimated image’s amplitude is either updated with
the appropriate value or remains the estimated value, with the
latter case being when the estimate’s quantized pixel intensity
value agrees with experimental measurement. In stage 3, ψ 0�~r�
and ψ�~r� are used to update the Fourier spectrum estimate of
the sample as follows:

Ot,n�~k − ~kn� � Ot−1,n�~k − ~kn� − δ
�P†�~k��F �ψ 0�~r� − ψ�~r��
jP�~k�jmax�jP�~k�j2 � ξ�

,

(11)

where δ is the step size, ξ is a regularization parameter, and
P†�~k� is the complex conjugate of P�~k�. This updated
Fourier spectrum is shifted back according to the LED illumi-
nation angle to obtain Ot ,n�~k�. Once all T iterations are
complete, O is inverse Fourier transformed to produce the
high-resolution complex image reconstruction. The update
function in the above equation is based on the sequential
Gauss–Newton method, widely used in FP [17]. Many other
similar Fourier spectrum update functions [35] can be used
with the proposed quantized error map strategy. Embedded pu-
pil recovery [18], for example, can also be used in our model if
pupil aberrations need to be recovered. While this algorithm
was developed for the particular case of performing FP with
binary imagery, it also has improved performance when using
non-binary low bit depth detection schemes as well, as shown
in our simulations.

3. VALIDATION

A. Simulation
To validate our proposed quantized FP reconstruction algo-
rithm and the adaptive exposure strategy for low-dynamic-
range and binary image datasets, we first performed a series
of simulations. First, we simulated imaging of standard resolu-
tion test targets and natural samples with both 8-bit and 1-bit
image sensors to demonstrate the resolution improvement and
reconstruction quality. Second, we use several open-source
pathology images as samples to compare the average perfor-
mance of our proposed reconstruction method to standard
methods, and to examine the performance of each proposed
exposure strategy. Finally, we study the influence of the overlap
ratio of Fourier sub-spectra on reconstruction quality.

Simulations assumed an imaging NA of 0.1 with 1.8× mag-
nification and 2.4 μm detector pixel size. We assumed a 0.205
illumination NA provided by a 15 × 15 LED illumination array
(225 low-resolution images captured in total). These parame-
ters are used for all the simulations except for the overlap in-
fluence simulations, where the illumination NA is kept
constant, but the total number of LEDs and their pitch are
varied to provide different overlap values. Poisson noise was
added to the low-resolution images generated in the simulation
before discretization. To evaluate quality of the complex

reconstruction results, we used the following normalized mean
square error [36] metric:

NMSE �
P

~r jS�~r� − γR�~r�j2P
~r jR�~r�j2

, γ �
P

~rS�~r�R�~r�P
~r jR�~r�j2

: (12)

Here, S�~r� is the normalized reference complex image, R�~r�
is the normalized reconstructed complex image, and γ is a factor
to account for arbitrary constant reconstruction phase off-
set [36].

Simulation results in Fig. 4 demonstrate the resolution im-
provement and image quality for cases using 1-bit images cap-
tured with the median exposure strategy and 8-bit images using
the max exposure strategy. An amplitude-only USAF target and
a phase-only Siemens star target were used to verify resolution
improvement, where the expected resolution cutoff is 2.04 μm
per line pair (lp). In this simulation, group 1 element 1 in the
USAF target corresponds to approximately 2 μm per line
pair, while group 1 element 2 is 1.78 μm per line pair. We
can see that both standard FP and our proposed quantized
FP reconstruction using binary data can resolve the former
element but not the latter, achieving maximum expected res-
olution performance. The contrast ratios between binary and
8-bit in Fig. 4(a), columns (1) and (2) are 0.998 and 0.995.
A contrast-varying resolution target [Fig. 4(a3)] highlights
how the complex reconstruction achieved with an 8-bit image
dataset maintains higher resolution in areas of low object
contrast (yellow line refers to 19% contrast compared to the
maximum sinusoid contrast at right), as compared to the 1-
bit image dataset reconstruction. However, the 1-bit dataset
reconstruction still offers full resolution improvement to the
expected cutoff at slightly higher contrast (34% orange line).
Finally, natural sample reconstruction quality looks almost
identical in both the 8-bit and binary imaging cases, with sim-
ilar normalized mean square error (NMSE) values (0.010 and
0.042, respectively). These results first demonstrate that FP is
possible with binary measurements, despite significantly altered
and deteriorated captured image data [see Fig. 4 column (4)].
Somewhat surprisingly, the quality of high-resolution
reconstruction using quantized FP appears comparable to
the standard FP case with 8-bit images.

