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The Gerchberg–Saxton (GS) algorithm, which retrieves phase information from the measured intensities on two
related planes (the source plane and the target plane), has been widely adopted in a variety of applications when
holographic methods are challenging to be implemented. In this work, we showed that the GS algorithm can be
generalized to retrieve the unknown propagating function that connects these two planes. As a proof-of-concept, we
employed the generalized GS (GGS) algorithm to retrieve the optical transmission matrix (TM) of a complex
medium through the measured intensity distributions on the target plane. Numerical studies indicate that the
GGS algorithm can efficiently retrieve the optical TM while maintaining accuracy. With the same training data
set, the computational time cost by the GGS algorithm is orders of magnitude less than that consumed by other
non-holographic methods reported in the literature. Besides numerical investigations, we also experimentally dem-
onstrated retrieving the optical TMs of a stack of ground glasses and a 1-m-long multimode fiber using the GGS
algorithm. The accuracy of the retrieved TMwas evaluated by synthesizing high-quality single foci and multiple foci
on the target plane through these complex media. These results indicate that the GGS algorithm can handle a large
TM with high efficiency, showing great promise in a variety of applications in optics. © 2020 Chinese Laser Press

https://doi.org/10.1364/PRJ.406010

1. INTRODUCTION

The fast oscillating nature of light prevents time-varying optical
fields, especially the phase information, from being directly mea-
sured using optical detectors that generally provide the time-aver-
aged intensity of light due to limited bandwidth. To retrieve the
phase information, the holographic method is widely adopted,
which beats down the fast oscillation by introducing a known
reference field. Although it is widely adopted, introducing a refer-
ence field suffers from practical challenges in certain circumstan-
ces, such as wavefront sensing in astronomy and microscopy.
Thus, retrieving field information from pure intensity measure-
ments without using the holographic method is highly desired. In
1972, an iterative algorithm, namely, the Gerchberg–Saxton (GS)
algorithm, was developed to retrieve the phase values from a pair
of related intensity measurements [1]. This capability enables the
GS algorithm, as well as other phase retrieval algorithms [2,3], to
be widely used in many research areas including ultrafast signal
processing, crystallography, ptychography, and holographic imag-

ing [4–8]. Figure 1(a) illustrates the general scenario of the GS
algorithm, where two planes, i.e., the source plane and the target
plane, are related through a predefined propagating function.
The mathematical form of this function is known and, for exam-
ple, can be the Fourier transformation (realized through a lens
in optics). In this relatively simple framework, the distributions
of the source intensity and the target intensity are known, while
the goal is to retrieve the phase distributions on these planes.
Reference [1] proves that by initializing a random phase distri-
bution on either of the planes and iterating along the loop (de-
noted as the red arrow), the approximate phase distributions on
both planes will gradually converge to the correct ones.

Besides retrieving phase information on these planes, a re-
maining question is whether the GS algorithm can be gener-
alized to retrieve the propagating function, if unknown,
from the measured intensity. This question arises from the in-
creasing need in biophotonics and optical communications to
quantify the optical properties of complex media, such as a
piece of biological tissue, a scattering wall, and a multimode
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fiber (MMF), for light focusing, imaging delivering, and recov-
ering [9–15]. The optical transmission matrix (TM) of the
complex medium is desired to be measured non-holographi-
cally as the propagating function.

2. GENERALIZED GS ALGORITHM

Figure 1(b) describes the concept of generalizing the GS algo-
rithm to retrieve the optical TM. The basic principle relies on
the assumption of a linear system. For simplicity but without
losing generality, the unknown TM of the complex medium is
modeled as a matrix X with dimensions of M × N , which is
encapsulated in a red box with a question mark. To probe
the TM, a series of L random field patterns are generated in
the source plane. During experiments, the probing field can
be generated using a commercialized liquid-crystal-based spatial
light modulator (SLM). For phase-only modulation, each
element is generated with the same amplitude but randomly
distributed phase values within a range of 0 to 2π. For math-
ematical convenience, all L field patterns can be grouped as a
probing matrix P with dimensions of L × N :

