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This study shows that convolutional neural networks (CNNs) can be used to improve the performance of struc-
tured illumination microscopy to enable it to reconstruct a super-resolution image using three instead of nine raw
frames, which is the standard number of frames required to this end. Owing to the isotropy of the fluorescence
group, the correlation between the high-frequency information in each direction of the spectrum is obtained
by training the CNNs. A high-precision super-resolution image can thus be reconstructed using accurate data
from three image frames in one direction. This allows for gentler super-resolution imaging at higher speeds and
weakens phototoxicity in the imaging process. © 2020 Chinese Laser Press

https://doi.org/10.1364/PRJ.396122

1. INTRODUCTION

Fluorescence microscopy is an important tool in the life scien-
ces for observing cells, tissues, and organisms. However, the
Abbe diffraction limit [1] implies that the spatial resolution of
the fluorescence microscope can attain only half the wavelength
of incident light. Recently developed techniques in microscopy,
such as stochastic optical reconstruction microscopy (STORM)
[2,3], photoactivated localization microscopy (PALM) [4,5],
structured illumination microscopy (SIM) [6,7], stimulated
emission depletion (STED) [8,9], and other super-resolution
microscopy [10–12] can help overcome this limit to enable
the imaging of biological processes in cells at higher resolution.

Owing to its low phototoxicity and high frame rate acquis-
ition, SIM stands out among these techniques to achieve optical
super-resolution in bio-imaging [13]. In general, SIM enhances
resolution by encoding high spatial frequencies of the sample in
structured patterns (typically sinusoidal to affect the formation
of the Moiré pattern). By measuring the frequency of the Moiré
pattern in the observed image and the known frequency of the
pattern of illumination, the unknown frequency content of the
specimen can be computed. In linear SIM, it is theoretically up
to twice the frequency limit, which is imposed by the optical
transfer function (OTF) of the optical system. In nonlinear
SIM [14], by the use of the nonlinear effect of fluorescence,
it could reach more times the frequency limit.

To compute unknown frequencies from raw data, SIM
requires three images with shifting illumination patterns to

separate mixed spatial frequencies along a given orientation.
To enhance isotropic resolution, this process is performed three
times with illumination patterns obtained at different angles
and requires a total of nine raw images per super-resolved (SR)
SIM image, which means that the sample needs to be repeat-
edly exposed. Thus, reducing number of raw images in SIM
reconstruction has been researched in recent years. SR image
reconstruction using three [15–17] and four [18] raw frames
of structured illumination (SI) has been implemented to in-
crease the speed of acquisition of the images and reduce photo-
toxic effects. But these methods require assumptions about the
process of formation of the image, and the final results are lim-
ited by the imaging environment and type of noise. For exam-
ple, in the deconvolution method [19], this requires a precise
understanding of the optics and well-characterized noise-related
statistics. This has led to the design of such popular algorithms
as the joint Richardson–Lucy deconvolution [18,20], which
requires knowledge of the point-spread function of the micro-
scope and assumes Poisson noise statistics to estimate missing
information in SIM. However, such algorithms are limited by
the accuracy of their assumptions and thus cannot capture the
full statistical complexity of microscopic images.

Machine learning [21] has been used more commonly in
recent years with advances in computational performance.
The core concept of machine learning is to find a rule to realize
a correlation between the input and the output. This process is
carried out using a large amount of tagged data. Deep learning
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(DL) [22] is a method of machine learning in which the “deep”
refers to the depth of the model, which emphasizes learning
from successive layers and looking for increasingly meaningful
representations.

The DL framework does not explicitly use any model or
prior knowledge, and instead relies on large datasets to “learn”
the underlying inverse problem. The convolutional neural net-
works (CNNs) [23] are in a category of deep learning that can
obtain excellent results in problems of image processing and
computer vision tasks. Its outcome has two important compo-
nents. First, the result of the training stage is a CNN that cor-
responds to a plausible underlying mapping function relating
the measurement to the solution. Second, the trained CNN
can be used to make “predictions” when presented with new
measurements that were not used in the training stage.

In recent years, deep learning methods have been applied to
super-resolution microscopic imaging, such as the regular op-
tical microscopes [24], PALM [25], STORM [26], and Fourier
ptychographic microscopy [27], and they have achieved good
results.

