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Due to its ability of optical sectioning and low phototoxicity, z-stacking light-sheet microscopy has been the tool of
choice for in vivo imaging of the zebrafish brain. To image the zebrafish brain with a large field of view, the thickness
of the Gaussian beam inevitably becomes several times greater than the system depth of field (DOF), where the
fluorescence distributions outside the DOF will also be collected, blurring the image. In this paper, we propose a 3D
deblurring method, aiming to redistribute the measured intensity of each pixel in a light-sheet image to in situ voxels
by 3D deconvolution. By introducing a Hessian regularization term to maintain the continuity of the neuron dis-
tribution and using a modified stripe-removal algorithm, the reconstructed z-stack images exhibit high contrast
and a high signal-to-noise ratio. These performance characteristics can facilitate subsequent processing, such as
3D neuron registration, segmentation, and recognition. © 2020 Chinese Laser Press

https://doi.org/10.1364/PRJ.388651

1. INTRODUCTION

Fluorescence microscopy (FM) can provide both in vitro and
in vivo imaging of biological tissues as well as their functional
dynamics, which is observable with high spatial and temporal res-
olution [1–3]. Moreover, benefiting from the various choices of
fluorescent indicators for neuronal activities, FM has been widely
used for in vivo brain imaging [4–9]. However, because a large
number of neurons are spread in the brain region [10], brain
imaging must record neuronal activities with a large field
of view (FOV) simultaneously [11–13]. For example, three-
dimensional imaging of the zebrafish brain should cover a volume
of 800 μm × 600 μm × 300 μm with subneuron resolution.

Different from confocal [14], spinning disk confocal [15],
multiphoton [16], and light-field [17] FMs, selective plane illu-
mination microscopy [18–20] (also called light-sheet microscopy)
has recently emerged as the preferable method for volumetric
imaging of the zebrafish brain. Based on z-scanning light-sheet
illumination, the brain region can be excited slice-by-slice, and
these side-sliced fluorescent images are built into the volumetric
stack. This form of microscopy, originally designed for highly

efficient optical sectioning, can effectively enhance the image
contrast and reduce the phototoxicity in deep tissues [20].

A high-speed beam-scanning mechanism has been com-
bined with several different configurations of light-sheet forma-
tion mechanisms, including Gaussian beam [20], Bessel beam
[21], Airy beam [22], and lattice beam [23]. To illuminate an
object with the same width as the light sheet, a Gaussian beam
uses a smaller excitation numerical aperture (NA) than Bessel
and Airy beams, as shown in Fig. 1. For instance, when the
width of the light sheet is 300 μm, the NAs of the Gaussian,
Bessel, and Airy beams are 0.09, 0.14, and 0.42, respectively
(α � 7, β � 0.1, λ � 0.488 μm, and n � 4∕3). With the
presence of refractive index anisotropy, absorption, and scatter-
ing in deep tissue, a lower-NA beam excitation leads to a lower
perturbation, which is beneficial for maintaining beam concen-
tration and penetration in a large FOV.

According to Gaussian beam propagation [14], the relation-
ship between the light-sheet thickness (2w0) and light-sheet
nominal width (2z0) is given as
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2z0 �
2πnw2

0

λ
, (1)

where λ is the wavelength in vacuum, n is the refractive index
of the medium on the object side, w0 is the waist radius of the
Gaussian beam, and z0 is the Rayleigh length of the Gaussian
beam. As illustrated, imaging with a wider FOV uses a thicker
Gaussian beam.

Generally, thin light-sheet z-stacking images have desired
optical sectioning and z-axis spatial resolution and do not re-
quire 3D deconvolution, since the thickness of light-sheet illu-
mination is very close to the system depth of field (DOF) [20].
However, for zebrafish brain-wide imaging, the light sheet is
thicker, where the fluorescence distributions outside the DOF
will also be collected, blurring the image. Therefore, we resort
to 3D deconvolution to redistribute the measured intensity
from the z-stack images. Meanwhile, the nonuniform illumi-
nation of a Gaussian beam will produce an additional difference
in each light-sheet image. In addition, melanogenesis tissues
located at the surface of the fish head locally and significantly
absorb the excitation energy, which also leads to dark stripes in
the light-sheet image [24].

