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We report on the experimental demonstration of two-photon quantum walks at the edge of a photonic Su–
Schrieffer–Heeger lattice and compare them to those observed when launching photons at the edge of a homo-
geneous lattice. Whereas at the topological edge, one of the photons primarily remains close to the edge, both
photons penetrate freely from the trivial edge into the bulk. This behavior manifests also in the average inter-
particle distance, which is significantly larger at the topological edge. Hence, for a given propagation length, the
entangled two-photon state launched at the topological edge extends over a wider domain of the lattice. © 2020
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1. INTRODUCTION

Topological photonics promises unique and robust designs for
novel photonic functionalities by rendering device performance
immune to degradation induced by fabrication imperfections
or environmental changes [1,2]. Topological notions in pho-
tonics are inspired by condensed matter physics, and in particu-
lar the foundational concept of topological insulators [3–6].
This novel phase of matter is insulating in the bulk, yet conveys
surface currents without any dissipation or backscattering, even
in the presence of defects and disorder. In 2008, the key fea-
tures of the electronic quantum Hall effect were adapted to
light waves in the proposal of a photonic analogue of the
anomalous quantum Hall effect [7,8]. These groundbreaking
ideas were first implemented in photonic crystals for the micro-
wave regime [9,10], where topological propagation of micro-
waves along the edge of the system was demonstrated to
form a scatter-free channel.

This demonstration of robust light transport along the edge
of a photonic system proved the concept of unidirectional
waveguiding based on topology. The first implementation of
a photonic topological insulator employed helical waveguides
in a honeycomb geometry [11] and was soon followed by a
realization based on coupled resonator optical waveguides
[12]. Subsequently, numerous peculiar topological phenomena
such as anomalous topological insulators [13,14], 4D topologi-
cal Hall physics [15], Weyl points [16], topological Anderson
insulators [17], topological insulators in synthetic dimensions
[18], as well as non-Hermitian topological physics [19,20]
and topological quantum physics [21,22], were observed
and reported.

The majority of one-dimensional systems realized with static
waveguide arrays are based on the Su–Schrieffer–Heeger (SSH)
model [23], since it is the only topologically nontrivial system
in 1D where the time reversal operator squares to one [24]. As
expressed in the bulk-edge correspondence, the topology of the
lattice interior determines whether topological edge states can
exist at the system’s boundary. In photonics, such edge states
were experimentally realized for the first time in the form of
Shockley surface states [25]. SSH lattices were explored in
the context of high harmonic generation [26], periodic driving
in Floquet systems [27,28], and soliton states [29]. Yet another
concept utilizes the framework of optical supersymmetry trans-
formations [30] to connect different SSH-type lattices [31],
which triggers topological phase transitions. Also, the SSH
model is often used to study the impact of non-Hermitian con-
cepts on topology [19,20].

More recently, the evolution of quantum states in photonic
topological systems began to attract considerable interest [21],
with a particular emphasis on preserving the quantum coher-
ence due to topological protection [12,22,32–36]. Coupled
waveguide lattices have proven to be an exceptionally versatile
platform for exploring the evolution of photonic quantum
states in complex settings within the framework of photonic
quantum walks [37,38]. Beyond the average photon number
in the individual channels, i.e., the expectation value of the
photon number distribution, an important measure for the
quantum behavior of multiphoton states in waveguide lattices
is higher-order correlations, which relate to the joint probabil-
ities of finding the photons at particular locations [39–45].
These correlations generally become highly nontrivial for
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indistinguishable photons as soon as several paths lead to the
same average photon number in the channels, as quantum path
interference occurs.

In our work, we experimentally demonstrate two-photon
quantum correlations in an SSH waveguide lattice. We explore
the specific features of such correlations for the topological as
well as the trivial edge and compare them to the homogeneous
case. Moreover, we evaluate the inter-particle distance for both
edges and find that the topological edge gives rise to larger aver-
age distances compared to the trivial edge.