A comparison between the standard FP reconstruction algo-
rithm [Eq. (8)] and the proposed quantized FP algorithm
[Eq. (10)] is performed in Fig. 5(a) assuming the use of the
max exposure method. We varied the bit depth of captured
low-resolution images from 1 to 8 and evaluated the NMSE
of the resulting reconstructions from both algorithms (averaged
from 30 similar pathology samples). In this plot, quantized FP
shows a significant improvement in low-dynamic-range imag-
ing cases, with a small improvement for higher-dynamic-range
imaging cases. This trend can also be observed in the sample
reconstructions shown in Fig. 5(d). Since the main focus of this
work is on FP reconstruction for 1-bit SPAD array data, these
results highlight the clear advantage of the proposed algorithm.
Reconstruction quality using the four exposure strategies of in-
terest is also compared using quantized FP in Fig. 5(b). As ex-
pected, the informed and max strategies trend closely, whereas
the uniform strategy falls significantly behind. Also, the median
case, which we assume can only be experimentally imple-
mented for 1-bit imaging scenarios currently, shows a dramatic
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performance improvement. This suggests that the median strat-
egy offers a promising exposure or source brightness selection
method for FP implementations with SPAD array cameras.

As mentioned in the previous section, FP algorithm perfor-
mance for high-resolution reconstruction depends upon vari-
ous parameters. A crucial parameter is the redundancy in
captured data. As a phase retrieval method, FP must sample
more pixels than that it reconstructs. While increasing data re-
dundancy is not usually ideal (e.g., it increases data capture
time and memory requirements), a minimum redundancy cri-
terion should be met for ptychographic image reconstruction
strategies [37]. To investigate the impact of this parameter
on quantized FP, we varied the number of captured images
by varying the number reconstruction pair is shownof assumed
illumination sources provided in the illumination array. This
allowed us to keep the illumination numerical aperture con-
stant but vary the amount of image dataset redundancy. For
each illumination configuration, we then computed FP
reconstruction error (NMSE) for a number of different as-
sumed image sensor bit depths. We summarize data redun-
dancy by computing the overlap percentage between
adjacent captured areas which are shifted by 2π sin θ

λ in the
Fourier spectrum domain, where θ is the angular shift between
adjacent illumination sources. The results of this analysis are
plotted in Fig. 6, where each point is an average of NMSE

reconstruction across a set of 12 simulated complex samples
(from open-source Cell Image Library [38]). Here, it can be
seen that the low-bit images (1–2 bits) require much higher
overlap and thus greater data redundancy for accurate
reconstruction. All bit depths higher than 4 exhibit relatively
similar performance. This is partially attributed to our quan-
tized FP algorithm and our use of the proposed max exposure
strategy. Reconstruction quality for 1-bit image data improves
with larger overlap percentages, but this increase appears insig-
nificant for detected bit depths greater than 3 if >40% overlap
is used.

