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The evolutions of polarization and orbital angular momentum (OAM) states of light in helically twisted bire-
fringent photonic crystal fibers (TB-PCFs) are analyzed. It is shown that a circular polarization (CP) component
(S3 of a Stokes parameter) is periodically excited when usual linearly polarized (LP) modes of PCF are launched.
The excitation originates from a geometric phase in TB-PCFs. The S3 excitation is larger for larger linear
birefringence for a fixed twisting rate. If the linear birefringence is large enough, a CP filtering behavior can
be seen in addition to the S3 excitation. From the analytical consideration of the sign of the geometric phase,
the TB-PCF with periodical inversion of twisting is proposed to generate arbitrary polarization state on the
Poincaré sphere. Next, an OAM state generation in multimode TB-PCFs is shown for higher-order LP mode
input. By observing a far-field interference pattern from TB-PCF mixed with LP01 mode, a vortex associated
with the OAM state can be seen. Similar to the single-mode case, by using periodical twisting inversion, efficient
OAM generation is possible. These results indicate that by simply launching fiber’s LP mode into TB-PCF,
arbitrary polarization and OAM states can be generated, leading to a novel mechanism for the manipulation
of the spatial state of light. © 2020 Chinese Laser Press

https://doi.org/10.1364/PRJ.393255

1. INTRODUCTION

A chiral fiber grating (CFG) is an attractive candidate for con-
trolling various spatial states of light, such as polarization,
guided mode, and optical angular momentum (OAM). From
the first report of a circular polarized light filtering behavior in
CFG [1] with birefringent core, many experimental works have
been reported, such as polarization-dependent filtering in
single- and double-helix fiber [2]. To explain complex polari-
zation behavior in the CFGs, theoretical studies have also been
conducted [3,4]. In Ref. [4], the guided modes in elliptical core
twisted fibers (double-helix) were intensively studied, and the
coupling between core and cladding modes affects the transmis-
sion characteristics and the selection rule of the coupling was
proposed. In these studies, only the guided mode of the twisted
fiber was investigated, and the longitudinal evolution of the
spatial state of light has hardly been discussed.

Recently, helically twisted photonic crystal fibers (PCFs)
were proposed and fabricated [5] that have periodic dips in
the transmission spectra originating from the coupling between
core and cladding modes with OAM. After this report, many
unique features of twisted PCF were discovered, such as an

optical activity and a circular dichroism [6–8], higher-order
OAM mode generation [9] at a wavelength near the dip,
and a circular-polarized mode filtering in off-axis core twisted
PCFs [10]. In PCFs, it is easy to incorporate the linear bire-
fringence by changing the size of a part of air holes. The mag-
nitude of the linear birefringence can also be easily tuned
with the size of air holes. Therefore, twisted birefringent
PCFs (TB-PCFs) can be viewed as a new kind of CFG and
a good platform for controlling the spatial state of light.

In Ref. [11], a preliminary work on TB-PCF was presented.
Formulating the light propagation in single-mode TB-PCF
with a periodically inverted twisting based on a transfer-matrix
approach, the theoretical analysis of the polarization state,
group velocity dispersion, and adiabatic connection to usual
fiber were demonstrated. However, important physical phe-
nomena in twisted fibers, such as circular dichroism, discovered
by full-vector modeling methods [6–8], were not demon-
strated. Also, a uniform TB-PCF was not treated. Furthermore,
the formulation was done with the two modes (x and y modes),
and OAM generation with the topological charge >0, which is
an important topic for twisted fibers, was not treated.
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In this paper, the polarization (including OAM) state of
TB-PCFs is thoroughly investigated with the full-vector
analysis method. It is shown that a circular polarization (CP)
component (S3 of the Stokes parameters) is periodically excited
[12] in uniform TB-PCFs when usual linearly polarized (LP)
modes of a PCF are launched. The periodic excitation is inter-
preted as an effect of a geometric phase [13] in TB-PCFs. The
S3 excitation is larger for larger linear birefringence for a fixed
twisting rate. If the linear birefringence is large enough, a CP
filtering behavior can be seen in addition to the S3 excitation.
From the analytical consideration of the sign of the geometric
phase, the method for efficiently accumulating the phase
difference between two CPs is discovered. Based on this idea,
TB-PCFs with periodical inversion of the twisting are analyzed
to generate an arbitrary polarization state on the Poincaré
sphere. Next, the polarization state of the multimode TB-PCFs
is investigated for the first time. An OAM state generation in
multimode TB-PCFs is shown for higher-order LP mode input.
By observing a far-field interference pattern (FFIP) from TB-
PCF mixed with LP01 mode, a vortex associated with the OAM
state can be seen. Similar to the single-mode case, with the peri-
odical twisting inversion, efficient OAM generation is possible.
These phenomena are analyzed by the recently developed rig-
orous full-vector beam propagation method (BPM) specially
formulated for helicoidal waveguides [14–16], which can ex-
plain the experimental transmission spectra and polarization
states of helically twisted PCFs, both qualitatively and quanti-
tatively. By using the helical BPM, it is possible to track the
longitudinal evolution of the polarization state in the fiber with
an arbitrary input condition by considering important physical
phenomena, such as CP filtering, which is difficult for conven-
tional analysis methods based on guided mode analysis. The
results shown in this paper make the understanding of optical
physics in twisted waveguides deeper and are useful for fiber-
based polarization and OAM controlling devices [17–20], since
it adds new degrees of freedom to control the spatial state
of light.

