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The field of chiral plasmonics has registered considerable progress with machine-learning (ML)-mediated
metamaterial prototyping, drawing from the success of ML frameworks in other applications such as pattern
and image recognition. Here, we present an end-to-end functional bidirectional deep-learning (DL) model for
three-dimensional chiral metamaterial design and optimization. This ML model utilizes multitask joint learning
features to recognize, generalize, and explore in detail the nontrivial relationship between the metamaterials’
geometry and their chiroptical response, eliminating the need for auxiliary networks or equivalent approaches
to stabilize the physically relevant output. Our model efficiently realizes both forward and inverse retrieval tasks
with great precision, offering a promising tool for iterative computational design tasks in complex physical sys-
tems. Finally, we explore the behavior of a sample ML-optimized structure in a practical application, assisting the
sensing of biomolecular enantiomers. Other potential applications of our metastructure include photodetectors,
polarization-resolved imaging, and circular dichroism (CD) spectroscopy, with our ML framework being
applicable to a wider range of physical problems. © 2020 Chinese Laser Press

https://doi.org/10.1364/PRJ.388253

1. INTRODUCTION

Chiral nanostructures are non-superimposable to their mirror
image, and produce a different optical response for left circu-
larly polarized (LCP) and right circularly polarized (RCP) light
[1–3]. This difference can be quantified by measuring chirop-
tical responses such as circular dichroism (CD) and chiral
anisotropy factor (gCD), providing metrics for the chiral asym-
metry of these structures. Hindered by their small chiral
asymmetry and electromagnetic interaction volume, naturally
occurring chiral structures such as amino acids, DNA, and
RNA exhibit low CD signals, which imposes limits on their
detectability. This limitation can be resolved by coupling
these naturally occurring structures to artificially engineered
plasmonic nanostructures under resonant excitation [4–6].
Plasmonic metamaterials can strongly enhance a molecular CD
signal [6] and even displace it to longer wavelengths due to the
interaction of the strong resonant plasmonic near-field with the
chiral biomolecules [5]. Chiral plasmonic metamaterials exhibit
inherent CD signals whose amplitude depends on the degree of
chiral asymmetry of their geometry and thus presents an avenue
for designing and manipulating nanoscale chiroptical effects.

By changing the geometry of these plasmonic metamaterials
(chiral and nonchiral), one can tune a resonant spectrum
and target specific applications using bio-assembled as well
as nonbiological systems [7,8]. The interaction of biomolecular
structures with superchiral fields from chiral plasmonic nano-
structures can also induce asymmetric changes in the retarda-
tion phase effect of the modes in the nanostructures and
provide fingerprints for enantiomer discrimination [9]. The
range of applications for plasmonic chiral systems also includes,
among others, improved spectroscopy techniques [10,11], pho-
tocurrent generation [3], and bolometry [12]. At the same
time, while chiral plasmonic metastructures offer very strong
CD signals, they also present design and optimization chal-
lenges due to the iterative and case-by-case simulations required
to solve Maxwell’s equations for a given geometry, which can be
a time- and resource-intensive process. Given the complex re-
lationship between chiral plasmonic metamaterials and their
chiroptical response, a data-driven approach to the design and
optimization of the structures can improve its efficiency.

Deep-learning (DL) as a data-driven technique for analysis
and prediction has permeated several disciplines such as natural
language processing [13], image recognition [14], genetics, and
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biology [15,16]. Instead of generating simulation results by
running through predefined systems of equations in a given
geometry, a DL architecture can be trained to recognize patterns
in a given dataset, identify attributes, and predict responses,
thanks to its capability to reproduce arbitrarily complex func-
tions. As a type of representation or feature learning, DL brings
machine learning (ML) closer to artificial intelligence where
human-like and exceedingly challenging tasks can be completed
by trained systems. A typical example of the capabilities of
this technique is the success of deep neural networks with
reinforcement learning in playing games such as shogi, chess,
and Go [17–19]. In recent communications, neural network
models have been utilized as a fast prototyping tool in the design
of metamaterials [20–26]. The generative adversarial network
(GAN) [27] and image processing [28] approaches have also
been used to link the geometry of metamaterials with their op-
tical response. Hybrid techniques consolidating compositional
pattern-producing networks and cooperative coevolution [29]
as well as those blending deep generative models with semisu-
pervised learning [30] have also been proposed for the inverse
design of metastructures. The prediction power of DL models
even extends to the near- and far-field distributions of arbitrary
3D nanostructures [31]. However, DL-based prediction models
for metamaterial design suffer from low accuracy owing to the
huge mismatch between the dimension of input and output
parameter, especially for inverse retrieval designs. Also, the gen-
eration of the training set via traditional simulation routes can
be time and resource intensive for the study of nanoscale chi-
rality, requiring an efficient use of the generated training set dur-
ing the ML design and training. In addition, capturing the local
optima (plasmonic/CD resonances) of chiroptical responses is
challenging for most DL models and sometimes necessitates
the setup of an auxiliary network, which adds to the complexity
of the model [20].

In this communication, we propose an end-to-end multitask
DL (MDL)-based model for the design and optimization of
3D chiral metamaterials. MDL models have gained root in
the computational study of semantics [32] and transportation
[33,34], as well as pose and action recognition [35]. Multitask
learning draws on its implicit data augmentation, eavesdrop-
ping, attention focusing, representation bias, and regularization
for effective and efficient generalization [36,37], eliminating
the need for auxiliary networks or equivalent approaches to
stabilize the model’s output of physically relevant information.