To address the abovementioned problems in zebrafish larva
brain-wide imaging, we implement a thick Gaussian beam
light-sheet microscope and expand the width of the light sheet

to greater than 300 μm, which makes the thickness of the light
sheet more than 8 μm, nearly 9.6-fold the system DOF. In this
paper, we first derive an approximated 3D convolution forward
model for thick light-sheet z-stacking imaging and propose a
3D deblurring method by introducing a Hessian regularization
term to maintain the continuity of the neuron distribution.
Employing this 3D reconstruction algorithm and a modified
stripe-removal algorithm, the reconstructed z-stack images can
exhibit high contrast and a high signal-to-noise ratio (SNR).

This paper is organized as follows. Section 2 introduces
the forward model and 3D deblurring algorithm. Section 3
presents our experimental setup and preparation. Sections 4
and 5 present the results of both a numerical simulation
and imaging experiments on fluorescent beads and a zebrafish
larvae brain. Section 6 concludes and discusses the paper.

2. THEORY

A. Forward Model
As illustrated in Fig. 2(a), a small-NA (0.04–0.06) Gaussian
beam propagates along the x-axis and converges at the brain
area of the zebrafish with a very long Rayleigh length. By
high-speed beam scanning along the y-axis, dynamic x–y plane
light-sheet illumination can be generated, and a wide-field im-
age can be captured by the detection objective. Additionally, by
introducing fine z-axis translation step-by-step to both the light
sheet and objective, volumetric imaging of the zebrafish brain
can be achieved. The relationship between the light-sheet illu-
mination region and detection DOF is shown in Fig. 2(b).
As illustrated, the detection image collects the fluorescence
not only from the DOF but also from the out-of-focus planes
of the detection objective.

Assume that the illumination distribution ILS�x, y, z� is uni-
form in the x − y plane and symmetric with respect to the
z-axis, i.e., ILS�x, y, z� � ILS�z� � ILS�−z�. Assume that the
system 3D point spread function (PSF) h�x, y, z� is space-
invariant in the brain area. The imaging forward model of thick
Gaussian beam light-sheet microscopy can be approximated as
follows (see Appendix A):
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Fig. 1. Configuration of the Gaussian, Bessel, and Airy beams with
the same light-sheet FOV.
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Fig. 2. Schematic of Gaussian beam light-sheet z-stacking imaging. (a) z-stacking imaging by moving light-sheet and objective. (b) Illumination
region and system DOF under the large FOV imaging.
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g�x, y, z � zj�

�
Z
w
f �p, q, r�ILS�p, q, r − z�h�x − p, y − q, z − r�dw

≈
Z
w
f �p, q, r�ILS�x − p, y − q, z − r�h�x − p, y − q, z − r�dw

� �f � hLS��x, y, z�, x, y, z ∈ R, (2)

where f �x, y, z� is the true volumetric image, g�x, y, z � zj� is
the 2D blurred image when the illumination and detection are
located at the z � zj plane, hLS�x, y, z� is the overall 3D PSF
affected by the illumination, and w � �p, q, r�.
B. 3D Reconstruction Algorithm
Here, we define a loss function as the sum of the fidelity term
and Hessian regularization term, which is also popular in other
imaging modalities [25,26]. The Hessian regularization term is
from a priori knowledge of zebrafish brain (see Section 6). The
fidelity term constrains the imaging forward model by using the
mean square error, and the Hessian regularization term con-
strains the continuity of the neuron distribution. Such a loss
function can be written as

min
f

α

2
khLS � f − gk22 � RHessian�f �, (3)

where α is the penalty parameter of the fidelity term. The
Hessian regularization is defined as

RHessian�f � �

��������

αhfxx αhfxy
ffiffiffiffiffi
αz

p
fxz

αhfyx αhfyy
ffiffiffiffiffi
αz

p
fyzffiffiffiffiffi

αz
p

fzx
ffiffiffiffiffi
αz

p
fzy αzfzz

��������
1

� αh∥fxx∥1 � αh∥fyy∥1 � αz∥fzz∥1

� 2αh∥fxy∥1 � 2
ffiffiffiffiffi
αz

p
∥fxz∥1 � 2

ffiffiffiffiffi
αz

p
∥fyz∥1,

(4)

where αh and αz are the penalty parameters of continuity along
the x−y plane and z-axis, respectively. The second-order
partial derivatives of f in different directions are abbreviated
as f i, i � xx, yy, zz, xy, xz, yz.

