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The squeezed state is important in quantum metrology and quantum information. The most effective generation
tool known is the optical parametric oscillator (OPO). Currently, only the squeezed states of lower-order spatial
modes can be generated by an OPO. However, the squeezed states of higher-order spatial modes are more useful
for applications such as quantum metrology, quantum imaging, and quantum information. A major challenge for
future applications is efficient generation. Here we use cascaded phase-only spatial light modulators to modulate
the amplitude and phase of the incident fundamental mode squeezed state. This efficiently generates a series of
squeezed higher-order Hermite–Gauss modes and a squeezed arbitrary complex amplitude distributed mode.
The method may yield new applications in biophotonics, quantum metrology, and quantum information
processing. © 2020 Chinese Laser Press
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1. INTRODUCTION

Continuous variable (CV) squeezed states attract much atten-
tion for their uses in quantum information processing, such as
quantum communication [1], quantum computation [2],
and quantum metrology [3,4]. At present, the most effective
generation tool is an optical parametric oscillator (OPO).
Traditionally, most OPOs operate in the fundamental mode.
Recently, there has been growing interest in higher-order modes
such as Hermite–Gauss (HG) and Laguerre–Gauss (LG)
modes owing to their complex intensity and phase patterns,
and different modes are used as independent variables. Their
applications include rotation measurement with LG modes
[5,6], micro-displacement measurement with HG modes
[7,8], and thermal noise mitigation from fluctuations of mirror
surfaces in coatings and substrates using the LG33 mode in
gravitational wave interferometers [9,10].

Traditionally, spatial mode squeezed states are generated by
higher-order mode OPO. Quadrature squeezing of HG00,
HG10, and HG20 modes and quadrature entanglement of
first-order LG modes have been generated in a type I OPO
[11,12], and the higher-order mode squeezing or entanglement
was enhanced by an optimized pump mode [13–18].
Moreover, the CV hyper-entanglement state, wherein both spin
and orbital angular momenta are entangled, was realized in a
multimode type II OPO [19,20]. A specially designed OPO
can also generate multimode squeezing and entanglement
[21–26]. However, the studies above just produced low-order

mode squeezing. There is no report on HG mode squeezed
light generation higher than the third order. The higher-order
mode OPO requires a complex setup, severely limiting the at-
tainable squeezing and entanglement levels.

Direct mode conversion with fundamental mode squeezed
light can avoid the higher-order mode OPO and nonlinear
transformation. Treps et al. transformed fundamental mode
squeezed light into HG10, HG20, and HG30 modes squeezed
light via deformable mirrors (DMs) [27]. The limited number
of pixels of a DM makes it unsuitable for generating complex
spatial modes. Compared with the DM, the spatial light modu-
lator (SLM) has more pixels and can finely control the light
field. The amplitude and phase of the incident light can be si-
multaneously modulated by single or cascade SLMs [28–37].
Therefore, the SLM has received increasing attention as a mode
conversion device. Semmler et al. used an SLM to generate
single-mode squeezing in LG and Bessel–Gauss (BG) modes of
different orders as well as an arbitrary intensity pattern [38].
The LG and BG modes were generated by shaping the spatial
phase distribution of the light beam directly without touching
the amplitude distribution. The efficiency was 0.15 for an ar-
bitrary intensity pattern. However, higher-order HG modes
and arbitrary complex amplitude distributed modes cannot
be produced simultaneously with high efficiency and quality
by single modulation.

In this paper, we demonstrate that higher-order HG modes
and arbitrary complex amplitude distributed squeezed states

1422 Vol. 8, No. 9 / September 2020 / Photonics Research Research Article

2327-9125/20/091422-06 Journal © 2020 Chinese Laser Press

https://orcid.org/0000-0002-4617-444X
https://orcid.org/0000-0002-4617-444X
https://orcid.org/0000-0002-4617-444X
mailto:jrgao@sxu.edu.cn
mailto:jrgao@sxu.edu.cn
mailto:jrgao@sxu.edu.cn
https://doi.org/10.1364/PRJ.388956


can be generated with high efficiency using a beam shaping
system (BSS) on the fundamental mode squeezed state. The
maximum mode conversion efficiency is 0.77. As a quantitative
benchmark for the generated mode quality, we also analyze the
mode purity by comparing the generated mode and corre-
sponding theoretical standard mode.

