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Harnessing the dynamics of complex quantum systems is an area of much interest and a quantum simulator has
emerged as a promising platform to probe exotic topological phases. Since the flexibility offered by various con-
trollable quantum systems has helped gain insight into the quantum simulation of such complicated problems, an
analog quantum simulator has recently shown its feasibility to tackle the problems of exploring topological
phases. However, digital quantum simulation and the detection of topological phases still remain elusive.
Here, we develop and experimentally realize the digital quantum simulation of topological phases with a
solid-state quantum simulator at room temperature. Distinct from previous works dealing with static topological
phases, the topological phases emulated here are Floquet topological phases. Furthermore, we also illustrate the
procedure of digitally simulating a quantum quench and observing the nonequilibrium dynamics of Floquet
topological phases. Using a quantum quench, the 0- and π-energy topological invariants are unambiguously de-
tected through measuring time-averaged spin polarizations. We believe our experiment opens up a new avenue
to digitally simulate and detect Floquet topological phases with fast-developed programmable quantum
simulators. © 2020 Chinese Laser Press

https://doi.org/10.1364/PRJ.404163

1. INTRODUCTION

Floquet systems that are generally defined by periodically
driven or time-dependent Hamiltonians with H�t � T � �
H�t� for a fixed period T offer new opportunities to observe
quantum Floquet matter [1]. In the area of topology, one ap-
pealing aspect of Floquet engineering is the ability to generate
Floquet topological phases of matter [2–4] that are inaccessible
in static equilibrium systems, thus providing a way to better
understand the associated influence such as Floquet
Majorana modes [5–7], anomalous topological phases with a
zero Chern number [2,3], and a chiral topological phase with
0- or π-energy topological edge states [8–10]. Searching a topo-
logical phase of matter has raised considerable attention in con-
densed-matter physics; however, realizing Floquet-engineered
topological phases in materials remains theoretical.

Remarkable advances in quantum simulation [11,12] have
revolutionized our understanding of complex systems. A high

degree of controllability enables ultracold atoms [13–15],
trapped ions [16,17], superconducting circuits [18,19], and
photonic systems [20] to offer the feasibility to tackle problems
that are intractable on classical computers. Quantum simula-
tors would not only unveil new results that cannot be otherwise
predicted or classically simulated, but they would also allow us
to test various models. For instance, analog quantum simulators
(AQSs) mimic the time evolution of one specific model
Hamiltonian; as a result, they are used to investigate the topo-
logical phases and effects with great experimental progresses re-
cently [21–39]. As the counterpart of AQS, digital quantum
simulation (DQS) [11,12,40–43] encodes the state of the
quantum system onto qubits and emulates the time evolution
through repeated cycles of qubit rotations (quantum gates) by
means of a quantum algorithm. Such a circuit-based simulator
can, in principle, efficiently simulate any finite-dimensional lo-
cal Hamiltonian, hence owning the advantage of universality.
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Although the DQS of many-body physics has been intensively
studied in various programmable quantum simulators [44–50],
digital simulation and detection of topological phases are still
less explored [51].

In this paper, we report the realization of the DQS of
Floquet topological phases in a solid-state digital quantum sim-
ulator at room temperature [52,53]. In contrast to the AQS
approach simulating static topological phases and anomalous
π modes in a photonic system [54], it is illustrated here that
digital quantum simulator constitutes a natural platform to
simulate Floquet topological phases. We further exhibit the
DQS of a quantum quench and observe the nonequilibrium
dynamics of Floquet topological phases. Most strikingly, after
such quench, we show that the signature 0- and π-energy topo-
logical invariants associated with Floquet topological phases
could be detected through measuring the time-averaged spin
polarizations, where the experimental observation is in good
agreement with theoretical results. We also report the first ex-
perimental observation of the topological winding number
ν � 5, which is much higher than one. Further applications
of this protocol could enable studies of high-dimensional
and complex Floquet topological phases that go beyond the
conventional topological systems [55,56].