B. Hybrid Experiment–Simulations
Before testing quantized FP with an SPAD array, we first per-
formed a series of preliminary experiments with a standard
CMOS camera (Basler 12-bit CMOS sensor, acA4024-
29um) to capture FP datasets, whose image data was manip-
ulated post-capture to exhibit a variety of different bits per
pixel. The FP imaging system in these experiments used a
0.1 NA objective lens at 2× magnification with a 0.42 illumi-
nation NA. We used 15 × 15 red LEDs from the Adafruit
32 × 32 RGB LED matrix with a 4 mm separation between
adjacent LEDs, placed 60 mm beneath the sample plane.
All bright-field images were captured with 40 ms exposure
and dark-field images with 200 ms exposure. We normalized

Fig. 4. Simulation results with quantized FP reconstruction algorithm. (a) Test targets used to assess reconstruction performance with 8-bit
imaging (left) and binary 1-bit imaging (right). (b) Example natural scene with unique amplitude and phase. For all cases, reconstruction of
high-resolution amplitude and phase from binary image measurements closely matches that from 8-bit image measurement, despite significant
decrease in detected information.
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each image in the captured dataset with respect to its exposure
time to generate a floating point matrix in MATLAB. We then
binarized this dataset using the median exposure strategy to cre-
ate a 1-bit image dataset. This low-resolution binary image da-
taset was then input into our quantized FP reconstruction
algorithm to create a high-resolution complex image estimate.
The results (Dataset 1, Ref. [39] and Code 1, Ref. [40]) of this
exercise are shown in Fig. 7 for both a resolution test target
and a standard biological sample (a peripheral blood smear).
The imaging system’s standard resolution is approximately
6 μm/lp. After FP reconstruction, the expected resolution
cutoff is 1.2 μm/lp. In this experiment, we were able to

demonstrate 1.40 μm/lp resolution using the 12-bit raw image
data, and 2.5 μm/lp using the binary image data and quantized
FP reconstruction. The reconstruction quality using binary FP
images closely matches the standard FP reconstruction algo-
rithm output with 12-bit images, albeit with small added arti-
facts and a slight decrease in overall resolution, given that 12×
less data was utilized. More advanced reconstruction update
procedures that better account for noise and experimental cal-
ibration errors may improve upon these initial results.

4. FP WITH SPAD ARRAY CAMERAS

A. Setup
To demonstrate quantized FP with an SPAD array camera, we
utilized the PF32 SPAD array camera from Photon Force Ltd.,
which has 32 × 32 pixels with a pixel pitch of 50 μm and 1.5%
fill factor. A 0.1 NA Olympus plan achromatic objective with a
600 mm focal length tube lens was used for imaging and to

Fig. 5. NMSE performance of quantized FP algorithm as a function
of raw image bit depth, evaluated using a pathology dataset consisting
of 30 unique samples. Each point in plots (a) and (b) is average NMSE
across all 30 samples. An example low-resolution image and
reconstruction pair is shown for 1-, 2-, 3-, and 8-bit raw image datasets
captured with the max illumination strategy.

Fig. 6. Simulation results comparing the influence of FP overlap
ratio on reconstruction quality using the max exposure strategy.
Each point in the plot is the average NMSE of 12 different samples.
(a)–(d) on right refer to sampling rate in Fourier space. Brightness of
each pixel in k-space refers to the number of measured images it is
associated with. Gaps in the sampled frequency coverage exist below
approximately 38% overlap.

Fig. 7. Experimental results from an FP setup using a 12-bit
CMOS image sensor, whose image data was binarized post-capture
before reconstruction. Quantized FP algorithm reconstructions using
binarized image data (median exposure model) closely match standard
FP reconstructions from 12-bit images.
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provide 18.5× magnification for Nyquist sampling. The field of
view (FOV) of the SPAD array camera is extremely small due to
the limited number of pixels available, so a regular camera
(Basler acA4024-29um) was also used to help with system
alignment. A 90:10 beam splitter was inserted after the tube
lens and the regular camera was mounted on the 10 percent
reflection side. An Adafruit P4 LED array placed 84 mm be-
hind the sample provided illumination. We used a 9 × 9
632 nm red LED array to provide a 0.18 illumination NA.