2. EXPERIMENTAL SETUP

The experimental setup (Fig. 1) entails optical parametric am-
plification (OPA) squeezing, a BSS, and a purity measurement
of higher-order mode squeezed light. First, the OPA is used to
generate HG00 mode squeezed light. Second, the HG00 mode
squeezed light is converted to higher-order mode squeezed light
via cascaded SLMs. Finally, the generated higher-order mode
squeezed light is analyzed with respect to the quality of the spa-
tial modes and the quantum noise reduction.

A. OPA Squeezing
A continuous-wave all-solid-state laser source emits both infra-
red light at 1080 nm and green light at 540 nm. Part of the
1080 nm light is injected into the OPA as a seed beam. The
seed beam is used to lock the OPA cavity [39]. Our OPA cavity
is formed by a potassium titanyl phosphate (KTP) crystal and a
plano-concave mirror. The radius of curvature of the mirror is
20 mm; it has a reflectance of 95% at 1080 nm and high trans-
mittance at 540 nm. The seed beam is injected at the crystal
surface, which is highly reflective (R > 99.95%) at both
1080 nm and 540 nm. The OPA has a finesse of 120 with
a free spectral range of 7.5 GHz. The OPA is pumped by
540 nm light, and the relative phase of the seed beam and
pump beam is locked in the state of de-amplification.

The generated squeezed light was measured via ordinary ho-
modyne detection [40]. The reflectance of the squeezed light
on the beam splitter is much higher than the transmittance. In
our setup, 98% of the squeezed light is reflected, and 2% of the
strong local beam is transmitted [Fig. 1(a)]. By varying the
phase of the local beam, different quadratures of the squeezed
light can be measured. In this scheme, we assumed a perfectly
coherent local beam and neglected the excess noise. We used a

mode cleaner in the local beam path to ensure a coherent local
beam within the detection band [41,42]. The shot noise limit
(SNL) was measured with the squeezed light input blocked.
The squeezing output from the OPAwas measured by scanning
the phase of the local beam.

B. Higher-Order Mode Generation
The squeezed state is highly sensitive to optical loss. When a
squeezed state experiences optical loss, it remains squeezed but
the degree is reduced, limiting applications. A theoretically loss-
less method has realized both amplitude and phase modulation
of the input beam with cascaded phase-only SLMs [32]. In con-
trast with existing techniques, the method theoretically allows
an efficiency of almost 100%. It is possible to generate any de-
sired light field distribution.

As shown in Fig. 1(c), the HG00 mode squeezed light is
expanded by a telescope, which consists of two lenses with focal
lengths of 5 cm and 20 cm separated by the sum of their focal
lengths. We have taken the light output to be perfectly colli-
mated with a waist of 5 mm. The collimated light is converted
into higher-order spatial modes by the BSS. The BSS consists
of two phase-only SLMs (Hamamatsu, X10648-03, pixel
size � 20 μm, 792 × 600 pixels) and two Fourier transforming
lenses (focal length � 75 cm). Both elements are arranged in a
4f system. The light polarization (P polarization) corresponds
to the working direction of the two SLMs.

The spatial amplitude and phase distributions can be pro-
grammed independently. This is achieved by diffracting the light
from two phase-only SLMs located in conjugate Fourier
planes. The amplitude distribution on SLM2 is created by
SLM1, which can be iteratively optimized using the Gerchberg–
Saxton (GS) algorithm [43]. However, a consequence of this
optimization is that the field in the plane of SLM2 has a random
phase. We correct the phase distribution through SLM2 by
loading a phase correction hologram onto it. Altogether, this
procedure generates the higher-order spatial modes in the target
plane. Theoretically, we can obtain an arbitrary complex
amplitude field.

For comparison, Fig. 2 shows two typical holograms loaded
onto SLM1 and SLM2 to generate HG10 and HG50 modes.
The hologram on SLM1 was obtained via 100 iterations of the
GS algorithm. It is clear that the higher the mode order,
the more complex the hologram is. Different gray values in
the holograms represent different phases.