2. RESULTS

Floquet topological phases. In this work, we consider simulat-
ing the two-band Floquet topological insulator phases de-
scribed by this Floquet Hamiltonian,

HF � d x�kx�σx � d y�kx�σy, (1)

where d x and d y are the spin-orbit fields. Specifically, we sim-
ulate a one-dimensional (1D) periodically driven system
formed by two units in one driven period [57,58]. Suppose
U is the Floquet operator that describes such a periodically
driven system evolving over one period T ; i.e.,

Û � e−iH2
T
2 e−iH 1

T
2 , (2)

where Ĥ 1 � ty sin�kx�σ̂y and Ĥ 2 � tx cos�kx�σ̂x . Then, the
Floquet Hamiltonian HF describing the emerged Floquet
topological phases is defined as

Û � e−iĤ F T : (3)

As we will show,H 1 andH 2 both can be simulated by applying
two microwave pulses on the solid-state NV-center qubit,
which further allows us to digitally realize the Floquet
operator U .

Regarding a Floquet topological system, there are two quasi-
energy gaps centered around E � 0 and E � π. The topologi-
cal features of Floquet topological phases are rooted in these
gaps, which are characterized by the topological invariants
ν0 and νπ , respectively. According to bulk-edge correspondence
associated with topological phases, the values of topological in-
variants defined in the momentum space count the number of
the edge modes defined in the real space. The edge modes
correspond to the eigenmodes of the real-space lattice
Hamiltonian with their densities maximally localized at the
edges. In our Floquet topological systems, the value of ν0

(νπ) determines the number of the edge modes with eigene-
nergy E � 0 (E � π).

The topological invariants ν0 and νπ are defined in terms of
a symmetry time framework [8], where the starting time point
of the Floquet operator U is shifted to two symmetry time
points, leading to the following two Floquet operators:

Û 1 � e−iĤ1
T
4 e−iĤ 2

T
2 e−iĤ 1

T
4 , Û 2 � e−iĤ 2

T
4 e−iĤ 1

T
2 e−iĤ 2

T
4 : (4)

Both can be further rewritten in terms of Floquet Hamiltonian
as

Û 1 � e−iĤ F1T , Û 2 � e−iĤ F2T , (5)

where ĤF1,F2 � Ens · σ̂, with ns � �nsx , nsy, 0� (s � 1, 2)
[59], E � �arccosfcos�tx cos�kx�� cos�ty sin�kx��g, and σ̂ �
�σ̂x , σ̂y, σ̂z� are Pauli spin operators.

Of great interest is the fact that both ĤF1 and Ĥ F2 are pro-
tected by a chiral symmetry with the chiral operator Γ̂ � σ̂z,
supporting chiral topological phases characterized by these
topological winding numbers,

νs �
1

2π

Z
dkx�nsx∂kx nsy − nsy∂kx nsx�, s � 1, 2. (6)

The topological invariants ν0 and νπ are defined as

ν0 �
ν1 � ν2

2
, νπ �

ν1 − ν2
2

: (7)

Figure 1 presents the numerical results of the values of the topo-
logical invariants ν0 and νπ as a function of tx and ty.
Surprisingly, such a simple periodically driven system has a rich
topological phase diagram, and even can support topological
phases with topological invariants larger than one [57,58].
On the other hand, a topological phase transition is known
to occur accompanied by a gap closing. In Fig. 1, we also plot
the quasi-energy gap closing points at E � 0 and E � π. It is
shown that the values of the topological invariant ν0 (νπ) would
change when crossing the gap closing at E � 0 (E � π).

Digital simulation of Floquet topological phases. To digi-
tally simulate the Floquet operator Û �T � (the time evolution
of the Floquet topological Hamiltonian ĤF ), we use a

Fig. 1. Topological winding numbers (ν0, νπ) as a function of tx
and ty . The red and blue solid lines separating different topological
phases correspond to the gap closings at E � 0 and E � π,
respectively.
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negatively charged nitrogen-vacancy (NV) center in type-IIa,
single-crystal synthetic diamond sample (Element Six).
ms � −1 and ms � 0 in 3A2 are encoded as spin down jgi
and up jei of the electron spin qubit (Fig. 2). The state of
the qubit can be manipulated with microwave pulses
(ωMW � 2π × 1404.3 MHz), while the spin level ms � �1

remains idle due to large detuning. By applying a laser pulse
of 532 nm wavelength with the assistance of intersystem cross-
ing (ISC) transitions, the spin state can be polarized into
ms � 0 in the ground state. This process can be used to ini-
tialize and read out the spin state of the NV center. The fluo-
rescence photons are detected using the single photon counting
module (SPCM). By using a permanent magnet, a magnetic
field (about 520 G) is applied along the NV axis, and the
nearby nuclear spins are polarized by optical pumping, improv-
ing the coherence time of the electron spin.