P �

2
64
eiθ
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. ..
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3
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where N is the number of independent control segments of the
SLM. The amplitude of each element was normalized to one
for simplicity but could be replaced with physical values if
needed. The subscript and the superscript denote the index
of the elements in the source plane and the label of field pat-

terns, respectively. After interacting with the complex medium,
the resulting field in the target plane becomes
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where X is the to be determined optical TM (propagating func-
tion), and the operator T denotes matrix transposition. In prac-
tice, a detector array such as a camera is employed in the target
plane to measure the amplitude distribution jEj. The number
of pixels of the camera or the number of spatially independent
intensity measurements sets the number of the rowsM that can
be retrieved for the TM. Like the conventional GS, we antici-
pate that by iterating along a certain loop (denoted as the red
arrow), the approximated X̃, which is computed from P†Ẽ,
converges to the correct X. Here, † denotes the operation of
pseudo-inverse. The detailed operational procedure of the gen-
eralized GS (GGS) algorithm is illustrated in the flowchart of
Fig. 1(c). At the beginning of the iteration, we generate the
initial guess X̃0 for the TM. Then, the approximated field
in the target plane at the f th iteration is constructed as

Ẽf � jEj � exp�i · Arg�PX̃T
f −1��, (3)

where � stands for element-wise multiplication, and Arg�·�
computes the principal value of the argument of a complex
number. This procedure is identical to the single-constraint sit-
uation in the error-reduction iteration algorithm [2]. The ap-
proximated TM is then updated as

X̃f � �P†Ẽf �T : (4)

(a)

(b)

(c)

Fig. 1. (a) Schematic view of the conventional GS algorithm to retrieve phase information from measured intensities. (b) Schematic view of the
GGS algorithm to retrieve the propagating function (the optical TM). (c) The flowchart of the iteration process of the directly GGS algorithm. All
parameters with approximated values are labeled with a tilde. The operator * indicates the element-wise multiplication between two vectors.
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This iteration process terminates if the correlation between X̃f
and X̃f −2 is larger than 99.9999% or the number of iterations
reaches a preset value m. Unless specified otherwise, m is set to
1000 in this study. We note here that due to the periodic oscil-
lating observed from the evolution of the numerical solution, the
correlation is defined between X̃f and X̃f −2 rather than X̃f and
X̃f −1. To save the computational resource, the correlation oper-
ation is performed row by row. Once a certain row in X̃ con-
verges, this row is directly output as the final solution and
will be removed from the rest of the iteration process. This op-
eration gradually reduces the dimension of the matrix as the iter-
ation proceeds, effectively mitigating the computational burden.
Unlike the conventional GS algorithm, using the GGS algorithm
to retrieve the optical TM is more like solving an overdetermined
problem.

For optical TMs that are highly disordered, the directly
GGS algorithm, namely the GGS 1, can be easily trapped into
local optimums if the probing matrix is not large enough. We
will show in the following that the GGS 1 requires at least 7N
input field patterns and 7N camera-captured images to guar-
antee the accuracy of the retrieved TM. This value indicates
that the GGS 1 needs more intensity measurements than other
non-holographic methods reported in the literature (∼4N )
[16,17]. To ease this problem, we introduce an adaptive param-
eter n in Eq. (3) as the power exponent to jEj. This operation is
similar to artificial “heat data”, which is equivalent to increasing
the entropy in the simulated annealing process [18]. We also
tested adding random/Gaussian noises to make the data “cha-
otic”, but could not obtain significant improvement in terms of
performance. In other words, jEjn is used to replace jEj when
constructing the approximated field in the target plane. For
naming purposes, the GGS 2-1 represents a two-step iteration
process: n is chosen as two in the first step and decreases to one
in the second step. In contrast, the GGS 1 or GGS 2 indicates
that n is fixed at 1 or 2, respectively. This modification endows
the GGS algorithm with the ability to jump out of local opti-
mums. As a result, the required number of intensity measure-
ments can be reduced to 4N for the GGS 2-1. Furthermore,
compared with the previously developed non-holographic ones,
including the extended Kalman filter with a modified speckle-
correlation scattering matrix (EKF-MSSM) [16], the phase
retrieval variational Bayes expectation maximum (prVBEM)
[17,19,20], and semidefinite programming (SDP) [21,22],
the GGS algorithm consumes much less computational resour-
ces in retrieving the huge TM, thus being orders of magnitude
faster in terms of computational time.