The paper proposes the use of a deep-learning-based frame-
work to reconstruct SIM images using fewer frames than are
currently required. The cycle-consistent generative adversarial
network (CycleGAN) is used to reconstruct the super-
resolution image (we called it 3_SIM) through the single-
direction phase shift of three raw SI images (we called them
1d_SIM). Owing to the characteristics of the CycleGAN, the
data in train A and train B do not need to correspond one
to one. The network can be trained without using paired training
data, which reduces the number of training steps needed and saves
time. Our method does not require assumptions about the mod-
eling of the process of image formation, and instead creates a
super-resolved image directly from the raw data. It requires only
three SI images in a given direction and reconstructs a 1d_SIM
image, and it can generate a 3_SIM image with a reconstruction
resolution comparable to the traditional linear SIM methods.
This method is parameter free, requires no expertise on the part
of the user, is easy to implement on any SIMdataset, and does not
rely on prior knowledge of the structure in the sample.

2. METHODS

A. Cycle-Consistent Generative Adversarial
Networks
Generative adversarial networks (GANs) [28] constitute an ap-
proach to deep learning proposed by Ian Goodfellow in 2014.
They have achieved impressive results in image generation, im-
age editing, and representation learning. GANs provide a way
to learn deep representations without extensively annotated
training data. A GAN consists of two subnetworks: a generator
network and a discriminator network. The generator network
produces synthetic data using input noise, and the discrimina-
tor network determines whether the output is real (raw data) or
fake (synthetic data). Both networks are trained simultaneously
in competition with each other. Through this constant compe-
tition between discriminator and generator, an image almost
identical to the desired image is eventually generated. Formally,
the relationship between the generator and the discriminator
has the minimax objective

min
G

max
D

Ex∼p�logD�x�� � Ez∼pflogf1 − D�G�z��gg: (1)

G is the generator, D is the discriminator, D�x� represents the
discriminator’s judgment of raw data (x), and G�z� represents
the synthetic data generated from noise (z).

CycleGAN [29] is based on the GAN architecture, and it is
a special conditional generative adversarial network (cGAN)
[30] for image-to-image “translation”—mapping from one
type of image to another [31–33]. CycleGAN can learn image
translation without paired examples. It trains two generative
models cyclewise between input and output images by using
adversarial losses [28], which means that CycleGAN has two
generators and two discriminators. In addition to adversarial
losses, CycleGAN uses cycle consistency loss [34,35] to pre-
serve the original image after a cycle of translation and reverse
translation. In this formulation, matching pairs of images are
no longer needed for training. This makes data preparation
much simpler and opens the technique to a larger family of
applications. The default generator architecture of CycleGAN
is ResNet [36], and the default discriminator architecture is a
Patch-GAN [33] classifier.

The generator consists of three parts: encoders, a trans-
former, and decoders. The encoders extract features from an
image using a convolution network. Then, different nearby fea-
tures of an image are combined by the transformer, which uses
six layers of ResNet blocks to transform the feature vectors of an
image from domain X to Y . The residual block in the trans-
former can ensure that properties of the inputs of previous
layers are available for subsequent layers as well, so that the out-
put does not deviate much from the original input. Otherwise,
the characteristics of the original images are not retained in the
output and the results are inaccurate. A primary aim of the
transformer is to retain the characteristics of the original input,
like the size and shape of the object, so that residual networks
are a good fit for these kinds of transformations. The decoding
step is the exact opposite of encoding, and it involves building
low-level features from the feature vector by applying a decon-
volution layer.

For the discriminator, a 70 × 70 patch-GAN [32,33] is used
to assess the quality of the generated images in the target domain.
Such a patch-level discriminator architecture has fewer parame-
ters than a full-image discriminator, and it can be applied to
images of arbitrary sizes in a fully convolutional fashion.

B. Loss Function
The goal of CycleGAN is to use the given training samples to
learn mapping functions between domains X and Y by apply-
ing adversarial losses to them.