In this paper, we use the alternating direction method of
multipliers (ADMM) [27] to solve this loss function based
on its fast convergence performance in an L1-regularized opti-
mization problem. The key of the algorithm is to decouple the
L1 and L2 portions from the loss function [28]. Hence, we
rewrite Eq. (3) by introducing auxiliary variables d and using
the augmented Lagrangian methods (see Appendix B):

�f k�1, dk�1� � min
f , d

nα
2
khLS � f − gk22 � φ�d �

� ρ
2

h
kdxx − αhfxx − bkxxk22

� kdyy − αhfyy − bkyyk22
� kdzz − αzfzz − bkzzk22
� kdxy − 2αhfxy − bkxyk22
� kdxz − 2 ffiffiffiffiffi

αz
p

fxz − b
k
xzk22

� kdyz − 2 ffiffiffiffiffi
αz

p
fyz − b

k
yzk22

io
,

(5)

bk�1
i � bki � δ�cbi f k�1

i − dk�1
i �, i � xx, yy, zz, xy, xz, yz,

(6)

where

φ�d � � kdxxk1�kdyyk1�kdzzk1�kdxyk1�kdxzk1�kdyzk1,
d i, bi�i � xx, yy, zz, xy, xz, yz� are the auxiliary and dual var-
iables, δ is the step size, and k is the iteration counter.

Consequently, the framework of the ADMM algorithm is
presented in Algorithm 1.

Algorithm 1. Split Bregman (ADMM) Algorithm

Initialization: d 1 � 0, b1 � 0, f 1 � ifft
nα

ρ·fft�hLS�fft�g�
α
ρjfft�hLS�j2�β

o
.

Iteration:
for k � 1: N do
Step 1: Update f k�1 using Eq. (B7).
Step 2: Update dk�1 using Eq. (B8).
Step 3: Update bk�1 using Eq. (B6).

Stopping criterion: kf k�1−f kk22
kf kk22

< T .

C. Full Procedure
In real experiments, light-sheet images are corrupted with
photon shot noise and camera readout noise. We use the side
window filtering (SWF) technique [29] to eliminate the mixed
Poisson–Gaussian noise in the fluorescence image. In contrast
to conventional local window-based filtering methods, the
SWF method aligns the edges and/or corners of the window
with the pixels being processed, which better preserves the
image boundaries during the denoising process.

Furthermore, nonneuron melanogenesis tissues located at
the surface of the fish head can absorb the excitation energy

* =

hLS

Object-side
Volume

Reconstructed
Volume

Z-stacking
Volume

Slide-by-slide
Denoising

3D 
Deconvolution

Slide-by-slide
Destriping

3D Deblurring 
Processing

Fig. 3. Flowchart of 3D image deblurring processing.
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dramatically, which results in dark stripes along the excitation
path. The widely used wavelet-FFT algorithm can be used to
remove the stripe artifacts [30] but at cost price of deteriorating
the image in regions devoid of stripes. Therefore, we introduce
a prelocation method based on the output of the wavelet-FFT
algorithm. Specifically, the positions and widths of all stripes are
determined from the difference map between the original
image and the wavelet-FFT processed image. Only the
stripe areas in the original image will be multiplied with an
adaptive Gaussian stripe function to correct for the artifacts.
This modified algorithm can avoid information loss outside
the stripe areas and provide consistent contrast across different
regions of the image.

As illustrated in Fig. 3, the acquired volume (z-stacking im-
ages) originates from the convolution of the object with an
overall 3D PSF. The whole processing of 3D deblurring
can be classified into three steps: (1) slide-by-slide denoising;
(2) 3D deconvolution; and (3) slide-by-slide stripe removal.