Our MDL model comprises a single bidirectional neural
network solving two tasks: the accurate prediction of the full
chiroptical response of a chiral metamaterial from a set of
geometric parameters, via a forward prediction path, and the
accurate retrieval of the geometric parameters that can produce
a given input of a full chiroptical response, by solving the
inverse problem via an inverse prediction path. To bridge
the mismatch gap and enhance the prediction accuracy for both
forward and inverse predictions, especially at CD and plas-
monic resonances, a joint-learning feature is incorporated in
the model training. This feature ensures the comparison of
errors in the learning of tasks, allowing for a well-generalized
system. Consequently, the MDL model ensures an efficient
use of the training set to achieve faster convergence [38,39]

and provides a practical guideline for implementing similar
ML systems in a variety of design problems with nanotechno-
logical applications. This work is organized in three major
parts. The first concerns the description of the chiral metama-
terial absorber modeled after the yin-yang symbol and its
optical properties calculated by the finite element method
(FEM). The second contains the discussion of the MDL model
composed by the forward and inverse design paths (FDP and
IDP, respectively). Finally, in the third, we apply a sample
MDL-optimized structure in the application of sensing biomo-
lecular enantiomers. We envisage that our work will inspire the
use of ML as an effective and efficient data-driven metamaterial
design and optimization tool, taking advantage of the multitask
technique that we detail herein.

2. CHIRAL METAMATERIAL MODEL AND
FORMALISM

Generally, the metamaterial absorber structure used in this
study consists of top yin-yang-shaped Au nanoparticles
(YNPs), a PMMA layer, a Au backreflector, and a bottom glass
layer. Figure 1(a) shows the unit cell of the meta-absorber struc-
ture. The YNPs are defined by their radius R0 and thickness t1.
The period, ρ, is set following 2R0 � 50 nm. To eliminate spu-
rious effects due to mathematically sharp edges, the top corners
and the tip of YNP are rounded with a minimum radius of
10 nm, corresponding to an R0 of 100 nm, and scale up with
larger values of R0 to preserve the YNP shape. The dielectric
constants of glass and PMMA are 2.13 and 2.25, respectively.
The dielectric constants of the Au YNP and backreflector are

Fig. 1. Schematic of (a) a single YNP chiral meta-absorber array
with definition of incident circularly polarized lights and a unit cell
with dimensions. (b) Three single YNP metastructure configurations:
Au YNP/Glass (YG), Au YNP/PMMA/Glass (YPG), and Au YNP/
PMMA/Au/Glass (YPAG). (c) Absorption and CD spectra of the three
metastructure configurations (YG, YPG, and YPAG), showing their
plasmonic resonances λp (λp � 620 nm, 625 nm, and 645 nm, respec-
tively) and revealing a strong chiroptical response for the metamaterial
absorber case (YPAG). Here, R0 � 100 nm, t1 � 40 nm, t2 �
50 nm, t3 � 100 nm, and t4 � 200 nm.
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interpolated from the Johnson and Christy dataset [40]. The
medium surrounding the metastructure is chosen to be air.
The incident beam is normal to the metamaterial. These mod-
els were calculated using an FEM-based commercial software
package, COMSOL Multiphysics.

To illustrate the relevance of the multilayered structure on
the intensity of the fields and chiroptical response under reso-
nance, we consider single YNP under three structures of
comparable dimensions: YNP/Glass (YG), YNP/PMMA/Glass
(YPG), and YNP/PMMA/Au/Glass (YPAG). Figure 1(b)
shows the three metastructure configurations with single YNPs.
The YG setup comprises a 40 nm thick Au YNP and a glass
substrate with thickness t4. For the YPG configuration, a
PMMA polymer layer with thickness t2 is introduced on the
glass substrate to create a YNP/PMMA interface. Fabrication of
the homopolymer layer can be conveniently achieved through
spin-coating. The third configuration (YPAG) adds an Au
backreflector layer of thickness t3, between the PMMA and

glass layers. Such structural combination with a backreflector
largely increases the optical absorption of the system, by
allowing the interaction between the nanoantenna and reflected
modes [41–45]. Figure 1(c) compares the absorption and CD
spectra of the YG, YPG, and YPAG metastructures. The YPAG
structure shows a comparatively large and broad absorption
peak and large differential absorption, both arising from the
interaction between the Au YNP and the Au backreflector.
Further comparison of the cross-sectional local field enhance-
ment and surface charge density distributions for the three
structures at their plasmonic resonances λp reveals sharp
differences for LCP and RCP illumination at their respective
plasmonic resonances (see Appendix A, Fig. 7). This further
illustrates the strong chirality of the YNP-based structures
especially in the meta-absorber case where the field is highly
enhanced in the polymer spacer layer.