The generators A and B should eventually be able to fool
the discriminator regarding the authenticity of images generated
by it. This can be performed if the recommendation made
by the discriminator for the generated images is as close to 1
as possible. The generator seeks to minimize discriminator B
�x → generatorA�x� → 1 �when A�x� ≈ y��, x belongs to do-
main X , and y belongs to domain Y . Thus, the loss LGAN is

LGAN,GA
�GA,DA� � Ex∼p�x�flogf1 − DA�GA�x��gg

� Ey∼p�y��logDA�y��: (2)
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The last and the most important loss function is cyclic loss,
which captures whether the image can be recaptured using
another generator. In the image translation cycle of networks,
each image x from domain X should be able to bring x
back to the original image. Thus, the difference between the
original image and the cyclic image should be as small as
possible:

Lcycle�GA,GB� � Ex∼p�x�fkGB �GA�x�� − xk1g
� Ey∼p�y�fkGA�GB�y�� − yk1g: (3)

The multiplicative factor of λ � 10 for cyc_loss assigns more
importance to cyclic loss than discrimination loss, and the
CycleGAN total loss Ltotal is

Ltotal�GA,DA,GB ,DB��LGAN,GA
�GA,DA��LGAN,GB

�GB ,DB�
�λLcycle�GA,GB�: (4)

C. Training
This paper generates the 1d_SIM images (super-resolution in
one direction) and 9_SIM images (super-resolution in three
directions) as datasets. The images of 1d_SIM contained

Fig. 1. Schematics of the deep neural network trained for SIM imaging. (a) The inputs are 1d_SIM and 9_SIM images generated by nine lower-
resolution raw images (using the SIM algorithm) as two training datasets with different training labels. The deep neural network features two
generators and two discriminators. These generators and discriminators are trained by optimizing various parameters to minimize the adversarial
loss between the network’s input and output as well as cycle consistency loss between the network’s input image and the corresponding cyclic image.
The cyclic 9_SIM in the schematics is the final image (3_SIM) desired. (b) Detailed schematics of half of the CycleGAN training phase (generator
1d_SIM and discriminator 9_SIM). The generator consists of three parts: an encoder (which uses convolution layers to extract features from the
input image), a converter (which uses residual blocks to combine different similar features of the image), and a decoder (which uses the deconvo-
lution layer to restore the low-level features from the feature vector), realizing the functions of encoding, transformation, and decoding. The dis-
criminator uses a 1D convolution layer to determine whether these features belong to that particular category. The other half of the CycleGAN
training phase (generator 9_SIM and discriminator 1d_SIM) is the same as this.
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high-frequency information in only one direction. CycleGANs
are used to learn missing items of high-frequency information
from a large dataset. Using a trained model, the missing values
in the 1d_SIM image are filled, and a super-resolution 3_SIM
image is reconstructed.

To train the neural network [Fig. 1(a)], we need two data-
sets for training (train A and train B). We used the images of the
1d_SIM dataset as train A and those of the 9_SIM dataset as
train B. Train A and train B were input to the network as train-
ing datasets. Images of 1d_SIM in train A were transformed
into those of 9_SIM by generator 9_SIM, and those of the
9_SIM image dataset generated by generator 9_SIM were
transmitted to a generator 1d_SIM and converted back into
images of 1d_SIM (cyclic 1d_SIM) [Fig. 1(b)]. The input im-
ages of the 9_SIM dataset were subjected to the same process,
converted into images of the 1d_SIM dataset by generator
1d_SIM, and then converted into those of the 9_SIM dataset
(cyclic 9_SIM) by generator 9_SIM.

Discriminator A and discriminator B input images of the
1d_SIM and 9_SIM datasets, respectively, are trained by the
loss function to identify the generated image as one output
by the generator. If the discriminator recognizes it as such,
the input image is rejected. If generators A and B want to
ensure that the images they generate are accepted by the dis-
criminator, the generated images need to be very close to the
original image. This can be implemented using Lgan. The dis-
criminator also needs to be upgraded so that the discriminator
can determine whether the output image is a raw image or one
generated by the generator.

3. RESULTS

We validated the proposed method on both simulated and
experimental data. To enable quantitative comparison, the
1d_SIM and 9_SIM images were generated from the same
raw datasets. The 1d_SIM images were reconstructed from

three of the nine raw SI frames, and the 9_SIM images were
reconstructed from all nine raw SI frames. To verify the effec-
tiveness of the neural network on images with different features,
the authors prepared three datasets for training containing
points, lines, and curves.