SPAD array cameras are typically used with high-powered
pulsed optical sources for LIDAR, for example. In our case,
we chose LED array illumination for demonstration simplicity.
These LEDs are effectively continuous-wave and do not pro-
vide the high power required for the optimal SPAD array cam-
era operation, especially at the large source-sample separation
that our setup necessitated. Even in a standard FP setup, ex-
posure times up to 1 s are required to achieve sufficient signal-
to-noise ratio (SNR) when using such LED arrays [15]. Despite
the single photon sensitivity of the SPAD array camera, its low
fill factor (1.5%) still required the use of relatively lengthy ex-
posure times (up to 1 s or more for dark-field). This was only
possible in the photon counting mode, so we chose this mode
for our initial demonstrations in the following experiments.

B. Results
Before we performed FP with the SPAD array camera, we
executed a series of operations to account for the SPAD array’s
read noise, which are detailed in Appendix A. First, we captured
a sequence of short-exposure images (3 μs) per illumination
angle, as opposed to a single long exposure. This provided us
with the opportunity to capture more photons and get higher
SNR. Second, we also captured a matching dataset without a
sample present, which we used for hot-pixel noise subtraction.

Completing these two steps per image capture session re-
sulted in relatively high-quality 32 × 32 × 81 SPAD array image
datasets that we subsequently processed with our quantized FP
algorithm on several different targets (see Fig. 8). First, we im-
aged a USAF resolution test target to validate the quantitative
improvement in SPAD array imaging resolution. Low-resolu-
tion HDR images were able to resolve group 7 element 3
(6.2 μm full-pitch resolution). Applying the standard FP
reconstruction algorithm with this image data led to image re-
constructions in which we could resolve group 8 element
6 (2.2 μm full-pitch resolution), showing an approximate 3×
improvement in resolution. This closely matches the expected
resolution gain for this FP setup. There are several primarily
low-frequency artifacts in the reconstruction due in part to large
detector read noise. The quantized FP reconstruction formed
by processing binary SPAD array image data is also able to re-
solve group 8 element 6, albeit at a lower contrast and with
larger noise-induced low-frequency artifacts, which is expected
following our simulation results.

We also imaged a Siemens star resolution target and
performed FP reconstructions in a similar manner, with results
(Dataset 1, Ref. [39] and Code 1, Ref. [40]) shown in Figs. 8(c)
and 8(d), which demonstrates omnidirectional resolution im-
provement. While resolution improvement is consistent in all
directions, some artifacts still persist. A primarily stained trans-
parent natural sample (a plant root cross section) is also imaged

and shown in Figs. 8(e) and 8(f ). It can be seen that the re-
constructed phases for both reconstructions using the HDR
dataset and the binary dataset approximately match. While pre-
liminary, these results successfully verify the ability to improve
image resolution using FP on SPAD array cameras. Even in the
presence of relatively high amounts of noise, it is still possible to
utilize binary image measurements from these single-photon
detector arrays to jointly improve image resolution and retrieve
the missing object phase. We hope that these results would im-
prove with the ongoing improvements in the SPAD array image
sensor technology. We adopted the pre-processing steps of
background subtraction and LED position calibration.
Other advanced pre-possessing methods, such as addressing
aberrations and inter-LED intensity fluctuations [41,42],
can be considered in future work.

5. DISCUSSION AND CONCLUSION

SPAD array cameras are an exciting new type of single-photon
sensitive sensors with high-speed time-gating capabilities. In
this work, we studied the feasibility of performing Fourier
ptychography with such sensors to jointly improve their