The enhanced chiral field and CD response in the
metamaterial absorber case make it ideally competitive for

Fig. 2. Schematic of the bidirectional multitask deep-learning model for chiral metamaterial design consisting of forward design path (FDP) and
inverse design path (IDP). Each path is composed by shared layers and task specific layers with joint optimization functionality. The model is set up
in an end-to-end fashion where the geometric design parameters, CD, and LCP/RCP absorption spectra can be treated as input or output at specific
ports. Here, the geometric design parameters are the YNPs thickness, PMMA thickness, YNPs radius, and YNPs (respectively represented as xi ,
i � 1, 2,…, 6). x4 has been taken as a constant in the data shown in this study, but is nonetheless included in the model to represent the general
parametrization of the system. The inset shows the metamaterial absorber geometry used to exemplify the use of the MDL.
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chirality-related applications. The base YNP structure can be
modified to generate other complex chiral designs, i.e., dimers
and trimers (see Appendix A, Fig. 8). However, the optical re-
sponse of these structures is highly sensitive to small variations
of their geometric parameters. Thus, the optimization of a
given design necessitates us to map out the response of many
configurations across the design space. Each of these combina-
tions requires solving the full electrodynamic problem under
the illumination conditions, which is computationally costly.
By combining a relatively small set of full wave simulations with
our MDL approach, the design space can be explored in fine
detail at a fraction of the computational cost. Experimentally
and theoretically, a number of planar chiral geometries have
been investigated and demonstrate huge CD signals includ-
ing spirals [46–49], gammadions [50–54], L-shaped [55],
Γ-shaped [12], and z-shaped [3] nanostructures. For the pur-
pose of our demonstration of the MDL model, we adopt a
variation of our YNP metastructure defined by double-top
YNPs with radius, thickness, and gap distance R0, t1, and
d , respectively (see inset in Fig. 2). The polymer thickness,
t2, and the Au backreflector thickness, t3, affect the reflection
of the beam and its interaction with the chiral resonance of the
YNP, regulating the shift in the CD spectra. Due to the dom-
inant effect of the Au backreflector, we have not explored the
variation of thickness of the glass layer, t4, and assigned a fixed
t4 value of 400 nm. The period of the structures is set following
Px � 3R0 � 50 nm, Py � d � 2�R0 � 25 nm�. Here, Px is
the period along the x direction, and Py is the period along
the y direction. By considering the double YNP structure,
we introduce the gap between the nanoresonators as an addi-
tional parameter influencing the CD response, which is in a
highly nontrivial relationship with the other geometric param-
eters. We have chosen this structure as a case study for our
MDL model because of two sets of characteristics: (1) the con-
tinuous curved surfaces and the difference in scale between the
whole structure and its finest features, such as its tip, increase
the complexity of the numerical optical simulation of the meta-
material, thus representing a desirable candidate for alternative
or supporting computational approaches; (2) the complex non-
linear relationship between the different design parameters and
the structure’s optical response makes it a good example for the
power of our MDL approach.

3. MULTITASK DEEP-LEARNING
ARCHITECTURE

As depicted in Fig. 2, the model consists of an input layer, ten-
sor layers, a normalization layer, optical and chiroptical task
execution layers, and an optimization layer. The inset in the
top right shows the schematic of the metamaterial absorber
used to train the DL model. This model takes into account
the plasmon resonant peaks with a regression learning objec-
tive. Our model has unique multitasking and joint learning
capabilities that contribute to the efficient generalization of
the parameter space [56–58].

A. Forward Design
In the forward prediction path, the varying dataset scales across
the input design parameters, absorption, and CD responses

would make the model data-scale-dependent if trained directly,
resulting in poor generalization. To eliminate the effect of the
varying input length scales on the generalization of the model,
we employ a normalization layer following the relation

X norm,�a,b� �
X �a,b� − X b

σ�X b�
, (1)

where a and b index the row and column, respectively,
such that X b is the bth column of the input parameter
matrix. X b and σ�X b� are the mean and standard deviation,
respectively.

The normalization provides a well-conditioned dataset for
optimization by ensuring that the training is less sensitive to
the scale of features to be processed by the shared layer
[59]. At the shared layer, we adopt a hard parameter sharing
of four hidden layers, each with 1024 nodes. These hidden
layers are shared between all the individual task-specific output
layers of the network. The shared hidden layers hold computa-
tional weights from the task-specific layers. That is, the CD
learning leverages the LCP/RCP spectra task-specific learning
to enhance accuracy.

We regularize all hidden layers by applying penalties on
layer activity during optimization with an L2 regularizer in
order to learn sparse features and internal representations of
raw observations [60]. The task-specific layer consists of two
independent parts: the main task and auxiliary tasks. The aux-
iliary tasks are subtasks expected to assist in finding rigorous,
rich, and robust representation of the input design parameters
to benefit the main task. Learning auxiliary tasks restrict the
parameter space during optimization and push for a faster
convergence. The main task, which characterizes the desired
output response, exploits and jointly learns from the auxiliary
tasks via the shared layer. The main and auxiliary tasks corre-
spondingly generate three single-task losses.

To optimize the MDL network, the joint multitask cost
function comprising the three single-task losses is minimized.
Here, the principal multitask cost function, subject to optimi-
zation, is expressed as [61]

Y
j

�X
i

�yji − f j�xi;w��2
�
, (2)

where i and j index the training set and the three learning tasks,
respectively. yji refers to the simulated outputs from the three
tasks (CD and LCP/RCP absorption signals). The model func-
tion f takes as input xi, which is the 1 × 5 design parameter
matrix comprising the YNP radius R0, the gap distance d, the
YNP thickness t1, the polymer thickness t2, and the Au back-
reflector thickness t3 with weight, w. The definition of d is
illustrated by the inset in Fig. 3. See Appendix B for derivation.