The key ingredient in our experiment is to individually en-
gineer the time evolution of the Hamiltonian Ĥ 1 �
ty sin�kx�σ̂y and Ĥ 2 � tx cos�kx�σ̂x , offered by such a well-
controlled solid state quantum simulator [60]. Both of the
Hamiltonians can be emulated by manipulating the electron
spin qubit via a microwave pulse with Ĥ 1 � Ωy σ̂y, Ĥ 2 �
Ωx σ̂x and the associated Rabi frequencies Ωx and Ωy.
Therefore, by tuning Ωx � tx cos�kx�, Ωy � ty sin�kx�, the
Floquet operators depicted in Eq. (4) can be naturally simu-
lated in a digital way [Figs. 2(c) and 2(d)]. It is worth mention-
ing that this method is genetic and not limited to the 1D
topological phases studied here. This approach can be also
mapped into the high-dimensional Brillouin zone and gener-
alized to digital simulation of the Floquet operators associated
with high-dimensional Floquet topological phases.

Digital simulation of quantum quenches and detection of
topological invariants. The topological invariants ν0 and νπ fea-
turing the topological properties of the quasi-energy gaps cen-
tered around E � 0 and E � π are seminal hallmarks of
Floquet topological phases [8]. Recent theoretical study has
shown that, after a quantum quench, the topological invariants
associated with static topological phase can be directly mea-
sured through the time-averaged spin polarizations on the band
inversion surfaces (BISs) [61]. We thus proceed to show that
such a method also can be used to measure the topological in-
variants associated with Floquet topological phases. Specifically,
we digitally perform a quantum quench of Floquet topological
phases and employ such a quench to measure the topological
winding numbers ν1 and ν2, allowing us to detect the topologi-
cal invariants ν0 and νπ according to Eq. (7).

Here is the quantum quench procedure. First, the initial
state of the system is initialized in the ground state of a trivial
Floquet topological Hamiltonian Ĥ i

F . Then, N series of the
Floquet operators Û 1,2 are digitally performed, as shown in
Fig. 2(c) or 2(d), which digitally simulates the time evolution
of a nontrivial Floquet topological Hamiltonian over N peri-
ods; i.e.,

Û N
1 � e−iN ĤF1T , Û N

2 � e−iN ĤF2T : (8)

As a consequence, a sudden change from a trivial Floquet topo-
logical phase to a nontrivial Floquet topological phase is effec-
tively performed, realizing a quantum quench. The initial
quantum state will thereby evolve under the final
Hamiltonian Ĥ F1,F2.

In our work, two cases in detail are exhibited: (1) tx � 0.5π,
ty � 0.5π, with (ν1 � 1, ν2 � 1) and (ν0 � 1, νπ � 0);
(2) tx � 2.5π, ty � 0.5π, with (ν1 � 1, ν2 � 5) and
(ν0 � 3, νπ � −2). In particular, we implement a y-direction
quench for the Floquet topological Hamiltonian ĤF1 and

(a) (b)

(c)

(d)

(e) (f)

Fig. 2. (a) Illustration of experiment schematics and atomic struc-
ture of the nitrogen-vacancy (NV) center in diamond. (b) Scheme of
energy levels of the NV center electron spin. Both its ground state
(3A2) and excited state (3E) are spin triplets, and the transition be-
tween the two states corresponds to the zero-phonon line (ZPL) at
637 nm (1.945 eV). The ground state (3A2) is a spin triplet with a
zero-field splitting of 2.87 GHz between ms � 0 and ms � �1 states.
(c) Schematic of digital quantum simulation. The spin is prepared in
the superposition state of ms � 0 and ms � −1. The symbol of U rep-
resents N series of the Floquet operators U 1 and U 2 which are shown
in detail in (d). Then, we measure the time evolution of the spin
polarization hσ̂x,yi represented by the meter. (e) The Ramsey oscilla-
tion of the electron spin coherence. The data were taken with the mi-
crowave detuning of 1.0 MHz by varying the temporal separation
between the two microwave p∕2 pulses. The Ramsey signal was fitted
to exp�−�τ∕T 	

2�2� cos�2πf t� (blue line), where f values
correspond to the microwave detuning, obtained T 	

2 �
2.59� 0.14 μs. (f ) Electron-spin Rabi oscillation driven by micro-
wave. The length of π microwave pulse is 35.0 ns by fitting the
Rabi oscillation signal.
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an x-direction quench for the Floquet topological
Hamiltonian ĤF2.