2. THEORETICAL FRAMEWORK

The SSH model describes a one-dimensional lattice of alternat-
ingly coupled sites; see Fig. 1(A). With the coupling constants
c1 and c2, we define the dimerization d � c1−c2

c1
as a measure for

the coupling contrast, such that d � 0 corresponds to the
homogenous lattice. The evolution of light in these systems

can be described using the one-particle time-dependent
Schrödinger equation with the Hamiltonian [19,23]

H �

0
BBBBBBBB@

0 c1 0 � � � 0

c1 0 c2
..
.

0 c2 0 c1 0

..

.
c1 0 ..

.

0 � � � 0 � � � 0

1
CCCCCCCCA
. (1)

For an infinite chain, the Bloch Hamiltonian can be written in
k-space as

H �k� �
�

0 c1 � c2eik

c1 � c2e−ik 0

�
, (2)

which results in the dispersion relation [46]

E�k� � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 � c22 � 2c1c2 cos k

q
(3)

depicted in the band structure in Fig. 1(B). For a homogenous
chain (dimerization d � 0), the bands intersect, while any
nonzero dimerization opens up a band gap. The natural topo-
logical invariant of the system is the winding number W � Z

π,
with the Zak phase

Z � i
Z
BZ

ψ��k� ∂
∂k

ψ�k�∂k, (4)

where ψ�k� is an eigenstate in k-space. For finite lattices, the
reversal of couplings is nontrivial [47], and it changes the wave-
guide of the unit cell that terminates the lattice. In this vein, the
bulk–boundary correspondence gives rise to a topological edge
state of zero energy where the lattice terminates with weak cou-
pling, where the winding number is W � 1, leading to the
band structure shown in Fig. 1(C). If the lattice instead termi-
nates at the strong coupling (trivial edge), the winding number
is zero and no edge state is supported.

To describe the evolution of quantized light, the single-pho-
ton Hamiltonian for a coupled waveguide array reads [48]

H � ℏc
n0

X
k

�
β0

�
â†k âk �

1

2

�
�

X
l

Ck,l â
†
k âl

�
, (5)

where c is the speed of light, n0 is the refractive index of the
material, β0 is the propagation constant in the individual wave-
guides, â†k and âk are the creation and annihilation operators in
waveguide k, and Ck,l is the coupling between waveguides k
and l , where only nearest-neighbor coupling is assumed, that
is, l � k � 1. The Heisenberg equations of motion in the co-
moving frame, describing the evolution of a single photon in
the lattice, then take the following form:

i
d

dz
â†k�z� �

X
l

Ck,l â
†
k � 0, (6)

with z as propagation distance in our optical setting, which acts
as the evolution coordinate. Equation (6) can be formally in-
tegrated, such that one obtains the analytic solution for the
â†k�z�:

â†k�z� �
X
l

U k,l �z�â†l �0�, (7)

Fig. 1. Band structure of the Su–Schrieffer–Heeger model. (A) The
SSH model describes a one-dimensional lattice with alternating near-
est-neighbor couplings. For d � 0, the chain becomes homogenous.
(B) Band structure of an infinite SSH chain. Any nonzero dimerization
opens up a band gap. (C) Energy eigenvalues for a finite SSH chain
terminated at a weak bond. A topological edge state of zero energy
(marked light pink) resides in the band gap.
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with the unitary propagation matrix Uk,l �z� given by the
expression

Uk,l �z� � �eizC �k,l : (8)

By its definition, Uk,l �z� can be interpreted as the probability
amplitude for a photon injected in guide l to be detected in
channel k after propagation over the distance z. Hence, when
a single photon is launched in waveguide k, the average photon
number n̄m�z� in channel m computes to

n̄m�z� � hâ†m�z�âm�z�i � jUm,k�z�j2: (9)

When launching two photons in waveguides k and l , the aver-
age photon number is

n̄m�z� � jUm,k�z�j2 � jUm,l �z�j2: (10)

This is the incoherent sum of the average photon numbers for
single photon inputs in channels k and l . Hence, quantum path
interference is never visible in the average photon number, re-
gardless of the nature of the input state. In fact, the photon
number evolves just like a classical intensity. In contrast, the
two-photon correlation function Γk,l of the photon outputs
does depend on the input state and reveals this interference.
This function is defined as