2. BPM FOR HELICOIDAL WAVEGUIDES

In the theoretical analysis of helically twisted PCFs, a guided
mode analysis based on the finite-element method (FEM) for-
mulated for helical systems [21–23] has been used. In this
FEM, the concept of transformation optics [24] is used for
the formulation, namely, the helically twisted structure is re-
placed with a straight waveguide with equivalent permittivity,
ε, and permeability, μ, tensors. For the twisted waveguides, left
CP and right CP (LCP and RCP) modes are obtained from this
guided mode analysis and much information can be extracted.
However, it is difficult to treat longitudinal evolution of
the spatial state of light in a waveguide with arbitrary input
conditions. For example, in most experiments, the input light
seems not to be in the CP mode, but in the LP mode.
Therefore, a BPM analysis is more suitable for investigating
the longitudinal behavior of the spatial state of light in the
twisted waveguides. Here, we briefly summarize the BPM
for helicoidal waveguides.

We consider a helically TB-PCF, shown in Fig. 1. The ori-
gin is at the center of the fiber. The cladding is composed of

hexagonally arranged air holes with diameter d and pitch Λ.
There are six rings of air holes, and there is no air hole at
the center of the array that forms the core. The diameters of
two side holes adjacent to the core are d side. If d � d side, there
is no linear birefringence. The computational window is a
circle, and the outer region is a cylindrical perfectly matched
layer (CPML) region with a thickness dPML. The fiber is
helically twisted along the z direction with a twisting rate of
α [rad/m]. The propagation direction is z, and xy is the trans-
verse plane. The transformation between helical and modeling
coordinates is given by

x 0 � x cos�αz� � y sin�αz�, (1a)

y 0 � −x sin�αz� � y cos�αz�, (1b)

z 0 � z: (1c)

Here, the notations x, y, and z denote the modeling coordi-
nates, in which the numerical discretization is made, and
x 0, y 0, z 0 are the original coordinates. Due to the equivalence
under the coordinate transformation of Maxwell’s equations,
the following wave equation is satisfied for both coordinates:

∇ × �μ−1r ∇ × E� − k20εrE � 0, (2)

where E is the electric field vector, εr and μr are the relative
permittivity and permeability tensors, and k0 is the free-space
wavenumber. In the modeling coordinate, εr and μr are modi-
fied due to the coordinate transformation, and are given by

εr � n2�x, y, z�T −1
metric, (3)

μr � T −1
metric: (4)

Here, we assume an ordinary optical isotropic medium with a
refractive index of n and a relative permeability of 1 in the origi-
nal coordinate. T metric is a metric tensor and is given by

Fig. 1. Schematic of (left) three-dimensional structure and (right)
cross section of TB-PCF. The number of rings in the three-
dimensional sketch is reduced for clarity. The simulation is carried
out for the cross section shown in the right panel. The dashed lines
are a square with the side length of 2Λ. The inside area is used to
calculate the Poynting vector in the core.