We adopt the mean squared error (MSE)—the quadratic
loss, which is the sum of squared distances between our target
variable (simulated CD) and predicted CD values—to average
the losses over the output. The Adam moment estimation sto-
chastic optimization approach is used to compute an adaptive
learning rate for each of the internal parameters of the model
[62]. It is typical of ML models to miss the resonances of data-
sets with high volatility during prediction. This is because the
probability distribution is centered at the off-resonance for each
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neuron in the output layer, neglecting the local optima. The
joint loss optimization functionality enables collective error
correction for the forward prediction task, allowing an accurate
prediction at the local optima. The training set utilized ∼80%
of the 640 collected samples with the remaining as the valida-
tion set. Each sample is constituted by the full 3 × 241 LCP
absorption, RCP absorption, and CD spectra data points.
These 241 data points were generated at 5 nm step intervals
within the 400–1600 nm wavelengths. The MSE recorded
is 0.000441, which is indicative of the model’s accuracy.
After training, we use the validation dataset, which is unseen
throughout the training, to evaluate the model. Within short
prediction intervals, the MDL model exhibits prediction results
comparable to simulation data. A comparison between simu-
lated [Fig. 3(a)] and MDL-predicted [Fig. 3(b)] CD response
at varying dimer gap length d shows a good agreement. The
range of wavelength values corresponding to high and low chi-
roptical activity is essentially identical. Comparing Figs. 3(c)
and Fig. 3(d) for varying YNP thickness also shows a good

agreement even for ultrathin YNPs. The MDL prediction re-
tains the same wavelength interval as the simulation, providing
a full continuous prediction spectrum (241 prediction data
points). In this case, essential information within short param-
eter intervals can be retrieved to enrich the analysis, design, and
prototyping process. The learning curve in Fig. 3(e) illustrates
the fast convergence of the MDL model. Specifically, the single
end-to-end MDL model accurately captures both resonant and
off-resonant CD signals of the metastructures for varying geo-
metric parameters as depicted by Figs. 3(f ) and 3(g). The train-
ing set emphasized larger gap dimensions, which are easier to
fabricate consistently, rather than more experimentally chal-
lenging dimers with smaller gaps. This bias accounts for the
small discrepancies observed in Fig. 3(b) with respect to the
simulation values in Fig. 3(a), a deviation that could be further
reduced by a more homogeneous sampling. The situation is
similar, although less pronounced, for the data in Fig. 3(d).

Given the design parameter space of the structure,
vast sets of CD responses from varied parameter configurations

Fig. 3. MDL model performance. (a) Numerical simulation and (b) MDL prediction CD results of the dimer structure at varying gap distance d
(50–160 nm), across the visible and near-IR regime. R0 � 100 nm, t1 � 40 nm, t2 � 50 nm, and t3 � 100 nm. (c) Numerical simulation and
(d) MDL prediction results of the dimer at varying YNP thickness (t1). The color legend has been truncated at�0.2 for clarity. Inset, definition of
the gap d. (e) Learning curve within 3000 epochs. (f ) Discretized model performance at selected t1 = {60 nm, 80 nm, 100 nm} corresponding to the
horizontal dots in (c) and (d). (g) Model performance at λ0 � 755 nm across varying t1, corresponding to the vertical short dashes through (c) and
(d). Here, R0 � 100 nm, d � 100 nm, t2 � 50 nm, and t3 � 100 nm.
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can be retrieved across the visible and near-IR regime
(λ0 � 400–1600 nm) via the trained MDL model. Figure 4
shows the interdependencies among the design parameters
of the chiral metamaterial absorber and the evolution of CD
generated by the MDL model with varying geometric param-
eter dimensions. For each plot, the unrepresented geometric
parameters are held constant during the data generation.
Figure 4(a) shows the CD values for varying YNP radius at
t3 � f100 nm, 150 nm, 200 nmg. We observe a slight shift
and broadening of the CD peaks within the high chiroptically
active wavelength interval (520–800 nm) for R0 within the
range 100–250 nm at varying t3. Although the influence of
the Au backreflector thickness, t3, on the CD response is sig-
nificant, its effect is comparatively small. This is clear when we
consider that the Au layer indeed serves as a reflector, and we
should expect that changes in thickness, when it is already
above the penetration depth of the radiation, will not be very
impactful to the overall response of the metamaterial.

Figure 4(b) compares the CD response by concurrently varying
the YNP radius and t2 at t1 � f5 nm, 25 nm, 50 nmg. This plot

is obtained at λ0 � 780 nm. We observe the effect of the quasi-
linear regions, where the CD remains constant irrespective of the
coupling gap between the nanoresonators. Therefore, the YNP
and PMMA thicknesses together with the YNP radius control
the shift in the CD resonances. Varying these sets of parameters
yields highly distinguishable CD map plots as illustrated in
Figs. 4(b), 4(c), and 4(d). Figure 4(c) shows CD values at
R0 � f100 nm, 150 nm, 200 nmg generated by varying concur-
rently, t1 and t2 at λ0 � 700 nm. The contour regions corre-
spond to a CD magnitude of 0.5. Figure 4(d) illustrates the
interaction between the YNP radius and YNP thickness at
t2 � f10 nm, 45 nm, 100 nmg for λ0 � 650 nm. It can be de-
duced that the CDmagnitude is generally lower for larger values of
YNP radius. However, with thinner YNPs (t1 < 30 nm), large
CD signals can be realized by larger YNP radii (300 nm < R0 <
400 nm). For thicker YNPs (t1 > 45 nm), large CD signals
can be attained for both ultrathin (t2 < 20 nm) and thicker
(65 nm < t2 < 100 nm) PMMAs at larger YNP radius.
Appendix D shows variations in CD across the studied wave-
lengths for varying PMMA thickness.