To measure the topological winding number ν1 in case (1),
the initial state of the system is prepared into
jψ�t � 0�i � �jgi − ijei�∕ ffiffiffi

2
p

, the ground state of a trivial
topological Hamiltonian Ĥ i

F1 � n1x σ̂x � �my � n1y�σ̂y with
my ≫ 1. After that, we repeat Û 1 operation N times.
Consequently, the dynamics of the initial state jψ�t � 0�i is
governed by a nontrivial topological Hamiltonian ĤF1, fulfill-
ing a quantum quench from my ≫ 1 to my � 0. In this y-
direction quench process, the BIS appears when n1y � 0
[61], which yields kBISx � 0, π. After the quantum quench,
we measure the time evolution of the spin polarization
hσ̂x,yi for each kx in the Brillouin zone, from which we extract
the time-averaged spin polarization hσ̂x,yi � 1

N

PN
t�1 hσ̂x,yit ,

with the time-resolved spin polarization hσ̂x,yit �hψ�t � 0�j�Û −1
1 �t · σ̂x,y�Û 1�t jψ�t � 0�i.

When N is very large, the BISs kBISx and the topological
winding number ν1 both can be directly measured through
hσ̂x,yi [61]; i.e.,

hσ̂y�kBISx �i � 0, ν1 �
1

2
�gx�kBISx � π� − gx�kBISx � 0��, (9)

where gx�kBISx � � −sgn�∂k⊥hσ̂xi� is related to the sign of the
slope of the time-averaged spin polarization hσ̂xi at BISs, with
k⊥ denoting the momentum perpendicular to BIS and points
from n1y < 0 to n1y > 0. The theoretical results for N � 60
are presented in Fig. 3(b), showing that hσ̂y�kBISx � 0, π�i �
0 and gx�kBISx � π� � −gx�kBISx � 0� � 1.

The achievable repetition number N is limited by the co-
herence time T 	

2 of the electron spin [T 	
2 ≈ 2.6 μs measured

with a Ramsey free precession sequence, as shown in Fig. 1(d)],
which is also the main error source in the operation. We take
the optimal number of N � 10, experimentally. Figure 3(a)
shows the experimentally measured results of hσ̂x,yi are in good
agreement with the theoretical results. Based on these results, it
is found that the time-averaged spin polarization hσ̂yi is zero
when kx � 0, π, which allows us to clearly identify the
BISs. Note that n1y > 0 when kx ∈ �0, π�; otherwise,
n1y < 0. Therefore, the slope of the time-averaged spin polari-
zation hσ̂xi at kBISx � 0 (kBISx � π) is recognized as 1 (−1),
yielding gx�kBISx � π� � −gx�kBISx � 0� � 1. According to
Eq. (9), we can determine the topological winding number
value as ν1 � 1.

To measure the topological winding number ν2 in case (1),
the initial state of the system is prepared into jψ�t � 0�i �
�jgi − jei�∕ ffiffiffi

2
p

, the ground state of a trivial topological
Hamiltonian Ĥ i

F2 � �mx � n2x�σ̂x � n2y σ̂y with mx ≫ 1.
Subsequently, an x-direction quantum quench from mx ≫ 1
tomx � 0 is implemented by repeating Û 2 N times, thus caus-
ing the time evolution of the initial state jψ�t � 0�i to be gov-
erned by a nontrivial topological Hamiltonian ĤF2. The BIS
appears when n2x � 0 [61], which gives kBISx � �0.5π. The
BISs and the topological winding number ν2 are measured
through [61]

hσ̂x�kBISx �i � 0,

ν2 �
1

2
�gy�kBISx � 0.5π� − gy�kBISx � −0.5π��, (10)