All datasets were generated in MATLAB. First, we generate
some 512 × 512 pixel size random binary images, superposed
illuminating patterns and convolved with the point diffusion
function (PSF), and we obtain nine raw no-noise SI images.
Each pixel represents 10 nm; the PSF is based on the first-order
Bessel function, where NA is set to 1.5 and wavelength is set to
532 nm; the pattern vector is 18; and the modulation index is
0.8. We reconstruct these raw SI images by SIM algorithm
[37]; for three raw SI images in the same pattern direction
we get the 1d_SIM image, and for all nine raw SI images we
get the 9_SIM image. Using the 1d_SIM and 9_SIM images
as image pairs for the datasets, a total of 2000 image pairs were
obtained for training, 200 image pairs for validation, and 200
image pairs for testing. All these simulated image reconstruc-
tions were obtained on a grid with a pixel size of 10 nm. The
network was then trained using the 9_SIM and 1d_SIM images
as inputs. After 10,000 iterations, models trained on the data-
sets of points, lines, and curves were obtained. All training was
performed on the cloud server Intel Xeon E5-2650L, with
64 GB of RAM and NVIDIA GeForce RTX 2080Ti, for
3 h using the TensorFlow framework. Once the network had
been trained, reconstructing a 512 × 512 image required only
10 s on an office computer.

The trained model was applied to a distinct set of SIM im-
ages generated by the same stochastic simulation. First, model
performance was tested on the dataset of point images (Fig. 2).
A total of 400 points were randomly distributed over the
512 × 512 images. Because of a lack of high-frequency infor-
mation in the y direction, the shape of the points in the
1d_SIM image dataset was oval [Fig. 2(b)], and some closely

Fig. 2. Experimental comparison of imaging modes with a database of point images. For all methods, nine raw SI images were used as the basis for
processing. (a) The WF image was generated by summing all raw SI images. (b) 1d_SIM images were generated by three raw SI images in the x
direction. (c) The 3_SIM images formed the output of the CNN training. (d) 9_SIM image reconstructed from nine SI raw images as the ground
truth. The enlarged area shows neighboring beads in the dashed box. In both the 3_SIM and the 9_SIM images, the beads are distinguishable and
yield a resolution beyond the diffraction limit, which 1d_SIM images cannot realize. The resolution of the point is shown in (e).
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spaced points could not be distinguished in this direction.
Figure 2(c) shows that the neural network successfully resolved
the issue of the closely spaced points, providing a good match
for the 9_SIM images [Fig. 2(d)]. Similarly, points that could
not be distinguished in the y direction of the 1d_SIM images
were rendered distinguishable. Figure 2(e) shows the full width
at half-maximum (FWHM) of the points in each image, and
we can see that the neural network (3_SIM) can achieve a res-
olution similar to that of the traditional SIM method (9_SIM).

To further quantify this improvement in resolution achieved
by the CNN, complex graphics were used to test the proposed
method. Figure 3 shows the training results of the proposed
method on the dataset of lines. Each image contained 50
straight lines with different slopes. Using the pretrained deep
neural network and inputting the 1d_SIM images [Fig. 3(b)],
images with enhanced resolutions were generated as shown in
Fig. 3(c). A number of features were clearly resolved in the net-
work output, providing very good agreement with the ground
truth (9_SIM) images shown in Fig. 3(d). In Fig. 3(e), we can
see that in the lines image, the neural network can still achieve
the same resolution as SIM.

Figure 4 shows the training results of the proposed method
on the dataset of randomly generated curves. After the training
phase, the neural network blindly took an input image
[1d_SIM, Fig. 4(b)] and output a super-resolved 3_SIM image
[Fig. 4(c)] that matched the 9_SIM image [Fig. 4(d)] of the
same sample. The resolution of the image was significantly
improved (as shown in the dotted box).

The proposed method was also tested on a homemade setup
of total internal reflection structured illumination microscopy
(TIRF-SIM) shown in Fig. 5. Large datasets are typically used
to train a deep neural network, but obtaining massive amounts
of experimental images is challenging. A large dataset was ob-
tained here by cutting the experimental images.