3. EXPERIMENTAL SETUP AND PREPARATION

As shown in Fig. 4, we implemented a conventional single-side
light-sheet microscope and customized the immersion chamber
and six-axis motorized stage for in vivo imaging of zebrafish
brain-wide neurons. The 488 nm laser beam (Coherent, OBIS
488LX) was expanded, and the y-axis was scanned to generate
the desired light-sheet illumination in the nominal object
plane, with a width of 300 μm and a thickness of 8.7 μm (fitted
from the actual beam distribution). In the system, a DO (de-
tection objective, Zeiss, 40 × ∕1.0) was mounted on the z-axis
piezo stage (PI, P-721.SL2) for the step-by-step motion with
1 μm interval, while the light sheet could z-shift in phase
by Galvo z (Cambridge, 6215H) scanning. The illumination
objective (Mitutoyo, 5 × ∕0.14) has a long working distance
and more than half distance is in the chamber filled with
E3 medium. A sensitive sCMOS camera (Hamamatsu, Flash
4.0 V3) was used to capture the z-stacking images. The coor-
dinate system follows the right-hand rule.

All larval zebrafish (elavl3:H2B-GCaMP6s, elavl3:
GCaMP6s, and elavl3:EGFP) were raised in E3 embryo

medium according to the standard protocol under 28.5°C.
0.2 mmol/L 1-phenyl-2-thiourea was added to the embryo
medium to inhibit melanogenesis and allow optical imaging
of the brain region. In our light-sheet imaging experiment, a
5–7 day post fertilization (dpf ) zebrafish will be anesthetized
before being embedded in a 1.5% low-melting agarose cylinder
with a diameter of 1 mm and immersed in E3 medium. The
brain area was electrically aligned to the center of the detection
FOV being in good posture for z-stacking imaging.

The 3D PSF h�x, y, z� could be calibrated with sparse fluo-
rescent beads statically embedded in the agarose cylinder or
calculated by using the ImageJ plugin PSF generator and using
the system parameters. The light-sheet illumination distribu-
tion ILS�z� could only be captured from the system utilizing
imaging with a high-density fluorescent bead mixed medium.
As shown in Eq. (2), the overall 3D PSF hLS�x, y, z� is given by
the product of h�x, y, z� and ILS�z�. After the imaging experi-
ments, the results showed that the calculated PSF is better than
the calibrated PSF during the reconstruction iteration (see
Section 6).

The experiments are implemented on an HP Z6 Work-
station (Intel Xeon Gold 6128 CPU @ 3.40 GHz × 24), the
graphics card model is GeForce RTX 2080 Ti, and the operat-
ing system is Ubuntu 19.04. The 3D deconvolution algorithm
is implemented using MATLAB R2019b.

4. SIMULATION

In the numerical simulation, we designed a 3D image stack as
the ground truth in Fig. 5(a), containing 512 (x) × 512 (y) × 64
(z) voxels, which consists of 16 line-structure objects with dif-
ferent spatial frequencies and different line directions. Every
line-structure object consists of 64 × 64 × 64 voxels and has suf-
ficient null voxels between objects. Each x∕y pixel represents a
0.1625 μm interval, and each z pixel represents a 1 μm interval,
which are the same parameters as those used in the actual im-
aging experiments (see Section 5). In addition, the 3D PSF was
calculated from ImageJ software, using five distributed layers to
cover the full width at half-maximum of the waist, and the
illumination distribution was measured and fitted by an ana-
lytical expression. All the above considerations were intended
to make the simulation as close to real imaging experiments as
possible.

Then, the ground truth was convolved with the overall 3D
PSF function according to Eq. (2) followed by the introduction
of Gaussian and Poisson mixed noise to generate a blurred 3D
image stack [Fig. 5(b)]. These images were deconvolved with
four deconvolution methods, the 2D Richardson–Lucy (RL)
method, the 3D RL method [31,32], the 3D Wiener method
[33], and our 3D method (also called the Hessian method)
(see Section 2) [Figs. 5(c)–5(f )]. RL and Wiener are popular
deconvolution algorithms for fluorescence microscopy
images [34]. Of course, many software packages, such as
DeconvolutionLab2 [35], also include the 3D RL and 3D
Wiener algorithms and so on, but considering the consistency
of the computing platform and the stability of perfor-
mance, we choose the code provided by the MATLAB tool-
box. We calculated four evaluation indicators, including the
peak signal-to-noise ratio (PSNR) [36], SNR [33], structural
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Fig. 4. Schematic of our light-sheet microscope setup. Galvo z and
Galvo y are used to scan the beam along the z-axis and y-axis, respec-
tively. IO and DO are the illumination and detection objectives,
respectively.
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similarity (SSIM) index [37], and correlation coefficient (R) [38]
between the blurred image and four deblurred 3D image stacks,
as shown in Table 1. The higher the indicator value, the closer
the reconstructed image is to the real situation. Therefore, from
this calculation, it is obvious that our method can recover more
correct high-frequency components with much less noise.