3. NUMERICAL RESULTS

We first evaluated the performance of the GGS algorithm nu-
merically. Unless otherwise specified, all of the following sim-
ulation results were carried out through MATLAB2019a on a
personal computer equipped with an i5-8600k 3.6 GHz CPU
and a 16 GB RAM. No independent graphics card was em-
ployed to perform the auxiliary operation for large matrices.
For complex media, the uncorrelated transmission coefficient
(UTC) model was adopted to describe the TM, in which each
element is drawn from a circular Gaussian distribution during
simulations [23]. To quantify the accuracy of the retrieved TM,

we followed the convention by sending in the conjugated field
of a certain row in the TM, enabling the formation of an optical
focus in the target plane [9]. The more accurate the retrieved
TM is the better quality the focus has. In practice, the quality of
the focus is quantified by the enhancement, which is defined as
the intensity ratio of focus I foc and the ensemble-averaged speck-
les I avg generated from a random input, i.e., η � I foc∕I avg [24].
For phase-only modulation, the theoretical enhancement is
η � π�N − 1�∕4	 1, where N is the column number of the
TM and is also the number of independent controls of the sys-
tem. We first investigated how the number of field patterns L
generated in the source plan influences the performance of
the GGS algorithm. For a fixed number of independent control
N � 400, Fig. 2(a) plots the enhancement as a function of
γ�defL∕N for three variants of the GGS algorithm, i.e., the
GGS 1, GGS 2, and GGS 2-1.When γ � 2, all three algorithms
lead to enhancements that are far below the theoretical value,
indicating the inaccurate determination of the TM. This situa-
tion is commonly seen in iteration-based error-reduction algo-
rithms due to insufficient constraints. As γ gradually increases,
the enhancements for all three cases increase accordingly.
Statistically, GGS 2-1 performs best among the three cases, lead-
ing to enhancement reaching about 99.1% of the theoretical
value at γ � 4. In contrast, at γ � 4, the GGS 2 and GGS
1 only achieve about 87.1% and 14.3% of the theoretical value,
respectively. These results demonstrate the effectiveness of the
introduced adaptive parameter n. When further increasing γ,
an interesting observation is these two performance curves inter-
cept near γ � 6. Beyond this point, the GGS 1 surpasses the
GGS 2. The validity of the introduced adaptive parameter n
can also be understood in Fig. 2(b), where the correlations be-
tween jEjn and jEj are plotted. Even though the correlations
between jEjn and jEj decay approximately linearly as n increases,
high correlation always persists. This result also suggests that
n � 4, for example, can also be used as the initial value. In this
work, we simply set n starts with two, as such a choice is good
enough for the GGS algorithm to escape from local optimums.

After fixing γ � 4, we also plotted the achieved enhance-
ment as a function of N in Fig. 2(c). Specifically, at
N � 64, 121, 256, 400, 625, 841, 1024, and 1296, the en-
hancements achieved by the GGS 2-1 can reach 98.0%,
98.3%, 98.4%, 98.9%, 98.1%, 98.6%, 98.8%, and 98.6%
of the theoretical value, respectively, indicating that the
GGS 2-1 can always retrieve the TM with high accuracy. As
a comparison, the enhancement achieved by the GGS 2 is
slightly worse but can still achieve around 87% of the theoreti-
cal value. In contrast, the GGS 1, which is the directly GGS
algorithm, exhibits much poorer performance than the other
two. Moreover, being plotted as the black solid line, the en-
hancement achieved by the GGS 1 barely increases, even with
the increased N , and stays around a low level of 30−45. This
condition is because of being trapped into local optimums, and
thus increasing the preset value m cannot help. To elucidate the
situations of being trapped into local optimums, Fig. 2(d)
shows the histograms of the enhancement obtained from differ-
ent conditions when N � 1296. For the GGS 1, it can easily
get trapped into local optimums with very low enhancement
when γ � 4. This condition can be significantly improved
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by increasing γ to six. Although about 23% of the cases
still lead to low enhancements, 76% of them can now
produce enhancement close to the theoretical value. Further
investigations on the GGS 1 reveal that when γ � 7, 95%
of the cases can converge to the global optimum, leading to
enhancement close to the theoretical value (not shown in
the figure). In contrast, for the GGS 2 at γ � 4, although most
of the cases are not trapped into local optimums, considerable
errors still exist due to the incorrect choice of n at the end of the
iterations. As a result, the achieved enhancements are a bit
smaller than the theoretical value.