Fig. 1. Schematic of the experimental setup. The squeezed state in
the HG00 mode of the OPA is first measured at PD1 with flip1. The
BSS changes the spatial profile of the light, and the squeezing level is
then measured at PD2. Flip2 is used to direct the generated modes for
purity measurement. PD, photoelectric detector; HWP, half-wave
plate; BS, beam splitter; MC, mode cleaner.

Fig. 2. Holograms loaded onto SLM1 and SLM2 for generating
HG10 and HG50 modes.
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C. Higher-Order Mode Squeezed Light Measurement
The generated higher-order mode squeezed light was analyzed
with respect to the quantum noise reduction and the quality of
the spatial modes. PD2 was placed in the target plane, and
squeezing was measured by scanning the phase of the local
beam. For each generated mode, we used two separate homo-
dyne detectors [PD1 and PD2 in Figs. 1(a) and 1(c)] to mea-
sure the squeezing before and after the BSS.

Because of the limited SLM resolution, it is impossible to
generate the standard intensity and phase distribution, and thus
perfect target mode, in practice. The purity of higher-order
modes is defined by the visibility of interference between
the generated mode and the standard mode of the same order.
A high-finesse mode cleaner is used as a standard Gaussian
mode selector. This cavity is seeded with a part of the directly
generated HG mode by the BSS, and locks it in resonance with
selected higher-order HG modes. When flip2 is present, we
measure the degree of interference with standard modes.
A charge-coupled device (CCD, Hamamatsu, C10633) is used
to capture the intensity distribution of the generated modes
[Fig. 1(b)].

3. RESULTS AND DISCUSSION

A. Higher-Order Mode Squeezing
In our setup, the OPA threshold is 400 mW, with a pump
power of 280 mW and an injected seed beam of 5 mW.
Before the BSS, we typically observed −5.22� 0.20 dB
squeezing of the HG00 mode at PD1 with flip1 as shown
in Fig. 3. Trace 1 corresponds to the SNL, which is obtained
by blocking the signal beam. Trace 2 corresponds to the quan-
tum noise levels of the HG00 mode squeezed state with the
local beam phase scanned. All data are normalized using the
SNL level.

Figure 4 shows all the squeezing for the directly generated
modes. Trace 1 corresponds to the SNL, which is obtained
by blocking the squeezed light. Trace 2 corresponds to
quantum noise levels of the generated mode squeezed state
with the local beam phase scanned. Here a noise reduction
of −2.65� 0.19 dB below the SNL for the directly generated
HG50 mode can be seen. To our knowledge, this is the first
measurement of squeezing at such a high-order HG mode. For

an optical pattern of our laboratory initials QMC, there is noise
reduction of −2.36� 0.21 dB below the SNL. Compared with
that in Fig. 3, all the squeezing shown in Fig. 4 is decreased.
The measured efficiencies of the BSS for the directly generated
modes are: HG00 mode is 0.75� 0.02, HG10 mode is
0.75� 0.02, HG20 mode is 0.73� 0.02, HG30 mode is
0.72� 0.02, HG40 mode is 0.66� 0.02, HG50 mode
is 0.66� 0.02, LG33 mode is 0.62� 0.02, and QMC is
0.61� 0.02. The squeezing corresponds to the directly mea-
sured efficiency of the BSS.

The difference in squeezing levels between PD1 and PD2
can be accounted for by losses in power for each of the different
transformations. The approximately 20% loss comes from the
absorption and imperfect diffraction efficiency of the SLMs.
The additional 2% loss is consistent with the number of optical
elements in the beam path and the specifications of their coat-
ings. The total efficiency is reduced further by a few percent for
modes with higher orders owing to the limited aperture of the
optical element, resulting in high spatial frequency losses, and
the more complex the distributed mode, the more obvious this
phenomenon is. The losses for the higher-order mode squeez-
ing can be expressed as

Fig. 3. OPA squeezing. The measurement parameters of the spec-
trum analyzer are RBW, 300 kHz; VBW, 1 kHz; analysis frequency,
3 MHz.