Fig. 4. MDL-predicted CD progressions. (a) CD evolution by varying YNP radius at t3 = {100 nm, 150 nm, 200 nm}. CD map plot by varying
concurrently, (b) YNP radius and polymer thickness at t1 = {5 nm, 25 nm, 50 nm} for λ0 � 780 nm, (c) YNP thickness and polymer thickness at
R0 = {100 nm, 150 nm, 200 nm} and λ0 � 700 nm, and (d) YNP radius and YNP thickness at t2 = {10 nm, 45 nm, 100 nm} and λ0 � 650 nm.
The color legend has been truncated at �0.2 for clarity, but high-CD areas have been highlighted by adding the contour regions corresponding
to CD values of 0.5.
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Having the trained network, we can easily extend its output
to cover many more geometric parameter combinations, and
for different wavelengths, although this sample should suffice
for illustrating the method’s capabilities, as well as obtaining a
qualitative understanding of the physical system.

It is relevant to underscore a point of particular interest of
employing such an MDL approach, which is that it requires a
much smaller amount of computational resources than produc-
ing an equivalently dense dataset through traditional simulation
methods. Let us examine a quick estimate for the comparison of
both approaches. For each combination of geometric parame-
ters, it takes a typical i7-CPU PC (which, for simplicity, we will
assume that consumes the total output of its 330 W power
source regardless of the task performed) more than 3 h to com-
pute a full spectrum when using COMSOL with precision lev-
els adequate for our system. This order of magnitude for the
duration of the computation is also representative of other sim-
ulation packages and frameworks. In our case, the total energy
used for creating the model (combining the energy required to
generate the training set with COMSOL and actually training
the network) is approximately 0.63 MWh spanning 80 days
using the above example PC. After training, using the MDL
model requires less than a second to produce the response for
a given geometric parameter set. On the other hand, for the
five geometric parameters and our chosen sampling density,
the total number of simulations required to obtain the sample
result density that the trained MDL affords would be in the
tens of thousands (∼28,106 samples), which would require
an outrageous number of years (∼10,000 years) to produce,
with a total energy consumption of approximately 29 GWh
using the example PC. Therefore, in this (admittedly extreme)
comparison, the MDL approach would outperform a naïve
simulation-based approach by 7 orders of magnitude in terms
of speed and energy expenditure.

B. Inverse Design
After obtaining a high prediction accuracy in the forward path,
we proceed to design an IDP. It is important to realize that this
task is very complex and sensitive, because of the large imbal-
ance between the input and output dimensions of the model:
five geometric parameters compared with the full CD, LCP,
and RCP spectra (1 × 5 versus 3 × 241, respectively). While
it is plausible to apply up- and down-sampling approaches
to resolve this mismatch, essential features may be lost in
the process, especially in the case of complex structures like
the YNP. Such lost features introduce prediction errors that
compound over a training loop, resulting in wide variations
in the retrieved geometric parameters for comparatively small
changes in the input spectra. Reverse-engineering the multitask
forward design path makes use of the entire set of CD data
points and maps each output geometric parameter to the de-
sired full input spectra. The IDP takes a simulated CD spec-
trum as input, with the objective of retrieving the geometric
parameters required to produce it. To achieve this objective,
we connect the input spectrum to three isolated dense networks
with two layers, responsible for mapping the chiroptical re-
sponse to a shared latent-space representation with four layers,
each composed by 2048 neurons. The shared latent space links

to five task-specific layers with each layer managing the output
of a designated geometric parameter (see Fig. 2).

Running this inverter network gives us a set of geometric
parameters, which will be close to the ones generating the target
CD spectrum. However, given the interdependency of these
parameters and the high sensitivity of the CD response to geo-
metric parameters [see, for instance, Fig. 4(b)], we should not
assume that this is sufficient to obtain a satisfactory system pre-
diction. Therefore, assessing the ML-predicted CD spectra will
be central to characterizing the efficiency of the inverse retrieval
model. For verification, the retrieved geometric parameters are
re-fed into the forward prediction path, so that a comparison
can be drawn between the target CD from the ground-truth
geometric parameters and the ML-predicted CD from the
ML-retrieved geometric parameters. Figure 5(a) shows a simu-
lated CD serving as target spectrum (green line), with its cor-
responding geometric parameters in Fig. 5(c) (green bars).
Upon feeding the simulated CD spectrum into the inverse
path, the IDP retrieves the geometric parameters in Fig. 5(c)
(red bars). Although it is clear that the inverter network found
values that are very close to the ground-truth, we proceed to
verify the retrieval by inputting these geometric parameters into
the forward path and comparing its predicted CD response [red
dots in Fig. 5(a)] with the simulated CD spectrum, thus con-
firming the success of the inverse path.

Figures 5(b) and 5(d) were generated following the same
procedure. Both input spectra, in Figs. 5(a) and 5(b), were
chosen to illustrate the model acting on two profiles with
distinct properties (inflection points, negative and positive res-
onant CD peaks). Generally, there is a good agreement between
simulation and ML-prediction responses, although we can ob-
serve slight differences in the spectra that cohere with the small
differences between the sets of retrieved and ground-truth
geometric parameters. Figure 9(c) in Appendix C compares

Fig. 5. Inverse design with the MDL model. (a), (b) Simulated
(green solid lines) and predicted (red dots) CD spectra. (c),
(d) Corresponding simulated (green bars) and retrieved (red bars) geo-
metric parameters. Red dots in (a), (b) are predicted from the MDL
model with geometric parameters retrieved [red bar in (c), (d)] for the
target simulated CD spectra in (a), (b). [See Figs. 9(a) and 9(b) in
Appendix C for absorption spectra comparison.]
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different approaches to the training of the model such as train-
ing with and without the auxiliary tasks as well as separately
training the LCP and RCP spectra. We observe comparatively
better performance in the case of our MDL model. The MDL-
optimized dimer structure can be adopted for several applica-
tions including photodetection of circularly polarized light
(CPL), owing to its high consistency and accuracy [see Fig. 10
in Appendix D]. However, we will now explore the use of an
example MDL-optimized chiral plasmonic structure in sensing
adsorbed molecular enantiomers.