Next, we compared the performance of the GGS algorithm
with other non-holographic methods reported in the literature in
terms of accuracy, time, and robustness. Here, we mainly take
three methods, i.e., the EKF-MSSM algorithm [16], the SDP
algorithm [21,22], and the prVBEM algorithm [17,19,20], into
consideration. Figure 3(a) plots the achieved enhancement using
different methods as a function of N . The EKF-MSSM employs
the extended Kalman filter to solve for nonlinear equations, ex-
hibiting almost identical performance to the GGS 2-1 in terms of
the accuracy of the retrieved TM. The prVBEM was originally
developed in the binary format to be combined with a digital

micromirror device (DMD). Nonetheless, it can be directly ex-
tended to the full-field version for a fair comparison without any
difficulty. As shown in Fig. 3(a), the prVBEM (full-field version)
works well only for small N . As N gradually increases, the
achieved enhancement starts to deviate away from the other
two, indicating its inappropriateness of handling a large TM.
For the above three cases, the same training data set, including
both the probing matrix and the measured intensity (4N ), was
used for a fair comparison. The SDP is not compared here, as it
requires large computational resources and stops to function
when N goes beyond 150 with our computer. We next com-
pared the computational time consumed by each method to re-
trieve the entire TM. For simplicity, the TM is assumed to be
a square matrix such that M�row� � N �column�. As shown
in Fig. 3(b), the SDP requires a larger γ (γ � ln N ) and takes
about 7.14 × 103 s to retrieve the TM whenN � 100 (denoted
as an orange star), thus being the most computationally expen-
sive one. The computational time consumed by the EKF-MSSM
and the prVBEM is represented by the blue and green dashed
lines, respectively. Specifically, when the number of indepen-
dent control N � 1296 and γ � 4, these two algorithms take
about 9.3 × 105 and 2.1 × 104 s to retrieve the entire TM.
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Fig. 2. Numerical evaluations of the GGS algorithm. (a) The statistical normalized enhancement as a function of γ�defL∕N , when the TM is
retrieved by the GGS 1 (black), GGS 2 (blue), and GGS 2-1 (red), respectively. Error bars: standard errors of 400 independent runs. (b) The
correlations between jEjn and jEj measured in the target plane as a function of the adaptive parameter n. Error bars: standard errors of 200 in-
dependent runs whenN � 1000 and γ � 4. (c) The statistical enhancement as a function of the number of independent controlN , when retrieving
the entire N × N TM at γ � 4. Error bars: standard errors of N foci. (d) The histogram of the enhancement obtained from 1296 independent runs
under different conditions. N � 1296. The theoretical enhancement is denoted as the vertical dashed line.
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Even equipped with a high-performance computing facility, it
was reported that the prVBEM algorithm still took about
4 h∕1.44 × 104 s (denoted as a purple star) to retrieve a TM
whenN � 1296 [20]. As a comparison, the GGS 2-1 took only
5.0 × 10−1 and 8.3 × 102 s to retrieve the entire TM when
N � 121 and 1296, respectively, corresponding to 4.1 × 10−3

and 6.4 × 10−1 s for one row. Figure 3(b) also shows that the
computational time consumed by three variants of the GGS
algorithm is on the same order, albeit the GGS 2 is the fastest
at the cost of accuracy (roughly 12%). Moreover, although the
GGS 2-1 needs one more step than the other two, it is found to
consume less time than that consumed by the GGS 1. Such an
observation can be attributed to the fact that the “2” step
significantly facilitates the convergence process to the true
solution. Therefore, the computational time consumed by the
GGS algorithm is orders of magnitude shorter than that con-
sumed by other non-holographic methods, indicating the supe-
riority of the GGS algorithm in handling large matrices with
many unknowns.