Fluorescent beads [labeled with Rhodamine 6G (R6G)
molecules, Bangs Laboratories] with a nominal diameter of

100 nm were imaged using a SIM system. The microscope
was equipped with an oil-immersion objective lens. (Olympus,
NA � 1.4, 100×), and the excitation light was 532 nm. The
peak wavelength of emission of fluorescence was 560 nm. An
sCMOS (scientific complementary metal oxide semiconductor)
camera (Hamamatsu, ORCA-flash 3.0) was used, with each
pixel representing 65 nm in the sample plane.

Images of size 2048 × 2048 were used in the experiment.
The SIM algorithm (fairSIM ImageJ plugin [38]) was used
to obtain the 1d_SIM and 9_SIM images. We cropped the
1280 × 1280 images in the center area for each SIM image

Fig. 3. Using deep learning to transform images in the dataset of lines from 1d_SIM to 9_SIM. (a) WF line image. (b) 1d_SIM line image used as
network input. (c) 3_SIM line image used as network output. (d) 9_SIM line image used as contrast. (e) The achieved resolution of different
approaches of line images.

Fig. 4. Deep learning-enabled transformation of images of curves
from 1d_SIM to 9_SIM. (a) WF curve image. (b) 1d_SIM image
of curves used as input to the neural network. (c) 3_SIM image that
was the network output, compared to the (d) 9_SIM image.
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where there were the most fluorescence points. Then these
images were cropped into smaller regions: 512 × 512 size
images every 256 pixels. Finally, 16 image pairs were obtained
for each raw SIM image pair, and a total of 6816 image pairs for
426 raw SIM image pairs. A total of 3000 image pairs were
filtered out as the training dataset, 200 as the validation dataset,
and 200 image pairs as the testing dataset. The exposure time of
each SIM picture is 200 ms, and each pixel in the cropped
image represents 32.5 nm. The NA of the objective lens and
the wavelength of the laser are consistent with the simulation,
and the average modulation index of the pattern is 0.4.

The training model was obtained after 10,000 iterations,
and then we applied it to the 1d_SIM nanoparticles’ test data.
As shown in Fig. 6(b), some of the nanobeads in the samples
were closely spaced. The 1d_SIM image could be super-
resolved in only one direction; the other directions, within
the classical diffraction limit, that is, under ∼270 nm therefore
could not be resolved in the 1d_SIM images. After network
reconstruction, these closely spaced nanoparticles were resolved
in all directions [Fig. 6(c)], and the resulting picture was con-
sistent with that of the 9_SIM images [Fig. 6(d)] in the same
regions of the sample. As seen in the line chart on the right of
Fig. 6, deep learning achieves a similar resolution to SIM, and
both can separate the center distance from the two points of
195 nm and 162 nm.

For a quantitative assessment of the quality of the images
output by the network, the corresponding root mean square
error (RMSE), peak signal-to-noise ratio (PSNR), structural
similarity (SSIM index) [39], and mean structural similarity in-
dex (MSSIM) [40] were computed as shown in Table 1. The
SSIM and MSSIM correlated well with judgments based on the

human visual perception. These indices were used to evaluate
the differences between the images output by the network and
the 9_SIM images. For any kind of images, the difference be-
tween the network’s output and the 9_SIM image was minor.
This shows that the proposed method is effective at SIM
imaging. The number of images needed to achieve the same
resolution as traditional SIM imaging was reduced.

Deep learning can also be used to transform images from
wide field (WF) to SIM [41], but the proposed method has
shortcomings. In WF-to-SIM transformation (WF2SIM), the
high-frequency information is completely recovered through
the guess of the neural network. But in 1d_SIM-to-SIM trans-
formation (1d_SIM2SIM), some high-frequency information
already exists in the image, and the neural network does not
completely recover the high-frequency information by guessing.
The WF2SIM method was compared with the 1d_SIM2SIM
method, and we proved the superiority of the latter.