Research Article Vol. 8, No. 8 / August 2020 / Photonics Research 1279



T metric

� J T J
det J

�

2
64
s cos2ϕ� s−1 sin2ϕ �s − s−1� sin ϕ cos ϕ αrs−1 sin ϕ

�s − s−1� sin ϕ cos ϕ s sin2ϕ� s−1 cos2ϕ −αrs−1 cos ϕ

αrs−1 sin ϕ −αrs−1 cos ϕ s−1�1�α2r2�

3
75,

(5)

where J is the Jacobian matrix between the helical and
Cartesian systems. By using these tensors given by Eqs. (3)
and (4), we can treat the twisted PCF as a simple straight wave-
guide. We consider a propagating field with reference index n0
in the positive z direction as

E�x, y, z� � e�x, y, z� exp�−jk0n0z�: (6)

By substituting Eq. (6) into Eq. (2) and discretizing the wave-
guide cross section with full-vector FEM, we can obtain march-
ing equations used for BPM. Detailed formulation can be
found in Refs. [14,15] together with qualitative and quantita-
tive comparisons with experimental transmission spectra.

3. TRANSMISSION CHARACTERISTICS OF
TB-PCF

A. Basic Characteristics
We consider TB-PCF, shown in Fig. 1, with d � 1.1 μm and
Λ � 2.9 μm. We added a CPML region with the thickness of
d PML � 2 μm outside the analysis region (a circle with the ra-
dius of 20 μm). The air hole at the center of the fiber is missing
to form the core, and diameters of the two holes adjacent to the
core in the x direction are changed to d side. The refractive index
of silica is calculated by the Sellmeier formula described in

Ref. [25]. The top left panel of Fig. 2 shows the effective re-
fractive index (neff ) of PCF without twisting (α � 0) as a func-
tion of d side. In this paper, the wavelength of the light is
λ � 1.2 μm. The neff of the y-polarized mode (neff ,y) is larger
than that of the x-polarized mode (neff ,x) because the air hole in
the x direction is large. In the same figure, the linear birefrin-
gence of the PCF as a function of d side is shown. The linear
birefringence is given by

B � neff ,x − neff ,y: (7)

For larger values of d side, the absolute value of B becomes larger,
and it is larger than 2 × 10−4 for d side > 2 μm. The top right
panel of Fig. 2 shows a polarization beat length (Lpol) and
polarization twisting rate (αpol) as functions of d side. Lpol
and αpol are given by

Lpol �
λ

jBj , (8)

αpol �
2π

Lpol
: (9)

The effect of αpol and the twisting rate of the fiber α will be
discussed later.

The bottom panel of Fig. 2 shows neff of the fundamental
modes of PCF as a function of α for different values of d side

calculated by helical FEM [21–23]. The circular birefringence
[6] can be seen as a split of neff to upper and lower branches.
One corresponds to RCP and the other corresponds to LCP.
The linear birefringence affects the modes much more for lower
values of α.

B. Polarization States in TB-PCF
Figure 3 shows the optical power in the core of TB-PCFs as a
function of propagation distance for d side � 1.5, 2, and
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2.5 μm. The step size in the BPM simulation is 10 μm. The
twisting rate is α � 0.006 rad∕μm. Here, the positive value of
α corresponds to counterclockwise rotation from the viewpoint
of �z. The input light is LCP (Fig. 3, left) or RCP (Fig. 3,
right) and obtained by summing orthogonal fundamental
modes with a 90° phase difference, namely,

E� � E x � jE y, (10)

where E x and E y correspond to the x- and y-polarized funda-
mental modes of non-twisted PCF calculated by full-vector
FEM [26]. The plus sign is for RCP and the minus sign is
for LCP. Here, the optical power in the core is defined as
the Poynting vector surrounded by the dashed line in the right
panel of Fig. 1 (square with the side length of 2Λ ). For
d side < 2.0 μm (small linear birefringence), the loss difference
between LCP and RCP is <0.1 dB after 30,000 μm propaga-
tion. For large linear birefringence with d side � 2.5 μm, the
loss of the LCP mode is larger than that of the RCP mode,
and the difference is large (1.7 dB after 30 mm propagation,
or 57 dB/m), showing the emergence of circular dichroism [7]
due to the twisting. The left panel of Fig. 4 shows Stokes
parameters S1, S2, and S3 (normalized by S0) calculated by
BPM as a function of the propagation distance for TB-PCF
with d side � 2.0 μm and α � 0.006 rad∕μm. The x-polarized
fundamental mode (Ex mode) of non-twisted PCF is launched
(Ex input). Stokes parameters [27] are evaluated by