Fig. 4. Squeezed spatial modes. The measurement parameters of
the spectrum analyzer are RBW, 300 kHz; VBW, 1 kHz; analysis
frequency, 3 MHz.
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Vout � η · Vin � �1 − η� · Vvac, (1)

where η is the mode conversion efficiency, Vin and Vout

represent the variances of the input and output beams of
the squeezed quadrature, and Vvac is the vacuum variance.
In our setup, the maximum mode conversion efficiency is
0.77, which is calculated from the HG10 mode squeezing.
For QMC, the mode conversion efficiency is 0.6. This shows
that the BSS gives access to high squeezing levels and high
efficiency in arbitrary complex distributed modes.

B. Higher-Order Modes Purity Analysis
The first five order HG modes were generated by the BSS, and
then the LG33 mode and QMC are taken as an example in
order to show the manipulation of the arbitrary complex am-
plitude field. For QMC, the phase and intensity are uniform.
We measured the interferograms, i.e., the interference between
the generated modes and a Gaussian beam reference with a
waist of 6 mm, to identify the phase distribution of the gen-
erated modes. The experimental results are shown in Fig. 5.
The intensity distribution and interferograms agree well with
the theoretical ones.

The mode purity is calculated as an inner product between
the generated mode and the theoretical standard mode, given
by the equation [44]

P � jRR b�x, y�c��x, y�dxdyj2
RR jb�x, y�j2dxdy RR jc�x, y�j2dxdy , (2)

where b�x, y� is the mode generated by the BSS and c�x, y� is
the theoretical standard mode. We quantitatively analyzed the
purity of the generated modes. First, the mode purity was ob-
tained from the intensity distribution and interferograms via
the intensity analysis method [45]. The phase distribution
can be obtained from the interferograms in Fig. 5 to calculate
the mode purity via Eq. (2).

Next, the mode purity was measured using the visibility
of interference with the standard mode of the same order
[Fig. 1(b)]. Because it is difficult to produce the standard
LG33 mode and the QMC pattern in our experiment, we
did not obtain the purity of the LG33 mode and QMC
[27]. Figure 6 exhibits the behavior of output mode purity
via calculated results and measured results. The calculated
and measured results are similar, and the generated mode purity
decreases as the mode order increases. Furthermore, in Fig. 6
we also give the inferred squeezing in the perfect modes, which
is inferred from squeezing measurement and purity.

Remarkably, one may still observe some difference between
the experiments and theories in Fig. 5, especially for higher-
order (more complex distributed) modes, such as HG50 mode.
This might be explained as follows. First, the SLM suffers from
crosstalk between adjacent pixels, inducing errors between the
calculated hologram and the one actually loaded on the SLM.
This results in inevitable deterioration of the generated mode
quality, especially for higher-order (more complex distributed)
modes [46]. As seen in Fig. 2, the holograms for the HG50
mode are more complex than those for the HG10 mode.
Next, the high spatial frequency is lost, owing to the limited
aperture of the optical element, causing deviation of the phase
distribution. A crucial point for achieving good mode quality is
accurate alignment of SLM2. A higher mode order leads to a
high spatial frequency and thus a high sensitivity to the align-
ment of SLM2. The deviation in phase distribution more
strongly affects the phase correction for SLM2 [32]. Finally,
the presence of a small unmodulated part of the light further
diminishes the mode quality. However, this effect might be
minimized by future technical improvements to the SLM that
could increase diffraction efficiency [47]. We expect that a
mode purity reaching 0.9 could be achieved by optimizing
the above factors.

Fig. 5. Theoretical and experimental modes and interferograms.
Fig. 6. Purity of the generated modes and the inferred squeezing in
the perfect modes.
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4. CONCLUSION

We have shown that the BSS can transfer squeezing from the
fundamental mode to an arbitrary complex amplitude distrib-
uted mode with a high efficiency of 0.6. With this method,
different spatial modes can be generated simply by applying
different holograms on the SLMs. Our system does not disrupt
the quantum properties of the light.

High-efficiency mode conversion can be applied in multi-
plex quantum information processing with structured light to
solve the problem of low detection efficiency for quantum
states in higher-order spatial modes [48]. The generated higher-
order spatial mode squeezed state has promising application in
quantum metrology such as super-resolution quantum images
[3], mitigating thermal noise [9] or mode matching loss [49] in
LIGO interferometry, and realizing CV parallel quantum
information protocols based on spatial multimode squeezed
states [11].
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