Γm,n�z� � hâ†m�z�â†n�z�ân�z�âm�z�i (11)

and, hence, reads

Γm,n�z� � jUm,k�z�Un,l �z� � Um,l �z�Un,k�z�j2: (12)

When launching two indistinguishable photons into the lattice
with one of the photons launched in channel k and the other in
channel l , the function Γm,n�z� relates to the joint probability
of finding one photon in guide m and one in l at the same time
via Pm,n � 1

1�δm,n
Γm,n.

3. EXPERIMENTAL SETUP

For the fabrication of our waveguide lattices, we employ the
femtosecond direct writing technology [49,50]; see Fig. 2(A)
for a sketch of the setup. We inscribe the waveguides into trans-
parent fused silica glass (Corning 7980), using ultrashort laser
pulses (τ < 150 fs, λ � 800 nm) that are focused 250 μm be-
low the sample surface using a 20× microscope objective
(NA ≈ 0.35). For a sketch of the writing setting, please refer
to Fig. 2(A). Typical writing speeds achieved with a high-
precision positioning system (Aerotech ANT180) are on the
order of 100 mm/min, with a pulse energy of 500 nJ and a
repetition rate of 100 kHz of the writing laser (Coherent
Mira/Reg A). Such waveguides typically exhibit low propaga-
tion losses (<0.3 dB∕cm) and support mode field diameters of
12 mm × 15 mm, yielding efficient coupling with 3 dB losses
to standard single-mode fibers.

Along the length of the sample (150 mm), the fabricated
structures comprise 41 waveguides and consist of three sec-
tions. The central section contains the actual lattice under in-
vestigation, that is, either an SSH lattice or a homogeneous
lattice [see Fig. 2(B)]. The first and third sections are fanning
structures that serve to match the fiber array spacing of
82 μm, with which the single photons are launched into
and collected from the chip. The input fanning feeds the wave-
guides in which the photons are launched, whereas the output
fanning collects the photons from a broader region in the
lattice.

In our experiments, we employed a photon pair source at
λ � 815 nm using a standard type I spontaneous parametric
downconversion source with a visibility of 94%. A BiBO crystal
is pumped by a 100 mW, 407.5 nm laser diode producing
jH i polarized single-photon pairs collected by polarization

Fig. 2. Experimental setup. (A) Direct laser writing technique: femtosecond-laser pulses are focused into a moving glass sample, forming a wave-
guide trajectory. (B) Waveguide structure, consisting of an incoupling fanning, the actual SSH waveguide lattice with alternating couplings, and a
fan-out. The lattice can be excited in the bulk, at the trivial and topological edge. (C) The full experimental setup consists of a spontaneous
parametric down conversion (SPDC) photon pair source, fiber arrays that couple the photons into and out of the functional structure on the
chip, and avalanche photodetectors.
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maintaining fibers. Commercial V-groove fiber arrays with a
pitch of 82 μm were used to couple the photons into the chip
as well as to collect them at the output facet from the individual
waveguides. Using high-NA multimode fibers in order to feed
the photons to the respective avalanche photodiodes ensures
low coupling losses at the output side of the chip. From the
data of the photodiodes, the photon probability distribution
at the output as well as the inter-channel correlations can be
computed using a correlation device (Becker–Hickl) and stan-
dard software (LabView, MATLAB). Multiphoton events can
be neglected, as for instance, when sending one photon from
the downconversion pair into a chip the ratio of probabilities of
two count events compared to single click events is 10−4 at the
output of the system. Moreover, as the ratio of single clicks to
zero-photon events was measured to be 0.03, the possibility of
weak coherent input states can be excluded with high
confidence.