S0 �
�Z

jExjdS
�

2

�
�Z

jEyjdS
�

2

, (11a)

S1 �
�Z

jEx jdS
�

2

−

�Z
jEyjdS

�
2

, (11b)

S2 � 2

Z
jExjdS

Z
jEyjdS cos�ϕy − ϕx�, (11c)

S3 � 2

Z
jEx jdS

Z
jEyjdS sin�ϕy − ϕx�, (11d)

where ϕy − ϕx is the phase difference between Ey and Ex at the
center of the core. The integration is done over the cross section
of the fiber. In this paper, S1, S2, and S3 are normalized by S0 at
each propagation step. Note that these Stokes parameters
can be used for the LP01 mode only, which has the maximum

field at the center of the core. From Fig. 4, there are two distinct
features in the Stokes parameters. First, S1 and S2 are periodi-
cally exchanged. The period corresponds to the period of fiber
twisting, and the phenomenon can be explained as follows. At
the start, S1 � 1 because Ex mode is input. After a 90° rota-
tion, the polarization becomes y polarized (S1 � −1) and after a
180° rotation, the polarization becomes x polarized again. This
is so-called optical activity. Second, S3 is periodically excited.
After a 90° rotation, the absolute value of S3 is at a maximum,
and after 180° rotation, the value becomes 0 again. The right
panel of Fig. 4 shows S3 as a function of propagation distance
for PCFs with d side � 1.1, 1.5, and 2.0 μm as well as
α�0.006 rad∕μm. For d side � 1.1 μm, there are no excitations
of S3, since there is no linear birefringence. For d side � 1.5
and 2.0 μm, the periodic excitation of S3 can be seen, and the
magnitude of excitation is larger for large linear birefringence.
Since it is difficult to explain this complex polarization evolution
(the periodic excitation of S3 ) with only the BPM results, we
formulate a simple analytical beam propagation model based on
a weak guiding approximation, which is summarized in the
Appendix A. Key results are summarized as follows.

We consider a twisted birefringent waveguide shown in
Fig. 16 in the Appendix A. The waveguide is twisted along the
z direction, and an azimuthal rotation angle is θ � αz. We as-
sume that the reference indices for x- and y-polarized modes are
nx and ny when θ � 0. From the analytical results of the
propagation equation for x- and y-polarized modes, two basis
transformations are performed, namely, xy to eo basis and eo to
RCP-LCP basis. Finally, we obtain the propagation equation as

ΨRL�z � Δz� � U RL�θ�ΨRL�z�, (12)

U RL � P−1U eoP � e−jk0naceΔz
�

cos γ j sin γe−2jθ

j sin γe2jθ cos γ

�
,

(13)

where ΨR and ΨL are complex fields of RCP and LCP com-
ponents. Other symbols are defined in the Appendix A. Here,
an additional phase given by e2jθ with the opposite sign in non-
diagonal terms is called the “geometric phase.” By using these
equations, the evolution of input light (CP or LP modes) in the
rotated frame can be calculated easily. If Δz is sufficiently small,
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the beam propagation in the twisted waveguides can be treated
by concatenating two segments, θ and θ� Δθ.

The left and right panels of Fig. 5 show the same data as in
Fig. 4, but calculated by the analytical method (in the right
panel of Fig. 5, the results for d side � 2.5 μm are added).
From the left panel of Fig. 5, it is shown that the optical activity
(periodic exchange of S1 and S2) and the periodic excitation of
S3 can be reproduced. The way to understand the phenomena
is the term of e2jθ contained in Eq. (13). If the value of θ � 0,
S3 excitation disappears, and therefore, the physical reason for
the periodic excitation of S3 can be attributed to the geometric
phase [13], existing in twisted waveguides. From Fig. 5, the
magnitudes of excitation of S3 are consistent with BPM results
and are larger for larger linear birefringence. However, the
behavior is different from the analytical results for larger values
of B. Figure 6 shows S3 as a function of propagation distance
for PCF with d side � 2.5 μm with α � 0.006 rad∕μm calcu-
lated by the analytical method and BPM. The polarization
behavior becomes more complex compared with the analytical
results shown in Fig. 5. Negative S3 (LCP) is first excited peri-
odically as in the analytical results; however, around 5000 μm,
the S3 leans to the positive (RCP) side. The effect can be
explained by the circular dichroism shown in Fig. 3. Since
the loss of LCP is larger than that of RCP in TB-PCF with
d side � 2.5 μm, the LCP component contained in Ex mode
is lost during propagation (the LP mode can be expressed

by the sum of LCP and RCP modes). Due to the loss differ-
ence, the S3 gradually approaches the RCP side for long-
distance propagation.