5. IMAGING EXPERIMENTS

First, we used hollow fluorescence microspheres embedded in
agarose, which have identical stereostructures with a diameter
of 6 μm, to evaluate the reconstruction accuracy. All of the
parameters of the light sheet were already given (see
Section 4). As shown in Fig. 6(a), we present the middle slide
of a single microsphere obtained from the observed 3D image,

the 3D RL method, the 3D Wiener method, and our Hessian
reconstruction method (76 × 76 × 26 voxels). All reconstructed
3D images were normalized to the total gray level sum of the
observed 3D image in this section. It has been shown that all
deconvolution methods can provide the correct x-position of
the sphere surface, but the contrast of our Hessian method
is the best [Fig. 6(b)]. It is clear that the peak gray level is in-
creased and the gray level of the hollow area is lowered, which
verifies that convolution redistributes energy. The asymmetry
of the image distribution along the illumination axis (x-axis) is
obvious, which may be due to the refraction and scattering of
the illumination from left to right and more emission photons
being collected from the center-right of the sphere surface.

There are three typical zebrafish lines frequently used for in
vivo brain imaging, Tg (elavl3:EGFP), Tg (elavl3:GCaMP6s),
and Tg (elavl3:H2B-GCaMP6s), which have neuronal-specific
expression of GFP, the calcium indicatorGCaMP6s localized in
the cytoplasm of neurons, and the calcium indicator GCaMP6s
localized in the nuclei of neurons, respectively.

By focusing on the rhombencephalon structure of the Tg
(elavl3:GCaMP6s) zebrafish larva, we compared the perfor-
mance of the 2D and 3D deconvolution methods (Fig. 7).
By zooming into the neuron region of the x–y, x–z, and
y–z sections, 3D deconvolution clearly provides better contrast
and SNR than 2D deconvolution [Fig. 7(b)]. 3D image infor-
mation is overlooked in 2D deconvolution, which makes it dif-
ficult to improve the contrast and also introduces artifacts
and noise.

For the neuronal structure recorded within the Tg (elavl3:
EGFP) zebrafish larva, we compared the spectrum performance
of different 3D deconvolution methods (Fig. 8). While all
deconvolution methods improved the image contrast to some
extent, only our Hessian method generated images with a
more continuous cytoplasm and thus the most reliable image
contrast [Fig. 8(b)]. Moreover, compared to the other two
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Fig. 6. Contrast comparison of 3D deconvolution methods for im-
aging a 6 μm hollow fluorescence microsphere. (a) Middle x−y sections
of the observed 3D image and three reconstructed images from the 3D
RL method, the 3D Wiener method, and our 3D method. Scale bar:
3 μm. (b) Four normalized profiles corresponding to the colored
dashed lines in (a).

Table 1. Evaluation Indicators of Different 3D Images in
Fig. 5

PSNR SNR SSIM R

Blurred Image 16.60 1.99 0.044 0.62
2D RL 16.30 1.69 0.072 0.57
3D Wiener 16.83 2.22 0.149 0.64
3D RL 16.56 1.95 0.158 0.68
Our 3D Method 18.46 3.86 0.179 0.84

xz

Ground Truth
(R = 1)

xy yz

(a) Blurred Image
(R = 0.62)

(b) 2D RL
(R = 0.57)

(c)

3D Wiener
(R = 0.64)

(d) 3D RL
(R = 0.68)

(e) Our 3D Method
(R = 0.84)

(f)

Fig. 5. Comparisons of different deconvolution methods.
(a) Simulated 3D image (ground truth) in the x−y, x−z, and y−z sec-
tions, and three colored subregions enlarged for a detailed observation
at the bottom. (b) Blurred 3D image after forward 3D convolution
and Gaussian and Poisson mixed noise addition. (c)–(f ) Four
reconstruction results using the 2D RL method, the 3D Wiener
method, the 3D RL method, and our 3D method, respectively.
The R value in the title represents the correlation coefficient of the
3D distribution between the ground truth and each deblurred image.
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deconvolution methods, our Hessian method can recover more
high-frequency signal components as evaluated by the Fourier
transform of these images in Fig. 8(c).