As shown in Fig. 7(a), assuming that the fluorescent lumi-
nescence was isotropic and the distribution of intensity of
the light source was Gaussian, its Fourier transform was also
Gaussian and the spectral distribution was highly symmetric.
In particular, this assumption can be guaranteed at the spatial
resolution of SIM because it (∼100 nm) is higher than the size
of the fluorescent molecules (∼1 nm). The final fluorescence
belonged to fluorescence group luminescence. In fluorescence
imaging, the samples were labeled according to the fluorescent
molecules, and the final images represented the total lumines-
cence of a large number of fluorescent groups. This corre-
sponded with the spatial spectral plane, which was also the
spatial spectral superposition of all fluorescent groups. Owing
to the symmetry of the spatial spectrum of a single fluorescent

Fig. 5. Experimental setup for the TIRF-SIM. A laser beam with a wavelength of 532 nm was employed as the light source. After expansion, the
light was illuminated into digital micromirror device (DMD) and generated structured illumination. A polarizer and a half-wave plate were used to
rotate the polarization orientation; a spatial mask is used to filter the excess frequency components. The generated structured illumination is tightly
focused by a high-numerical-aperture (NA) oil-immersion objective lens (Olympus, NA � 1.4, 100×) from the bottom side onto the sample. The
sample was fixed at a scanning stage and was prepared with the following procedures. A droplet of dilute nanoparticles (100 nm, attached with R6G
molecules) suspension was subsequently dropped onto the prepared cover slip and evaporated naturally. After rinsing with water and air drying, the
sample was ready for use.
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group, the spectrum of the final images featured high spatial
association as shown in Fig. 7(a).

We calculate the correlation of the spectrum information
with a length of 2K (K is the OTF cutoff frequency) in the
x direction and the y direction (see Data File 1). All the calcu-
lated correlation coefficients are between 0.5 and 0.8, so the
two segments of 1D spectrum information in the x-axis and
y-axis directions can be considered to be significantly corre-
lated. If two pieces of information are related, then they must
not be independent. Therefore, the spectrum information in all
directions (for example, on the x axis and y axis) is highly
related. Characteristics of the spatial spectral correlation of
the fluorescent groups on the spatial spectral plane were
determined using CNNs. Then, based on the one-dimensional
high-precision spatial spectrum measured, we can use CNNs to

extend the two-dimensional high-precision spatial spectrum,
which can reconstruct high-resolution image of SIM.

In the process of WF2SIM, the network was used to recover
high-frequency information in the image [Fig. 7(b)]. Although
the output image was highly consistent with the target image, it
lacks a certain degree of credibility in theory because the high-
frequency information was completely estimated by the neural
network.

In the 1d_SIM2SIM process, some high-frequency informa-
tion was already present in the images [Fig. 7(c)] and was re-
covered by the frequency shift in SIM. Because of the high
symmetry of the spectrum, this high-frequency information
was also available in other directions. To better visualize the
recovered high-frequency information, the results are presented
in Fourier space. The spectrum of the WF image was mostly
concentrated in the green dotted line region, the 1d_SIM al-
gorithm expanded the spectrum in the x direction (blue dotted
line region), and the 9_SIM expanded the spectrum in all three
directions (yellow dotted line region). The image following
neural network processing expanded the spectrum, which
became nearly consistent with 9_SIM.

Different models were trained using different numbers
of data items for the WF2SIM and 1d_SIM2SIM training
datasets, and they were used to reconstruct the WF and

Fig. 6. Comparison of the experiment results of deep learning [(c) 3_SIM]) with (a) WF, (b) 1_direction SIM, and (d) 9_SIM. Wide-field images
were generated by summing all raw images, 1d_SIM images were reconstructed using three SI raw images in one direction (x), and the 9_SIM images
were reconstructed from all nine SI raw images and used as ground truth compared with the 3_SIM images. The 1d_SIM image was used as input to
the network to generate the 3_SIM images. The dotted frame in the figures shows an enlarged view of two areas (A and B), where the intensity
distribution of the white dotted line is shown in the line chart on the right. In (a), two closely spaced nanobeads that could not be resolved by TIRF
microscopy, and the 1d_SIM image super-resolved in one direction in (b). The trained neural network took the 1d_SIM image as input and resolved
the beads, agreeing well with the SIM images.