Figure 7 shows S3 as a function of propagation distance
for PCF with d side � 1.5, 2.0, and 2.5 μm with α �
0.006 rad∕μm for Ey mode input. For low linear birefringence
(d side � 1.5 and 2.0 μm), completely opposite polarization is
excited compared with the Ex mode input. For large linear
birefringence (d side � 2.5 μm), the polarization state rapidly
approaches the RCP side because the LCP component is
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not excited for Ey mode input and the LCP components con-
tained in Ey mode are lost due to the circular dichroism during
propagation.

Summarizing the results so far, the polarization behavior in
the TB-PCFs is very complex, depending on the magnitude of
the linear birefringence. For the PCF with small linear birefrin-
gence, there are two features in their polarization state, namely,
optical activity and periodical excitation of S3, originating from
the geometric phase. For the PCF with large linear birefrin-
gence, in addition to the above features, the circular dichroism
makes the polarization behavior more complex.

C. Effect of Twisting Rate
The left panel of Fig. 8 shows the optical power of TB-PCFs as
a function of propagation distance for d side � 2.5 μm. The
twisting rate is α � 0.0024, 0.006, and 0.01 rad/μm. The in-
put light is LCP or RCP mode. For a larger twisting rate, the
circular dichroism is also larger, since, for a large twisting rate,
many cladding modes are phase-matched to the core mode
[28,29]. The right panel of Fig. 8 shows S3 as a function of
propagation distance for PCF with d side � 2.5 μm for Ex
mode input. The magnitude of periodical excitation of S3 is
maximum for α � 0.0024 rad∕μm and is smaller for the larger
twisting rate. This is because αpol ≃ α � 0.0024 rad∕μm, as
shown in Fig. 2. For α � 0.01 rad∕μm, the polarization state
approaches the RCP side due to the large circular dichroism.
From these results, the periodical excitation of S3 becomes large
when the twisting rate of the fiber is similar to that of the
polarization twisting rate. For the large twisting rate, due to
the phase matching to the cladding mode, the circular dichro-
ism becomes large and CP filtering behavior can be seen.

D. Wavelength Dependence
The left panel of Fig. 9 shows the transmission spectra of TB-
PCFs as a function of propagation distance for different values
of d side and the twisting rate of α � 0.006 rad∕μm. The input
light is in the Ex mode, and the fiber length is 30,000 μm. For
d side < 2.0 μm, there are several decibel losses in the shown
wavelength range. For d side � 2.5 μm, the loss increases due
to the circular dichroism, especially for the long wavelength
side. The center panel of Fig. 9 shows S3 as a function of propa-
gation distance for different wavelengths, and the right panel is
the enlarged view. For the long wavelength side, the excitation
of S3 in one period is larger. This is because αpol is close to α for
the long wavelength side. For long-distance propagation, S3
leans toward the RCP side due to the large loss of the LCP
mode. The slope for the RCP mode is larger for the long
wavelength due to the larger LCP loss.

E. Periodic Inversion of Twisting
From the results in Fig. 4, when the Ex mode is launched, the
negative S3 is excited, and the absolute value of the S3 com-
ponent is at a maximum at 90° rotation and then returned to
zero at 180° rotation. Therefore, the accumulated phase shift
between 0° and 90° is canceled out between 90° and 180°
rotation. If the sign of the geometric phase can be inverted be-
tween 90° and 180° rotation, the accumulated phase shift is not
canceled out and continuously accumulated, leading to a larger
S3 excitation. The sign inversion of the geometric phase can be
achieved by changing the direction of twisting (the sign of α )
periodically, as shown in the inset of Fig. 10, where Λtwist �
2π∕α. Although the fabrication of the structure is not easy,
it is interesting to see what happens if the structure can be fab-
ricated. According to Ref. [5], a permanent twist can be pro-
duced with proper processing. Therefore, multiple splicing of
inverted sections may be one of the fabrication methods. Also,
the length of each region cannot be Λtwist∕4. Since the excita-
tion of S3 is periodic, the length should be NΛtwist � Λtwist∕4
(N is an integer), and the length of each section can be
lengthened.