For the neuronal activities recorded within the Tg (elavl3:
H2B-GCaMP6s) zebrafish larva, we compared the SNRs of dif-
ferent 3D deconvolution methods in Fig. 9. Clearly, our
Hessian method outperforms the other deconvolution methods
in terms of reducing noise [Fig. 9(c)]. We also calculated the
MSNR (defined as the ratio of the peak value to the back-
ground variance) to quantitatively demonstrate the superiority
of our Hessian method in noise suppression [Fig. 9(d)]. The
higher the MSNR value is, the better the SNR. In addition,
the MSNR of 3D RL method is the smallest because it tends
to amplify noise for sharper object edges. Moreover, our
Hessian method is significantly superior to other methods in
restoring the z-axis continuity [Fig. 9(b)].

Additionally, the result of our stripe-removal algorithm is
given in Fig. 10. As shown in Figs. 10(a) and 10(b), the stripe
artifacts are suppressed after the processing, and the contrasts
both inside and outside the stripe area are closer. In addition,
the processed image data outside the stripe area is much iden-
tical to the original image data there, as shown in Fig. 10(c),
which provides a good data preservation for the nonstripe area
without any deterioration.

6. CONCLUSION AND DISCUSSION

For zebrafish larva brain-wide imaging, light-sheet illumination
is required to cover a large FOV and possess concentrated en-
ergy in the focal plane. For this purpose, we implemented a

thick Gaussian beam light-sheet microscope and expanded
the width of the light sheet to more than 300 μm, making the
thickness of the light sheet more than 8 μm, nearly 9.6-fold the
system DOF. Our 3D deblurring method has been proposed
to redistribute the measured intensity of each pixel in the
light-sheet image to in situ voxels by 3D deconvolution. By
introducing a Hessian regularization term to maintain the con-
tinuity of the neuron distribution and using a modified stripe-
removal algorithm, the reconstructed z-stack images exhibit
high contrast and a high SNR. These performance character-
istics can facilitate subsequent processing, such as 3D neuron
segmentation and recognition.

Comparing Fig. 5(c) with Fig. 5(f ) in the simulation sec-
tion, it has been verified that 3D deconvolution is more effec-
tive than 2D deconvolution for thick light-sheet imaging. In
addition, comparing the different 3D deconvolution methods,
especially referring to the reconstructed movies, our 3D deblur-
ring method (see Fig. 3), including stripe-removal postprocess-
ing, has been validated.

Here, we present some discussions concerning the deblur-
ring methods and imaging settings.

1. Due to the characteristics of the objective lens and mi-
croscope system, fluorescence images are often deteriorated by
the out-of-focus fluorescence, tissue scattering, noise, etc. The
deconvolution-based image reconstruction algorithm can
effectively improve the resolution, contrast, and SNR of prac-
tical imaging [34]. Because different imaging modalities often
have different imaging models, deconvolution algorithms are
still challenged for better performance. As we know, the
Hessian regularization term is inherently a good priori for

x
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Raw
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Our

Raw

(a)

Observed Image 2D Deconvolution 3D Deconvolution
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Fig. 7. Comparison of 2D and 3D deconvolution for imaging the rhombencephalon activity of 7 dpf Tg (elavl3:GCaMP6s) zebrafish larva,
recorded by 1328 �x� × 1328 �y� × 81 �z� voxels. (a) Selected x−y, x−z, and y−z sections of the raw image (observed image) and our image (our
3D method). Scale bar: 50 μm. (b) The corresponding cyan, yellow, and magenta subregions in (a) were enlarged for a comparison between
2D (2D RL method) and 3D deconvolution (our 3D method).
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biological microscopic structures, which has been widely ap-
plied in structured illumination microscopy [25] and wide-field
fluorescence microscopy [26], both on 2D and 3D image
stacks. Therefore, we attempt the Hessian regularization term
to help us for 3D deconvolution of light-sheet z-stacks on the
zebrafish brain, not only improving the image contrast but
also SNR.