4. RESULTS AND DISCUSSION

We start our experimental demonstration by characterizing the
implemented lattices using a classical light source (cw laser
excitation), which emulates a single-photon evolution. The re-
sults are summarized in Fig. 3, where simulations of the light
evolution are shown in the left plots, and experimental light
distribution for a propagation distance of z � 10.47 cm
is shown on the right. When launching light at the topological
edge, predominantly the topological edge state is populated,
such that light stays mostly at this edge [see Fig. 3(A)].
There is some beating between the two outermost waveguides
visible, because also some bulk modes are slightly populated.
This changes when the waveguide at the trivial edge is excited.
In this case, the absence of an edge state lets light diffract and

penetrate into the bulk [Fig. 3(B)]. This behavior is similar to
edge diffraction in homogeneous arrays, where likewise no edge
state exists [Fig. 3(C)].

When launching two indistinguishable photons into the
lattice at different positions, the correlation function
Γm,n�z � 10.47 cm� can be retrieved from coincidence mea-
surements between the individual detectors. These coincidence
measurements reveal the probability of finding one photon at
waveguide n when the other is detected in waveguide m. Note
that the avalanche photodetectors employed in our experiments
cannot distinguish photon numbers, precluding measurements
of the main diagonal elements of the correlation matrix. We
start by probing the topological edge and launch one photon
directly into the edge waveguide. In this vein, it efficiently pop-
ulates the topological state, whereas the other photon is
launched into the waveguide next to it and predominantly pop-
ulates bulk states. The corresponding correlation patterns are
shown in Fig. 4(A), revealing a significant chance of detecting
one of the photons directly in the edge waveguide, whereas the
other penetrated into the bulk. As a result, the chance of find-
ing both photons in the edge waveguides is low at the end of the
sample, despite the fact that they were launched in close prox-
imity to one another. Moreover, there is a certain chance that
both photons penetrate into the bulk together, although one
photon still mainly populates the topological edge state.
Exciting the edge waveguide means exciting a superposition
of the edge state and bound states, that evolve into the bulk.
The interference with the second photon which does not
populate the edge state shows in the correlation measurement.
This picture changes considerably when the photons are
launched into the trivial edge [Fig. 4(C)]. In this case the pho-
tons tend to co-propagate, and the chance of finding them
close together inside the bulk is significant. In contrast, the
probability that one or both photons remain at the edge is neg-
ligible. The latter case is reminiscent of both photons being
launched in adjacent waveguides in the bulk of the lattice
[Fig. 4(B)]. In line with the inherent bunching behavior of in-
distinguishable photons, they tend to stay close to each other
during their evolution.

We compare this to the two-photon correlations in a homo-
geneous lattice, where all hoppings between the waveguides are
identical (the dimerization is zero). In this case, the photons
inevitably exhibit bunching and are found with high probabil-
ity close to each other, irrespective of whether they were
launched into the bulk of the lattice [Fig. 4(G), first measured
in Ref. [40]) or close to the edge of the lattice (Fig. 4(H)], with-
out being affected by the topology of the lattice.

Another important measure for characterizing the particle
evolution in the lattice is the inter-particle distance probability
g�Δ� as a function of the distance Δ, which can be retrieved
directly from the two-particle correlation function by
[51,52]

g�Δ� �
X
m

Γm,m�Δ: (13)

Figure 5(A) shows the results for the topological edge of the
SSH lattice, retrieved from the correlation matrices plotted
in Fig. 4. Notably, the probability of finding the photons
close to each other is approximately the same as finding the

Fig. 3. Intensity propagation at the lattice edges. The figures on the
left show the simulated intensity evolution along the z axis when
the edge is excited, and on the right the measured output intensities
at the end of the lattice are depicted. (A) At the topological edge, light
propagates from the edge into the bulk, in contrast to (B) the trivial
edge, where part of the edge state is excited and intensity remains in
the edge waveguide. (C) In the homogenous array, there is no edge
state and the intensity is transported into the bulk ballistically.
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photons apart. In other words, although only one photon
populates mostly the edge state and the second one could—in
principle—freely escape into the bulk, the chance of having the
photons close together is essentially the same as finding them
far away from each other. This is clearly a surprising feature

of the topological edge: the entangled two-photon state after
propagating through the lattice is highly complex, with approx-
imately equal probability for various distances between the two
photons. This is very different when the photons are launched
at the trivial edge of the SSH lattice. In this case, the inter-
particle distance probability [retrieved from the correlation
matrices shown in Fig. 4(B)] is largest for small distances and
rapidly decreases for increasing distance as plotted in Fig. 5(B).
In other words, the photons indeed stay close together while
they penetrate the bulk of the system, which indeed underlines
their bunching behavior.