where gy�kBISx � � −sgn�∂k⊥hσ̂yi� is related to the sign of the
slope of the time-averaged spin polarization hσ̂yi at the BISs,
with k⊥ denoting the momentum perpendicular to BIS and
pointing from n2x < 0 to n2x > 0. As theoretically presented
in Fig. 3(d) for N � 60, hσ̂x�kBISx � 0, π�i � 0 and
gy�kBISx � 0.5π� � −gy�kBISx � −0.5π� � 1. The correspond-
ing experimental results for N � 10 are shown in Fig. 3(c)
and agree well with theoretical results. From these experimental
results, we can unambiguously conclude hσ̂x�kx � �0.5π�i �
0 and gy�kBISx � 0.5π� � −gy�kBISx � −0.5π� � 1, identifying
the location of the BISs and the value of the topological wind-
ing number ν2 � 1. Hence, according to Eq. (7), the 0- and π-
energy topological invariants are measured as ν0 � 1
and νπ � 0.

Regarding case (2), the same procedure is applied to extract
the topological winding number ν1 and ν2. The experimental
results on the time-averaged spin polarizations after N � 10
times Û 1 and Û 2 are shown in Figs. 4(a) and 4(c), respectively,
which agree well with the theoretical results. Figure 4(a) illus-
trates that the BIS appears at kBISx � 0, π in which hσyi � 0
and gx�kBISx � π� � −gx�kBISx � 0� � 1. The value of the
topological winding number is measured through
ν1 � 1

2 �gx�kBISx � π� − gx�kBISx � 0�� � 1. Figure 4(c) shows
that the BIS appears at kBISx � �0.5π, � arccos��0.4�,
�arccos��0.8�. At such points, hσ̂xi is not strictly zero but
still maximal and approaching zero. As suggested by the theo-
retical results shown in Fig. 4(d) for N � 60, the slight differ-
ence from zero is a result of the fact that the number N we
chose in the experiment is not large enough. This does not af-
fect the measurement of the slopes of the time-averaged spin

Fig. 3. Measurement of topological winding number (a) ν1 and
(c) ν2 with tx � 0.5π and ty � 0.5π. (a) The experimentally observed
time-averaged spin polarizations hσ̂x,yi as a function of kx after
N � 10 times Û 1. The associated theoretical result with repetition
number N � 60 is plotted in (b). (c) The experimentally observed
time-averaged spin polarizations hσ̂x,yi as a function of kx after
N � 10 times Û 2. The associated theoretical results with repetition
numberN � 60 is plotted in (d). Red dash-dotted and blue solid lines
represent the theoretical results of σ̂y and σ̂x while the red circles and
blue squares show the experimental values of σ̂y and σ̂x , respectively.
Each data point has been averaged 5 × 106 repetitions.
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polarization hσyi at the BISs; i.e., gy�kBISx ∈ k�� � −gy�kBISx ∈
k−� � 1, where k� � 0.5π, arccos��0.8�, −arccos��0.4� and
k− � −0.5π, −arccos��0.8�, arccos��0.4�. The topological
winding number ν2 is measured through ν2 �
1
2 �
P

kBISx ∈k�gy�kBISx � −PkBISx ∈k−gy�kBISx ��, giving the value of
the topological winding number as ν2 � 5. Substituting the
above values into Eq. (7), the 0- and π-energy topological
invariants are determined as ν0 � 3 and νπ � −2.

We emphasize that gx,y�kBISx � is related to the slopes of the
time-averaged spin polarizations hσx,yi at the BISs and quite
robust to the experimental imperfections. This feature mani-
fests topological protection and enables accurate measurements
of the topological invariants of the Floquet topological phases.

3. DISCUSSION AND CONCLUSION

In summary, we have reported the digital simulation and de-
tection of Floquet topological phases with a solid-state quan-
tum simulator. To measure Floquet topological invariants,
quantum quenches of Floquet topological phases are digitally
simulated. The method developed here can be directly applied to
other well-developed platforms of quantum simulators, such as
superconducting circuits and trapped ions. We believe our work
opens the door for the DQS of topological phases with program-
mable quantum simulators, including high-dimensional Floquet
topological insulators [2–4,62], Floquet Z 2 topological phases
[63], and Floquet Hopf insulators [64] that are hard to engineer
in other topological systems. This also paves the way for DQS of
nonequilibrium topological phases [65–67], where quantum
quenches could be digitally simulated.
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