Fig. 8. Experimental results from the SPAD array camera.
Comparison between the standard FP on the HDR dataset and the
quantized FP on the binarized dataset with the median exposure strat-
egy is shown for three different samples.
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imaging resolution and retrieve the unknown phase of the im-
aged field. To achieve this effectively on these new sensors, we
have presented an FP forward model that accounts for the finite
bit depth of an image sensor and image exposure selection, and
a new quantized FP reconstruction algorithm that accounts for
their finite bit depth during iterative reconstruction. This re-
sults in the surprising ability to form high-quality complex-
valued image reconstructions using binary-valued image data.
However, we stopped short of presenting an implementation
that utilizes their time-of-flight capability. This extension
would most likely require the use of alternative illumination
sources (as opposed to LEDs), which would also help to address
the imaging noise issues that our demonstration faced to po-
tentially improve resolution enhancement performance. As
an alternative to the SPAD array used in this work, large-format
quanta image sensors [43] could also be adopted for future im-
plementations of quantized FP. CMOS SPAD quanta image
sensors can collect single-photon data with 61% fill factor
and 100,000 frames per second [44], for example, which offers
a significantly higher fill factor than the SPAD array utilized in
our experiments. Such alternative sensors, as well as large-
format SPAD arrays with small pixel pitch and high fill factor
[45], are currently beginning to enter the commercial market
and can also be utilized to collect highly quantized or single-
photon image frames for quantized FP. As the pixel count and
fill factor of such detectors continue to improve, we are hopeful
that future implementations of quantized FP can improve upon
our preliminary experiments in this work. There are several di-
rect ways to extend our current demonstration to utilize time-
of-flight measurements. Most directly, photons from a particu-
lar time range may be selected to form a set of binary images for
depth-selective resolution improvement and phase measure-
ment, which may prove particularly helpful when imaging
within a scattering environment. Alternatively, one may utilize
the time-of-flight image data to improve high-resolution 3D
image reconstruction. For this latter goal, one may adopt a
3D imaging forward model for FP, which has been considered
in prior work within the context of microscopy [46–48] but
not yet within the more macroscopic regime with current
SPAD technology’s millimeter-scale depth resolution. Given
that FP can currently reconstruct 3D depth information both
via phase measurement and by tomographic principles, how-
ever, adding in time-of-flight information offers an interesting
possibility for future development.

APPENDIX A: SPAD ARRAY CAMERA READ
NOISE

We performed a series of tests to examine the SPAD array read
noise in the photon counting mode to settle on our final image
capture strategy for this work’s preliminary experiments. Our
illumination strategy required relatively long exposure times
for the results shown in Section 4.B. While the read noise
of SPAD array cameras is considered negligible when used
at very short integration times [9], events caused by thermal
fluctuations generate SPAD array sensor noise that builds upon
with lengthier exposures. In the photon counting mode, such
events are integrated over time to produce noise that increases
as a function of exposure duration. Since the gain for each pixel

can vary, long exposures also lead to a semi-deterministic sensor
noise pattern (see Fig. 9). As the maximum allowed exposure
time on an SPAD array is relatively short, we instead captured
multiple SPAD array images with relatively short exposure
times (3 μs) and integrated the resulting images. Ratios of
per-LED integration times remained the same as using the
CMOS detector imaging. Times ranged from 32,000 to
64,000 frames (3 μs per frame). For example, in Figs. 9(a1)
and 9(a2), we captured and summed 32,000 (bright-field)
and 64,000 (dark-field) frames, which results in high-
dynamic-range image data with clear fixed pattern noise from
the array’s variable pixel gain. To minimize the effects of this
fixed pattern noise, we also captured a matching “background”
image set without the sample present and subtracted this
summed background image set. The resulting background-
subtracted images are shown in Figs. 9(b1) and 9(b2). We also
computed a per-pixel SNR metric as SNR � Signal

Dstd�
ffiffiffiffiffiffiffiffi
Signal

p ,

where Dstd is the standard deviation of the 15 captured images
per illumination angle. Example resulting SNRmaps are shown
in Figs. 9(c1) and 9(c2). The summed, background-subtracted
SPAD array image dataset, with a relatively high dynamic
range, is used for performing standard FP reconstruction in
the main text. This dataset is then also binarized, based on
our median exposure model, to test quantized FP
reconstruction on a binary image dataset. Once again, on-
sensor binarization is not used in our preliminary demonstra-
tion due to the large detector read noise caused by our relatively
dim illumination sources. This problem can be solved by using
high-powered pulsed lasers, such as vertical-cavity surface-emit-
ting lasers, for illumination, in line with previously reported
tests that implement FP with lasers [49–51].
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