In practice, the existence of external noises will certainly
deteriorate the performance of the GGS algorithm. For com-
pleteness, we investigated the robustness of the GGS algorithm,
as well as other methods, under the influence of external noises.
Figure 3(c) plots the normalized enhancement obtained with
different methods as a function of the signal-to-noise ratio

(SNR) when fixingN � 256 and γ � 4. The results associated
with the SDP are not shown, as the SDP stops working for
N > 150 due to the shortage of computational memory when
using the embedded cvx package [16]. During numerical sim-
ulations, the SNR is defined as the ratio between the measured
averaged intensity and the standard deviation of the added
Gaussian noise with a mean of zero. When the SNR is larger
than 10, the GGS 2-1 and the EKF-MSSM exhibit similar per-
formance and can well retrieve the TM. As the SNR becomes
smaller than 10, all existing algorithms exhibit significantly de-
graded performance. An interesting observation is that although
the GGS 2 performs slightly worse when the SNR is high, it is
the most robust one in a noisy environment. It is worth noting
that the existence of noises does not significantly affect the com-
putational time consumed by the GGS algorithm. Another
aspect to discuss is that in case of using fast SLMs like DMDs,
the probing fields are generated in a binary-amplitude format
[17,20,25–27]. In this condition, the GGS algorithm, as well
as other methods, cannot retrieve the TM as accurately as before.
To examine this difference, Fig. 3(d) plots the absolute value of
the correlation coefficients between the retrieved TM and the
correct TM. As seen from the figure, the correlation coefficients
stay around a constant level of 0.6, regardless of γ and the meth-
ods. Coefficients less than one result in downgraded perfor-
mance, which could be solved by introducing additional
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Fig. 3. Comparing the performance of different methods. (a) The achieved enhancement as a function of the number of independent control N
when employing the GGS 2-1, EKF-MSSM, and prVBEM. γ � 4 is fixed. Error bars: standard errors of 200 independent runs. (b) The computa-
tional time consumed for retrieving the entire TM. Except for the data denoted as the purple star being directly acquired from Ref. [20], the rest were
computed using our computer and averaged from 200 independent runs. (c) The normalized enhancement (to the theoretical value, N � 256 and
γ � 4) as a function of the SNR. Error bars: standard errors of 200 independent runs. (d) The absolute values of the correlation coefficients between
one row of the correct TM and the retrieved TM when the probing fields are generated in a binary-amplitude format (N � 64). Error bars: standard
errors of 200 independent rows.
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constraints and will not be discussed here. Nonetheless, a corre-
lation of 0.6 is still acceptable for many applications.

4. EXPERIMENTAL RESULTS

Having numerically evaluated the performance of the GGS al-
gorithm, we built an experimental setup to retrieve the TM of
complex media for demonstration purposes. The schematics
of the setup are shown in Fig. 4. A continuous-wave laser
(MDL-C-642-30mW, CNI), operating at 642 nm wavelength,
was used as the light source. Before illuminating the SLM
(PLUTO-2-NIR-011, Holoeye, 1920 × 1080 pixels, 8 μm/
pixel), the beam was expanded by a pair of lenses L1 and
L2 to 1 in. (2.54 cm). The modulated light was then directed
to the complex medium, whose TM needs to be retrieved.
During experiments, the randomly generated input wavefront
was sent to probe the complex medium, and the resulting out-
put intensity patterns were measured using an 8 bit CCD
(GS3-U3-32S4C, Point Grey). The measurement SNR during
the experiment was quantified to be around 25.