The left panel of Fig. 10 shows Stokes parameters calculated
by the analytical method for TB-PCF with d side � 2.0 μm and
α � 0.0024 rad∕μm. The Ex mode is launched, and the sign
of α is periodically inverted at each 90° rotation (Λtwist∕4 �
655 μm). Vertical dashed lines are the distance corresponding
to integer multiples of Λtwist∕4. As shown in the figure, the S3
component is constructively accumulated at each Λtwist∕4, and
the generation of a perfect CP mode is possible. The right panel
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of Fig. 10 shows the same data, but calculated with BPM.
Both results agree very well, and the correctness of the analyti-
cal results is confirmed by numerical full-vector simulation.

The left panel of Fig. 11 shows the Poincaré sphere plot of
the polarization state of constantly twisted TB-PCF with
d side � 2.0 μm and α � 0.0024 rad∕μm. The Ex mode is
launched (S1 � 1), and the length of the fiber is 2000 μm.
In this case, S3 is periodically excited as in Fig. 4, and the tra-
jectory on the Poincaré sphere is elliptical. The center panel of
Fig. 11 shows the same plot, but with periodic α inversion. At
the inversion point, the polarization state trajectory is not
continuous, and at 2000 μm, an almost perfect LCP mode

is reached (please see Fig. 10). The right panel of Fig. 11
shows the trajectory of the polarization state for α �
0.006 rad∕μm (Λtwist∕4 � 261 μm). Since the length of one
segment is short, the trajectory is more complex. At 2000 μm,
an almost perfect LCP mode is obtained, as in the case of
α � 0.0024 rad∕μm. From these results, periodic inversion
of the twisting adds a novel degree of freedom to control
and generate the arbitrary polarization state.

In the above examples, the value of Λtwist∕4 is some hun-
dreds of micrometers, which is difficult to control if the fiber is
cut and spliced. To show the accumulation of the geometric
phase for long Λtwist, Fig. 12 shows Stokes parameters
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calculated by BPM for periodically inverted TB-PCF
with d side � 1.25 μm and α � 0.000314 rad∕μm (Λtwist �
20,000 μm). The S3 component is constructively accumulated
at each Λtwist∕4, as in the case of Fig. 10.

4. OAM STATE GENERATION IN MULTIMODE
TB-PCF

From the results shown in Section 3.E, it is possible to generate
an arbitrary polarization state in single-mode TB-PCFs by us-
ing periodic twisting inversion. The results lead to a natural
extension to a multimode case. For higher-order LP mode,
complex polarization evolution in TB-PCF may lead to gener-
ating an OAM state with the topological charge ≥1. Here, the
generation of the OAM state is shown by launching the usual
LP mode to multimode TB-PCF.

The left panel of Fig. 13 shows the cross section of
multimode TB-PCF. Seven air holes at the center of the fiber
are missing to form a multimode core, and the diameters of
two holes are changed to d side. Here, we consider multimode

TB-PCF with d � 1.1 μm, Λ � 2.9 μm, and d side � 2.0 μm.
The twisting rate α � 0.00314 rad∕μm. The right panels of
Fig. 13 show the intensity distributions of the Ex modes (LP01,
LP11a, LP11b, LP21a, and LP21b) of the untwisted PCF. There
are also Ey modes with intensity patterns similar to Ex modes.

A. Constant Twisting
Here, the polarization evolution in a uniform multimode
TB-PCF is investigated. The blue solid line in the left panel
of Fig. 14 shows the overlap between input and BPM-
propagated fields as a function of propagation distance for
LP11bx input. Here, the overlap power is defined as

Poverlap �
ZZ

E i ×H �
indxdy, (14)

where E i is the electric field calculated by BPM at the ith step.
H in is the magnetic field of input light. The value of overlap
oscillates with an approximately 1000 μm period. Since the
180° rotation period is 1000 μm, the overlap is at a minimum
at 90° rotation (500 μm) and increases again at 180° rotation.
The periodic nature of the overlap is collapsed for increased
propagation distance. This is due to the phase retardation origi-
nating from the geometric phase in the twisted PCF. The black
dashed line in Fig. 14 shows the total power in the cross section
calculated from the Poynting vector. The loss is small in the
shown length scale.