Table 1. Performance Metrics of the Proposed Method
on the Testing Data

Method RMSE PSNR SSIM MSSIM

Point (simulated) 7.4610 30.7772 dB 0.9796 0.9387
Line (simulated) 5.3098 30.6402 dB 0.9772 0.9291
Curve (simulated) 7.7903 28.4899 dB 0.9660 0.8989
Nanoparticles (real) 6.9316 28.7126 dB 0.9297 0.8347
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1d_SIM images, respectively. Figures 8(e)–8(h) show the recon-
structed WF image where some details were not restored; but in
the reconstructed 1d_SIM images, the detail was correctly re-
constructed [Figs. 8(b) and 8(c)]. In Figs. 8(i) and 8(j), trans-
formations of the loss functions of the generator and cyclic
consistency by the neural network are shown. The curve of
the loss function of 1d_SIM converged more easily, whereas that
of the WF struggled to converge, indicating the uncertainty in
the recovery process of the WF image. Hence, 1d_SIM can
better recover image detail and train the network model more
efficiently, even though it requires two more images.

4. CONCLUSION

Since the introduction of structured illumination microscopy,
numerous algorithms have been developed to reconstruct super-
resolved images from SI images. Considerable effort has been
invested to reduce the number of raw SI frames, but images gen-
erated by such treatment are poor and require parameter tuning.

This study proposed a fast, precise, and parameter-free
method for super-resolution imaging using SI frames. Unpaired
simulated SIM images were used for unsupervised training by

the CycleGAN network. The results of experiments showed that
the CycleGANused in this work performed well to help generate
a reconstructed SIM image from three raw SIM frames (3_SIM).
The quality of the generated image was very similar to the origi-
nal nine-frame SIM image (9_SIM). The image reconstructed
using 1d_SIM images through CNNs yielded images of better
quality than that reconstructed from the WF image. During
network training, 1d_SIM to 9_SIM also delivered better per-
formance. In addition, recent studies [42] have shown that
the frames in SIM can also be reduced by using U-net, and
achieve super-resolution imaging with reduced photobleaching.
However, in this method, U-net training requires a large amount
of computing resources, so the training efficiency is far less than
that of the CycleGAN used in this paper.

The central idea of the proposed technique is based on the
observation that the SI image datasets contained a large amount
of structural information. By the principle of ergodicity, stat-
istical information learned from such large datasets ensembles
in a 1d_SIM image is sufficient to predict 9_SIM images with
high fidelity.

All images were blindly generated here by the deep network:
that is, the input images were not previously seen by the

Fig. 7. Fourier analysis of the reconstructed images. (a) Comparison of the frequency spectrum of images with different numbers of Gaussian
points. The frequency spectrum of the Gaussian points is highly symmetrical. (b) The different colors indicate different types of frequency-related
information. The yellow area represents the frequency-related information of the original image, and the green area represents information restored
by the network. The grid in (b) represents the relationship between the available frequency-related information and the frequency-related infor-
mation recovered by the network. (c) The Fourier transform of the reconstructions in Fig. 2 was used to obtain the spectra. To illustrate the Fourier
coverage of each model, three circles are marked in each image, where the green–yellow circle corresponds to support for the WF image, the blue
circle corresponds to that for the 1d_SIM image, and the yellow circle represents support for the 3_SIM and 9_SIM images.
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network. Thus, the network can recover images by learning
missing high-frequency information from large datasets, instead
of merely replicating the images.

As a purely computational technique, the proposed method
does not require any changes in current systems of microscopy
and requires only standard 1d_SIM and 9_SIM images for
training. Although different types of images need to be trained
separately, the neural network used in our method enables us to
complete the training efficiently. Once the model has been
trained, it can be applied to new 1d_SIM images to rapidly
generate a 9_SIM image. This approach can also be extended
to nonlinear SIM to reduce the number of frames needed to
render it suitable for bio-imaging.
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Fig. 8. Comparing WF to 9_SIM with 1d_SIM to 9_SIM. (a) The 9_SIM image reconstructed from nine SI raw images. (b)–(d) Network
output, 200, 500, and 900 image pairs (1d_SIM and 9_SIM) were used to train the network models, respectively. (e)–(h) Network
output, using 100, 200, 500, and 900 image pairs (WF and 9_SIM) as datasets to train the network models. Each network underwent
10,000 iterations. Some details were not correctly restored in the WF-to-9_SIM training model. The arrows in (a)–(h) point to a missing
detail.
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