To reproduce the simulation results presented in Fig. 2(a),
we first chose a stack of three ground glass diffusers (DG10-
120, Thorlabs) as the complex medium. By fixing N � 90,
Fig. 5(a) plots the averaged enhancement as a function of γ
by using different methods. Specifically, for the GGS 2-1,
the experimentally achieved enhancements reached 5.4%,
33.75%, 55.7%, 59.4%, 59.8%, and 60.9% of their corre-
sponding theoretical value when γ � 2, 3, 4, 5, 6, and 7, re-
spectively. As expected, the red curve becomes flattened after γ
becomes larger than 4, which agrees with the observation that
the enhancement saturates at γ � 4 in Fig. 2(a). The slight in-
crease in the enhancement after γ � 4 is due to the nonzero
measurement noise during experiments. Compared to the
GGS 2-1, the enhancement achieved by the GGS 2 has a sim-
ilar trend but slightly worse performance. Same for the simu-
lation results, the experimentally achieved enhancement by the
GGS 1 is even smaller, confirming that the directly GGS algo-
rithm can be easily trapped into local optimums. These results
demonstrate the advantages of introducing an adaptive param-
eter n in the GGS algorithm. Results obtained by using the

EKF-MSSM and prVBEM are also presented, exhibiting sim-
ilar performance to the GGS 2-1 in terms of accuracy when
γ ≥ 4. It is worth noting that since prVBEM adopts a statistical
estimation method, it demonstrates the best performance
among the three when γ is small. With the retrieved TM,
any patterns can be synthesized on the target plane. As typical
examples, Figs. 5(b)–5(d) show the camera-captured images,
synthesized by using 10 rows of the retrieved TM (γ � 4
and N � 720) using the GGS 1, GGS 2, and GGS 2-1, re-
spectively. Among all three cases, these foci achieved with
the GGS 2-1 are the brightest [Fig. 5(b)], with the averaged
enhancement of the 10 spots reaching 65.6% of the theoretical
value. Here, the theoretical value of the enhancement should be
modified by inserting an additional Nf in the denominator,
where Nf is the total number of foci in the target plane. As
a comparison, the foci achieved with the GGS 2 are slightly
dimmer [Fig. 5(c)], with the averaged enhancement reaching
62.5% of the theoretical value. Moreover, the GGS 1 fails
forming the desired pattern as being trapped into local opti-
mums, leading to speckles in the captured image [Fig. 5(d)].

We further demonstrated retrieving the TM of a 1-m-long
MMF. The step-index MMF is silica-based (refractive
index ∼ 1.48) with a core diameter of 50
 2.5 μm and a
numerical aperture of 0.200
 0.01 (FC/PC-FC/PC-50/
125–900 μm–1 m, Shenzhen Optics-Forest Inc.), thereby sup-
porting about 1200 modes at 642 nm. Figure 6 shows the cam-
era-captured images, formed by conjugating one row of the TM
retrieved (γ � 4 and N � 400) using the GGS 2-1, GGS 2,
and GGS 1, respectively. Among all three cases, the focus
achieved with the GGS 2-1 is the brightest, with the enhance-
ment reaching 76% of the theoretical value. The focus achieved
with the GGS 2 is slightly dimmer, with the enhancement
reaching 67% of the theoretical value. The focus achieved
with the GGS 1 has an enhancement that reaches only 5%
of the theoretical value, leading to observable speckles in the
background.

Synthesizing multiple foci on the target plane was also
demonstrated through the MMF. Figures 7(a)–7(c) show the
camera-captured images of simultaneously focusing light to

SLM

BB2 BB1

L1L2 HWP Laser

BS PBS

M
OBJ1 OBJ2 P

CCD

MMF

GG

Fig. 4. Experimental setup. BB1, BB2, beam block; BS, beam splitter; CCD, charge-coupled device; GG, ground glass; HWP, half-wave plate;
L1, L2, lens; M, mirror; MMF, multimode fiber; OBJ1, OBJ2, objective lens; PBS, polarizing beam splitter; P, polarizer; SLM, spatial light
modulator.
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four separated spots, when the TM was retrieved (γ � 4 and
N � 600) using the GGS 2-1, GGS 2, and GGS 1,
respectively. In Fig. 7(a), the enhancements of the four foci
labeled with A, B, C, and D are 64, 72, 77, and 89, respectively.
The averaged enhancement reaches 64% of the theoretical
value. The TM retrieved using the GGS 2 also
allows simultaneously focusing light to the same four spots,
with averaged enhancement reaching 51% of the theoretical
value. However, by using the TM retrieved with the GGS 1,