2. Multiview light-sheet imaging can be achieved by rotat-
ing the sample between acquisitions in the traditional single-
view light-sheet system [39]. And high isotropic resolution
can be provided by the multiview fusion or deconvolution al-
gorithm [40]. Our Hessian deconvolution algorithm can also
be applied to the multiview imaging, especially for a large FOV
imaging. Meantime, considering the high memory cost in mul-
tiview processing we need to split the 3D image data into
blocks of appropriate size. Such a strategy has already been used
in the RL multiview deconvolution [41–43].

3. The required deconvolution time strongly depends on
the available hardware. For example, with the GPU (11 GB
RAM), deconvolution of simulations (512 × 512 × 64 voxels)

shown in Fig. 5 required 0.22 minutes. With the CPU
(93 GB RAM), deconvolution of zebrafish experiments
(2048 × 2048 × 100 voxels) shown in Fig. 8 required about
195 minutes.

4. Due to the fact that the original image sampling,
0.1625 μm laterally and 1 μm axially, is much smaller than
the cytoplasm (elavl3:EGFP, elavl3:GCaMP6s) or neuron
(elavl3:H2B-GCaMP6s), it is appropriate to use the Hessian
regularization term to constrain the reconstructed distribution
and suppress the noise in principle, as shown in all of the
reconstruction results (from Fig. 6 to 9).

5. The reconstruction result using our Hessian method is
dependent on the parameters of α, αh, and αz . It is necessary to
adjust these values based on the structural features of the fluo-
rescence images. Taking the zebrafish brain images as an exam-
ple, we should increase the contribution of the Hessian term to
process more piecewise smoothness images and decrease the
contribution of the Hessian term for hollow-ring-network im-
ages, where the continuity of the image distribution is on a
small scale.

Fig. 8. Comparison of different 3D deconvolution methods for imaging the rhombencephalon structure of 6 dpf Tg (elavl3:EGFP) zebrafish
larva, recorded by 1928 �x� × 1928 �y� × 81 �z� voxels. (a) Selected x−y, x−z, and y−z sections of the raw image (observed image) and our image (our
3D method). Scale bar: 50 μm. (b) The corresponding cyan, yellow, and magenta subregions in (a) were enlarged for a comparison of three
reconstruction results (3D Wiener method, 3D RL method, and our 3D method). (c) Power spectral distributions (8 × 8 × 1 binning). Three
z-stacking movies corresponding to three reconstruction results are provided in Visualization 1, Visualization 2, and Visualization 3.
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6. It has been demonstrated that the calculated 3D PSF
from the model and system parameters is more effective than
the calibrated 3D PSF from a fluorescent bead in frozen agar-
ose. The main reason might be that the aberrations and diffu-
sion of the calibrated PSF depending on the position of the
bead in frozen agarose are quite different from the aberrations
and diffusion of zebrafish neurons in frozen agarose. It can be
interpreted that the Hessian term would be better in compen-
sating for random aberrations and diffusion when the PSF does
not involve any substantiated a priori knowledge.

7. The z-stacking interval, light-sheet thickness, and DOF
are three important parameters in our thick light-sheet z-stack-
ing imaging system and in the 3D deblurring processing. The
former two parameters are determined by the imaging require-
ments, and the last parameter is adjustable based on the NA of
the objective. In practice, if the ratio of the light-sheet thickness
to the DOF becomes too large, the light-sheet images will be-
come overblurred, and if the ratio becomes too small, the 3D
PSF will be compressed into a 2D distribution. In our experi-
ments, the ratio was adjusted to 9.6 to obtain a better 3D
reconstruction.

8. The z-stretching operation in Figs. 7–9 could only be
employed to maintain spatial reality for the observations in
both the x−z section and the y−z section. However, all of
the quantitative processing and evaluation steps of the 3D
reconstruction still use the 3D discrete data format.