At some propagation distances, FFIPs from TB-PCF mixed
with the LP01x mode are shown. The FFIP is calculated by [30]

ϕFFP�x,y,z� ≈
jk0n
2πz

exp�−jk0nz�
ZZ

ϕNFP�x0,y0,0�
�
1−

R2

2z2

�

× exp
�
−jk0

R
2z

�
dx0dy0, (15)

where n is the effective index of the free space (in this
case 1), ϕNFP is the near-field pattern (NFP), and R �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�x − x0�2 � �y − y0�2
p

. The FFIP of the output light of
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Fig. 12. Stokes parameters of periodically inverted TB-PCF calcu-
lated by BPM. d side � 1.25 μm and α � 0.000314 rad∕μm. Dashed
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Fig. 13. Schematic of a multimode TB-PCF and its NFPs.

Fig. 14. Overlap powers (blue solid lines) and total Poynting vectors (black dashed lines) as functions of propagation distance for (left) LP11bx and
(right) LP21bx mode input. The inset shows mixed FFIP at the distance marked by red circles.
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TB-PCF with 1000 μm free-space propagation and the FFIP of
input LP mode with 2000 μm free-space propagation are
added. This is the mimic of the typical experiment for OAM
observation. The FFIP evolution is very complex, and at some
distances, a clear single vortex associated with the OAM state
with the topological charge of 1 can be seen. There are both
left- and right-handed vortices. This is probably because the
propagation constants of all four LP11 modes are different,
and the relative phase differences between these modes are
accumulated and not constant. Therefore, at some point the
vortex is left-handed, and at a different point, it is right-handed.
It should be noted that to confirm the value of the OAM,
numerical evaluation of the mode field is effective [31].
However, in this paper, the “propagated field” containing the
components of multiple guided and radiated modes is evaluated
and is not the true mode field. Therefore, the numerical evalu-
ation of the OAM for the BPM field is not easy to use to
determine the OAM order.

The blue solid line in the right panel of Fig. 14 shows the
overlap between input and BPM-propagated fields as a function
of propagation distance for LP21bx input. FFIPs at some distan-
ces are also shown. The evolution is more complex than that of
LP11bx input, and at some distances, a double vortex associated
with the OAM state with the topological charge of 2 can be
seen. The black dashed line in the right panel of Fig. 14 shows
the total power in the cross section calculated from the
Poynting vector. The loss is larger compared with the LP11
mode input.

B. Periodic Inversion of Twisting
Here, the polarization evolution in TB-PCF with periodic
twisting inversion is investigated. The green solid line in the

top panel of Fig. 15 shows the overlap between input and
BPM-propagated fields as a function of propagation distance
for LP11bx input of periodically inverted TB-PCF, together
with NFP and FFIP at 1000 and 2350 μm. The period of twist-
ing inversion is 500 μm (90° rotation). The behavior of the
overlap value is very complex compared with the constant twist-
ing case (blue dashed line). At 1000 and 2350 μm, doughnut-
shaped NFPs are obtained, and left- and right-handed vortex
FFIPs are seen. In terms of the value of overlap, it oscillates with
an approximately 1000 μm period (π rotation) for a constant
twisting fiber. However, the period is slightly shifted from the
integer multiples of 500 μm for long-distance propagation, and
the value of the overlap becomes small. Since the propagation
constants of all four LP11 modes are different, the relative phase
differences among these modes are accumulated. Therefore, the
initial state is not recovered after one rotation, and the differ-
ence from the initial state is accumulated during the propaga-
tion, resulting in different periods and small overlap. The
situation is more complicated in the case of periodic inversion
of twisting.

The green solid and blue dashed lines in the bottom panel of
Fig. 15 show the same one, but for LP21bx input. The period of
twisting inversion is 250 μm (45° rotation). The overlap value
seems to have no more periodicity. At 450 and 1800 μm,
doughnut-shaped NFPs and double-vortex FFIPs are seen.
The black dashed lines in Fig. 15 show the total powers in
the cross section calculated from the Poynting vector. As in
Fig. 14, the loss is larger for LP21 mode input compared with
LP11 mode input in the shown length range. In addition to
these losses, there are intrinsic losses in the real fiber, and they
deteriorate the characteristics further.