4. CHIRAL BIOSENSING

The strength of the chiroptical response from biomolecules is
mostly limited by the small magnitude of their geometric chiral
features, relative to the periodicity of CPL, in comparison with
chiral plasmonic nanoantennas. Therefore, it is often necessary
to use large molecular concentrations of nonracemic mixtures
to provide detectable CD signals [5,63,64]. Moreover, chiral
biomolecular structures have chiroptical activity in the UV
and are thus difficult to detect with common instrumentation.

Figure 6(a) shows the weak CD resonant peak of a molecular
enantiomer pair in the UV. The optical activity of chiral
molecules can be enhanced by a handedness-preserving
Fabry–Perot cavity resonator [65] acting as a metamirror. Such
metamirrors selectively reflect one CPL preserving its handed-
ness while absorbing the other [66]. The molecular CD signal
can also be enhanced by the interaction with the strong near-
field of plasmonic structures, as well as duplicating its CD sig-
nal into the visible range, where they are easier to detect [5,67].
These advantages, which greatly enhance the detection capabil-
ities of a chiral biomolecular sensor, are in principle indepen-
dent from the chirality of the plasmonic metamaterial.
Nonchiral nanoparticles can offer an effective and efficient
sensing of molecular enantiomers [6,67] by coupling with
the chiral molecules. However, local superchiral near-fields
can offer additional possibilities for molecular CD detection
with chiral plasmonic nanostructures on a metal-biomolecular
platform [11]. Superchiral fields are those with a larger chirality
than CPL, as characterized through their optical chirality, C
[68], and can arise on chiral plasmonic structures illuminated
with either linearly or CPL [9]. Such near-fields with enhanced

Fig. 6. Enantiomer detection. (a) The CD spectra of (red) left-handed medium (LHm), and (blue) right-handed medium (RHm) with molecular
CD resonance (λm � 380 nm) in the UV. (b) CD spectra comparison of the right-handed chiral metamaterial absorber (RHcma) with (blue) and
without (red) chiral medium (CM). Inset is the electric field at the plasmonic resonance, λp (λp � 665 nm), of the bare chiral metamaterial absorber
for LCP and RCP light. (c) CD summation to remove metamaterial background CD signal to reveal the LH (blue solid line) and RH (green solid
line) enantiomer pair CD signals. λm, λp, and λmp represent the resonant wavelengths for the CD of the bare molecules, the plasmonic chiral
metamaterial absorber, and the metamaterial covered with chiral media, respectively. Inset, schematic representation of an enantiomeric protein
molecular pair (L and D isomers). (d) Electric field, surface charge density, and optical chirality density distributions of the chiral metamaterial
absorber covered by chiral media (CM) at λmp � 720 nm.
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optical chirality cause asymmetric phase differences between
the chiral modes in the presence of a chiral dielectric, offering
a path for sensing biomolecular chirality [69].

In what follows, we present theoretical results illustrating the
behavior of one of the ML-optimized nano-dimer metastruc-
tures in the presence of molecular enantiomers, using the excess
CD method to quantify the chirality of the molecular sample
[70]. The structure was optimized for value of CD of 0.35. The
geometric parameters of the metamaterial are R0 � 100 nm,
t1 � 30 nm, t2 � 50 nm, t3 � 200 nm, t4 � 200 nm, and
d � 100 nm. Modeling the chiral molecules, the dimer is
covered by a 40 nm thick chiral medium with 1.6 refrac-
tive index.

The chiral dielectric medium is modeled following the con-
stitutive equations:

D � ε0εrE � iξB, (3)

H � B∕μ0μr � iξE : (4)

Here, ε0 and εr are the permittivity of free space and relative
permittivity, respectively. Similarly, μ0 and μr are the permeabil-
ity of free space and relative permeability, respectively. E and B
are the complex electric field and magnetic flux density, respec-
tively. D and H are the electric field displacement and the
magnetic field, respectively. ξ is the chirality factor of the
molecular sample, which shows very low values for low-density
or near-racemic samples. Using a two-state model for the mol-
ecules, ξ can be expressed as a function of frequency as

ξ � βc

�
1

ℏω� ℏω0 � iΓ12

� 1

ℏω − ℏω0 � iΓ12

�
, (5)

where βc controls the magnitude of the chiral asymmetry, ω is
the angular frequency of the radiation, ω0 � 2πc0∕λmol at the
molecular excitation wavelength, λmol, and Γ12 defines the re-
laxation rate of the excited molecule, with its indices describing
its quantum states. Here, λmol � 380 nm and Γ12 � 0.41 eV.
The expression and values for the chirality factor, ξ, are adopted
fromGovorov et al. [5,9] and follow from the quantum equation
of motion for the electronic density matrix when assuming a
dilute molecular sample.