multi-spot focusing cannot be achieved. Instead, only one
focus was realized and can be observed. We further demon-
strated simultaneously focusing light on five spots, with
camera-captured images shown in Figs. 7(d)–7(f ). Again, with
the TM retrieved by using the GGS 2-1, five bright foci,
labeled with A, B, C, D, and E, achieve the enhancements
of 51, 64, 67, 74, and 82, respectively. The averaged
enhancement of these five foci reaches 72% of the theoretical
value. Similarly, the TM retrieved using the GGS 2 allows
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multi-spot focusing, with averaged enhancement reaching
61% of the theoretical value. By using the TM retrieved
with the GGS 1, multi-spot focusing cannot be achieved.
These experimental results demonstrate the superiority of
the GGS 2-1 in retrieving the optical TM of arbitrary complex
media.

5. DISCUSSIONS AND CONCLUSION

Notably, the experimentally obtained enhancements are always
below the theoretical value. This observation is not originated
from the algorithm, but is due to practical reasons including the
inaccurate phase values of the SLM, intensity fluctuations of
the laser, detection noise of the camera, and time-varying char-
acteristics of the complex media. Nonetheless, optical foci with
enhancements reaching 60%−70% of the theoretical value are
still among the highest performance. Moreover, the computa-
tional time cost by the GGS algorithm can be further optimized.
The current termination rule of the GGS algorithm is either that
the correlation coefficients between two iterations X̃f and X̃f −2
are larger than 99.9999% or the number of iterations reaches the
preset maximum value m � 1000. In most cases, we found that
the GGS algorithm rapidly converges before m reaches 1000,
and the correlation coefficients reaching 99.9999% as the termi-
nation rule is appropriate. Taking the GGS 2-1 as an example,
when generating the data point at N � 1296 in Fig. 2(c), the
two steps with different adaptive parameter n on average take
around 287 and 34 iterations, respectively. By relaxing the

criteria to 99.999%, these two values decrease to around 190
and 23 at the cost of 0.1% accuracy, thereby reducing the com-
putational process without significantly sacrificing the accuracy
of the retrieved TM. Similarly, by setting the criterion to
99.9999%, these two values increase to around 296 and 46 but
the accuracy remains unchanged, indicating that 99.9999% is a
good choice. We could also investigate more on the choice of the
adaptive parameter n in future works to facilitate the convergence
rate of the GGS algorithm by varying the initial value and the
decay trend. As a final remark, as N increases, the number of
steps consumed before converging will also increase. Therefore,
we may enlarge m for a larger N .

In summary, we generalized the GS algorithm to retrieve
the unknown propagating function, i.e., the optical TMs of
complex media, from intensity measurements on the target
plane. An adaptive parameter n in the power exponent of
the intensity constraint (jEjn) was introduced to facilitate
the computational process. We numerically showed that
the GGS 2-1 can accurately retrieve the TM when γ � 4.
With the same training data set, the computational time cost
by the GGS 2-1 is orders of magnitude shorter than other
reported non-holographic methods in the literature. This
feature is highly desirable in handling a large TM. The per-
formance of the GGS algorithm was further demonstrated
by retrieving the optical TM of a stack of three ground glass
diffusers and an MMF, enabling arbitrary patterns (single
and multiple foci) to be projected through these media.
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Quantitatively, enhancements around 60%−70% of the cor-
responding theoretical values can be routinely achieved for
these foci, indicating the accuracy of the retrieved TM using
the GGS algorithm. Due to its superior performance and the
relatively simple computational framework, the GGS algo-
rithm is promising to become a powerful tool in fast retrieval
of a large optical TM of complex media from pure intensity
measurements, allowing a broad range of applications in bio-
medical optics and optical communications.
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