5. CONCLUSION AND OUTLOOK

In our work, we observed two-particle quantum correlations of
indistinguishable photons at the edge and in the bulk of an
SSH waveguide lattice and compared them to the correlations
in a homogeneous lattice. We find that, whereas at the trivial
edge in the SSH lattice the bunching behavior of the indistin-
guishable photons remains unchanged, the bunching is signifi-
cantly distorted at the topological edge. Although one photon
remains at the edge with high probability and the other mostly
penetrates into the bulk, the joint probability of finding the
photons close to each other after propagating through the sam-
ple has approximately the same magnitude as the probability
that the photons leave the sample far away from each other.
Therefore, the existence of the edge state at the topological edge
in the SSH model has a significant influence on the quantum
interference of indistinguishable photons.

Our work sheds new light on the quantum features of topo-
logically nontrivial lattices and may help to find new applica-
tions in preparing and transmitting complex quantum states.
There are several questions that can be asked. What behavior

Fig. 4. Correlations in the SSH lattice. Two indistinguishable photons are launched into neighboring sites of a lattice at the topological edge,
trivial edge, and bulk. The coincidence counts after the quantum walk are shown in the upper row, and the corresponding theory is depicted below.
For comparison, a homogenous lattice is investigated on the right. On the topological edge, the photons tend to remain in the edge state, which
clearly shows in the measurement. The diagonal elements of the correlation matrices are not accessible without photon number resolution and are
therefore masked gray in the simulations.

Fig. 5. Inter-particle distance. Histogram for the distance between
the photon pairs detected in the quantum walk (see Fig. 4). At the
topological edge, one of the photons tends to remain in the edge state,
leading to a higher inter-particle distance than at the trivial edge, where
the photons tend to remain in close proximity. Note that due to the use
of avalanche photodiodes as detectors, the cases in which both photons
arrive in the same channel are systematically inaccessible in the experi-
ments, preventing a normalization of the inter-particle distance distri-
butions. Further deviations can be attributed to imperfections of the
synthesized input state due to the limited accuracy of the polarization
alignment between the two injection fibers.
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can be observed in higher-dimensional topological systems, and
in particular higher-order topological insulators? What is the
impact of topological edge states on states with larger number
of photons? And what happens in the case of non-Hermiticity,
in particular parity-time symmetry? These and related problems
are now in reach to be explored experimentally.

APPENDIX A

1. Photon Pair Generation
We generate indistinguishable photon pairs through type I
spontaneous parametric downconversion of 407.5 nm laser
light on a BiBO crystal. For characterization of the source,
the photon pairs are coupled into a fiber 50/50 beamsplitter
to perform a Hong–Ou–Mandel experiment. By tuning the
length of the collection arm for one of the photons, the time
delay between the photons can be adjusted, leading to the
coincidence data depicted in Fig. 6. The recorded Hong–
Ou–Mandel dip was fitted with a Gaussian curve, retrieving
a visibility of 94%� 2%.

2. Additional Propagation Simulations
In the experiment, indistinguishable photons were launched
into the edge waveguides and the corresponding neighboring
sites. Although the evolution of the photon pairs deviates from
the purely classical case, the simulations of classical light
launched into the edge neighboring waveguides might give
some intuition about the dynamics in the system.

In Fig. 7 these evolutions are depicted. We obtain the im-
ages using a Crank–Nicholson propagation with Eq. (6),
obtaining the propagated states a�z�. Using Eq. (10) we calcu-
late the photon numbers in the waveguides and using Eq. (11)
we simulate the correlation matrices.
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