Now, we proceed with the excess CD method to compute
the chiral properties of the molecules, when in interaction with
left-handed and right-handed chiral metamaterial (LHcma and
RHcma, respectively). First, a baseline CD is calculated from the
metamaterial absorber with racemate (ξ � 0) molecular cover-
age. In the process, a distinguishable dielectric medium-
induced CD redshift (∼55 nm) is observed as illustrated in
Fig. 6(b). This redshift arises from the refractive index of the
molecular coverage, which is larger than that of the surrounding
medium (air). The inset shows the local field enhancement of
the bare metamaterial absorber without biomolecules, illustrat-
ing its strong and chiral near-field. Then, we can compute the
sum of the CD signal of the two YNP metamaterial absorbers,
with chiral and racemate molecular coverage, yielding a change
in CD response associated with the biomolecules of opposite
handedness. The coupling of the enhanced plasmonic near-
field to the molecules is critical for biomolecular sensing.

In Fig. 6(c), we can see how the CD signal of the chiral mol-
ecules shifts its peak to the visible range and increases its mag-
nitude by approximately a factor of 2. The excess CD signal
over that of the chiral metamaterial absorber, produced by
the coverage of molecular enantiomers, is a detectable magni-
tude that allows us to characterize the presence and handedness
of chiral biomolecules, as illustrated in Fig. 6(c).

Finishing this section, we present additional details on the
chiral properties of the example metastructure, showing its
near-field enhancement, surface charge density, and optical chi-
rality parameter C. The latter is calculated, for harmonically
oscillating fields, as [71]

C � −
ε0
2
ω Im�E� · B�: (6)

Figure 6(d) compares these three variables for the LHcma and
RHcma systems, under the dielectric chiral medium described
above. The first row is the top and cross-sectional view of the
electric field enhancement distribution of the LHcma (red bor-
der) and RHcma (green border), when illuminated by LCP and
RCP light. A y-z cross-sectional plane is taken to show the field
enhancement inside the layered metamaterial. The surface
charge density is illustrated in the second row, and the optical
chirality maps in the third row. The electric field, surface charge
density, and optical chirality are evaluated at the chiral media-
modified plasmonic resonance, λmp � 720 nm. Importantly,
the optical chirality maps reveal the superchiral near-field re-
gions arising from the curvature and chiral geometry of the
nanoantennas.

5. CONCLUSION

We propose a highly portable and functional MDL model to
comprehensively study 3D, arbitrarily complex chiral metama-
terials, and exemplify its usage with a chiral metamaterial de-
signed after the yin-yang symbol. The model is composed by a
single end-to-end bidirectional architecture, capable of per-
forming optimization and inverse retrieval operations, and that
takes advantage of the supporting role of two auxiliary tasks to
facilitate the learning of the primary task, CD in our case. This
feature in particular distinguishes it from other approaches dis-
cussed in the literature, and represents a reduction of the com-
plexity of the DL framework while ensuring an efficient use of
the training set toward a highly generalized system. As a data-
driven approach, this MDL model requires a prior database of
results created with methods such as FEM simulations or ex-
perimental data, but it helps in avoiding the huge computa-
tional cost that would be required to explore the vast design
space of the physical system in fine detail. An additional advan-
tage resides in the fact that a trained model is a fast, lightweight,
highly transferrable tool that can drastically reduce the compu-
tational time used for subsequent studies of the system, both for
the designers and for other research groups. Given a set of
geometric parameters, the forward design path of the model
predicts CD spectra with values virtually identical to the sim-
ulations we used as ground-truth. And, vice versa, for input CD
spectra, the model retrieves the set of geometric parameters that
would produce such input CD spectra by solving the inverse
problem. As a result, the trained model can be used to explore
the entire design space and thus render a complete account of
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the intricate relationship between the metamaterial’s geometric
parameters and its chiroptical response. This is made possible
by the joint-learning feature incorporated in the model. For
nanophotonic applications, the design and prototyping process
needs to be robust due to the complexity of light–matter
interaction with nontrivial geometries. The multitasking
DL-based prediction model presented herein can aid in engi-
neering any potential fabrication of the nanophotonic struc-
tures for desired optical and chiroptical response toward a
variety of applications. Illustrating a potential context for the
utilization of this system, we have shown additional chiroptical
properties of this chiral metamaterial absorber structure in the
context of its interaction with molecular enantiomers. The high
efficiency and accuracy of the end-to-end MDL model makes it
a valuable tool for the study of complex physical phenomena,
particularly for the design and prototyping of nanophotonic
structures toward their application as biosensors, as photodetec-
tors, or in polarization-resolved imaging and CD spectroscopy,
among others.

APPENDIX A: CD MODEL DESCRIPTION

For chiral structures, the CD and g-factor are the prominent
parameters that describe their chiroptical properties. These
properties reflect inherent topological characteristics of chiral
matter at the nano/microscale. Here, we focus on the CD
of the absorption spectra. The CD and g-factor in the absorp-
tion are respectively calculated from [12]

CD � ALCP − ARCP, gCD � ALCP − ARCP

�ALCP � ARCP�∕2
, (A1)

where ALCP and ARCP are the absorbance of the chiral nano-
structure illuminated by LCP and RCP beams, respectively.