Fig. 15. Overlap powers (green and blue) and total Poynting vectors (black) as functions of periodically inverted multimode TB-PCF for (top)
LP11bx and (bottom) LP21bx mode input. The right panels show NFP and mixed FFIP at the distances marked by red circles.

1286 Vol. 8, No. 8 / August 2020 / Photonics Research Research Article



From these results, although OAM states can be generated
both in constant and periodically inverted TB-PCFs, a periodi-
cally inverted TB-PCF has an additional degree of freedom for
controlling the spatial state of light, and there is a possibility
that the length can be shortened for generating the OAM state.

5. CONCLUSION

The spatial state of the light (polarization and OAM) in TB-
PCFs is theoretically analyzed in terms of the effect of linear
birefringence and twisting rate. Recently developed rigorous
BPM analysis revealed that the polarization state of light in the
TB-PCF is very complex, and some features can be extracted
from the analysis. In the TB-PCF with small linear birefrin-
gence, the optical activity and the periodic S3 excitation can
be seen. These two features can be explained with the concept
of geometric phase existing in the twisted waveguides.
Furthermore, a periodically inverted TB-PCF is proposed to
control the polarization. By accumulating the phase rotation
originating from the geometric phase, an arbitrary polarization
state can be generated. In the multimode TB-PCF, the tech-
nique may be useful to effectively generate an OAM state.
These results indicate that the TB-PCF adds a new degree
of freedom to control the spatial state of light and is useful
for fiber-based light-controlling devices.

APPENDIX A

Here, the formulation of an analytical beam propagation model
in birefringent twisted waveguides used in this paper is sum-
marized. We consider a twisted birefringent waveguide, shown
in Fig. 16. The waveguide is twisted along the z direction, and
an azimuthal rotation angle is θ � αz. We assume that the
reference indices for x- and y-polarized modes are nx and ny
when θ � 0. In this case, the propagation equation under weak
guiding approximation (Ψz ≃ 0) between z and z � Δz is

Ψxy�z � Δz� �
�
Ψx�z � Δz�
Ψy�z � Δz�

�
� U xy

�
Ψx�z�
Ψy�z�

�

� U xyΨxy�z�, (A1)

U xy �
�
e−jk0nxΔz 0

0 e−jk0nyΔz

�
, (A2)

where Ψx and Ψy are complex fields of x and y components,
and U xy is a propagation matrix. When the waveguide is

rotated in the xy plane with the angle θ, we assume the
new x and y axes are o and e, as shown in Fig. 16. The complex
fields for new axis Ψeo are given by

Ψeo �
�
Ψe
Ψo

�
� R�θ�Ψxy, (A3)

R�θ� �
�
cos θ sin θ
− sin θ cos θ

�
: (A4)

Then, the field propagation in the eo frame is given by

Ψeo�z � Δz� � U eo�θ�Ψeo�z�, (A5)

U eo�θ�
� R�θ�U xyR−1�θ�

� e−jk0naveΔz
�
cos γ� j sin γ cos 2θ −j sin γ sin 2θ

−j sin γ sin 2θ cos γ − j sin γ cos 2θ

�
,

(A6)

where nave � �nx � ny�∕2,Δn � ny − nx , and γ � k0ΔnΔz∕2.
Now, we consider the basis transformation from oe to CP

basis. The transformation is given by

ΨRL �
�
ΨR
ΨL

�
� 1ffiffiffi

2
p

�
1 j
1 −j

��
Ψo
Ψe

�
� P−1

�
Ψe
Ψo

�
, (A7)

P � 1ffiffiffi
2

p
�
1 1
−j j

�
, (A8)

where ΨR and ΨL are complex fields of RCP and LCP com-
ponents. Therefore, Eq. (A5) is transformed into

ΨRL�z � Δz� � U RL�θ�ΨRL�z�, (A9)

U RL � P−1U eoP � e−jk0naveΔz
�

cos γ j sin γe−2jθ

j sin γe2jθ cos γ

�
:

(A10)

Here, an additional phase given by e2jθ with an opposite sign in
nondiagonal terms is called a geometric phase. By using these
equations, the evolution of input light (CP or LP mode) in the
rotated frame can be calculated easily. If Δz is sufficiently small,
the beam propagation in the twisted waveguides can be treated
by concatenating two segments: θ and θ� Δθ.
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