Figure 7 shows the electric field and surface charge density
distributions of the three metastructure configurations: YNP/
Glass (YG), YNP/PMMA/Glass (YPG), and YNP/PMMA/Au/
Glass (YPAG) revealing comparatively high CD signals in the
metamaterial absorber case. Here, R0 � 100 nm, t1 � 40 nm,
t2 � 50 nm, t3 � 100 nm, and t4 � 100 nm. Exploring
other geometric arrangements of the structure reveals interest-
ing properties (see Fig. 8 for CD and gCD calculations of the

meta-absorber and its variations). Figure 8(a) shows the absorp-
tion spectra of a single chiral YNP metamaterial absorber at
varying polymer thickness upon interaction with LCP and
RCP light, with plasmonic peaks in the visible and near-IR
range. Figure 8(b) is the corresponding complementary reflec-
tion spectra. Due to the effect of the Au backreflector, there is
an enhanced differential absorption between LCP and RCP
light. There is also an inversion in the CD response of the meta-
material absorber for YNP enantiomer pairs.

Hence, the handedness of the metastructure is dictated by
the handedness of the top chiral meta-atom. The CD and gCD
response of the single YNP metamaterial absorber is illustrated
in Figs. 8(c) and 8(d). In Fig. 8(h) we show the surface charge
density distribution of the single YNP meta-absorber corre-
sponding to peak A in Fig. 8(c), for LCP and RCP light.
Exploring other geometric arrangements of the structure reveals
interesting properties. For a dimer, reducing the separation gap
d increases the interaction of the two antennas and separates
the CD signal in two distinct peaks, a feature that can be
adopted for sensing applications. For a circular arrangement
of the YNPs, we observe an interesting dependence of the
magnitude of the CD response on the PMMA thickness, with
the CD almost vanishing for a PMMA thickness of 100 nm
[Fig. 8(f )]. With the introduction of a central disk, however,
the plasmonic coupling between the YNP and the central
disk can regulate the CD signal [Fig. 8(g)]. That is, at a critical

Fig. 7. Electric field and surface charge density distributions of the
three single YNP metastructure configurations (YG, YPG, YPAG) at
their plasmonic resonances, showing huge enhancement for the meta-
material absorber case. The cut plane is through point A, the unit cell
center [Fig. 1(a)].

Fig. 8. Optical and chiroptical properties of the chiral metamaterial
absorber with 10 nm tip rounding radius. (a) Absorption and (b) re-
flection spectra of single yin-yang metamaterial absorber at varying
polymer thicknesses. Corresponding (c) CD and (d) gCD from
(a) exhibiting a strong peak in the visible regime (around 635 nm
wavelength). CD response from three gapped configurations of the
chiral metamaterial absorber: (e) dimer, varying gap length d , (f ) cir-
cular, varying PMMA thickness, and (g) circular with central disk,
varying central disk radius r. (h) Charge density distribution at the
CD maxima (peak A) for the 60 nm PMMA thickness in (c).
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coupling distance, maximum CD can be achieved, and vice
versa, depending on the central disk’s radius r.

APPENDIX B: JOINT COST FUNCTION
DERIVATION

Let i index the training set and j the dependent variables (the
three tasks, that is the LCP, RCP, and CD learning tasks).
Assuming these three tasks, with realizations yij, are indepen-
dent and conditional to the prediction returned by a model f ,
with adjustable parameters w (the weight), on input xi, and
that the error is normally distributed and zero-mean, with vari-
ance σ2j , which depends only on j (the task), we can write the
log-likelihood function as follows:

X
ij

log

�
1ffiffiffiffiffiffiffiffiffi
2πσj

p exp

�
−
�yji − f j�xi;w��

2σ2j

2
��

: (B1)

Applying the basic properties of the log function, (B1) becomes

X
ij

�
− log

� ffiffiffiffiffi
2π

p �
−
1

2
log σ2j −

�yji − f j�xi;w��
2σ2j

2
�
: (B2)

Looking for stationary points of this loss with respect to the
variance σ2j , and dropping the constant additive term, we have

∂
∂σ2j

X
i

�
−
1

2
log σ2j −

�yji − f j�xi;w��
2σ2j

2
�

� 0. (B3)

From the linearity of partial derivatives, and simplifying the
derivatives for each term, we have

X
i

�
−

1

2σ2j
�

�yji − f j�xi;w��
2σ4j

2
�

� 0. (B4)

Extracting the first term from the summation gives

−
N
2σ2j

�
X
i

��yji − f j�xi;w��
2σ4j

2
�

� 0. (B5)

Here, N is the size of the training set. Further simplification
yields

−N �
X
i

��yji − f j�xi;w��
σ2j

2
�

� 0, (B6)

σ2j �
1

N

X
i
�yji − f j�xi;w��2: (B7)

Substituting into the log density function and simplifying gives

−
X
j

log

�X
i

�yji − f j�xi;w��2
�
: (B8)

By changing the signs and exponentiating to get back to the
original form of the quadratic loss, we have [61]

Y
j

�X
i

�yji − f j�xi;w��2
�
: (B9)
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Fig. 9. Inverse design plots. Simulated and MDL-retrieved absorp-
tion spectra comparison for the systems providing the data in
(a) Fig. 5(a) and (b) Fig. 5(b). (c) Comparison between the CD values
obtained with different variations of the ML techniques: separately
training LCP and RCP spectra (black dashes), training only CD with-
out auxiliary tasks (red dashes), training by our MDL model (blue
dashes), and the ground-truth (pink solid line). The inset is a
zoomed-in image at the resonances.

Fig. 10. MDL-predicted CD progressions. CD evolution when
varying PMMA thickness at t1 = {30 nm, 60 nm, 90 nm} for
R0 � 100 nm. This plot agrees with the Fig. 3, where we observe only
CD maxima for t1 � 30 nm but both CD maxima and minima for
t1 � 60 nm and t1 � 90 nm, establishing the consistency of the
MDL model.
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