Fig. 9. SNR comparison of the 3D deconvolution methods for imaging the mesencephalon activity of 7 dpf Tg (elavl3:H2B-GCaMP6s) zebrafish
larva, recorded by 1448 �x� × 1448 �y� × 81 �z� voxels. (a) The 32nd x−y section of the raw image (observed image) and our image (our 3D method).
The corresponding cyan subregion of the x−y section on the left was enlarged for a comparison of three reconstruction results (3DWiener method, 3D
RLmethod, and our 3Dmethod). Scale bar: 50 μm. (b) The 724th x−z section of the observed image (3DWienermethod, 3DRLmethod, and our 3D
method), where the magenta and yellow subregions were enlarged for a clear observation. Scale bar: 50 μm. (c) Normalized distribution of the yellow
profiles labeled in (a), where the blue bars in (c) mark all the regions of the suspected neuron boundary by manual identification. (d) Average modified
signal-to-noise ratio (MSNR) of the fluorescence peaks along lines across the neuron from images reconstructed with the 3DWiener method, the 3D
RLmethod, and our 3Dmethod (n � 9). Centerline: medians. Limits: 75% and 25%.Whiskers: maximum andminimum. Three z-stacking movies
corresponding to three reconstruction results are provided in Visualization 4, Visualization 5, and Visualization 6.
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Fig. 10. Destriping results for imaging the rhombencephalon struc-
ture of 6 dpf Tg (elavl3:EGFP) zebrafish larva, recorded by
1928 �x� × 1928 �y� pixels. (a) Image after using the destriping algo-
rithm. Scale bar: 50 μm. (b) The corresponding subregions before and
after destriping in (a) were enlarged for a comparison. (c) Two nor-
malized profiles corresponding to the colored dashed lines in (b).
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APPENDIX A

The formation of light-sheet images is related to 3D PSF and
illumination distribution. A generalized 3D light-sheet imaging
forward model is presented in this section.

The coordinate in our system is shown in Fig. 4. We assume
that the observed biological sample f �x, y, z� is located in a
rectangular region V �l x × l y × l z�. The light sheet ILS�x, y, z�
is formed by rapidly scanning the Gaussian beam along the
y-axis, and it is easy to have

ILS�x, y, z� � ILS�x, y − q, z�, q ∈ R: (A1)

In addition, the light sheet is symmetrical along the z-axis, i.e.,

ILS�x, y, z� � ILS�x, y, − z�: (A2)

Let the area V satisfy V � ∪
N i

i�1
Ai, V � ∪

N j

j�1
Bj, where the 3D

PSF is invariant in the subarea Ai, and the light-sheet illumi-
nation distribution is uniform in the subarea Bi, i.e.,

ILS�x, y, z� � ILS�x − p, y, z�, p ∈ R: (A3)

In this case, the light-sheet images are obtained by this model:

gAi �x, y, z � zj�

�
Z
w
f �p, q, r�IBj

LS�p, q, r − z�hAi �x − p, y − q, z − r�dw

�
Z
w
f �p, q, r�IBj

LS�x − p, y − q, z − r�hAi �x − p, y − q, z − r�dw

�
Z
w
f �p, q, r�hAi∩Bj

LS �x − p, y − q, z − r�dw

� �f � h
Ai∩Bj

LS ��x, y, z�, x, y, z ∈ R: (A4)

In our system, we consider that the illumination distribution is
uniform and the 3D PSF is invariant in the FOV of zebrafish
brain. Therefore, the light-sheet image is the convolution of the
overall PSF and the observed biological sample.

APPENDIX B

In this section, 3D deconvolution with Hessian regularization
solved by the ADMM algorithm is presented. We rewrite
Eq. (3) as

min
f , d

�
α

2
khLS � f − gk22 � φ�d�

�
, (B1)

where

φ�d� � kdxxk1 � kdyyk1 � kdzzk1 � kdxyk1
� kdxzk1 � kdyzk1,

subject to

dxx � αhfxx , dyy � αhfyy, dzz � αzfzz ,

dxy � 2αhfxy, dxz � 2
ffiffiffiffiffi
αz

p
fxz , dyz � 2

ffiffiffiffiffi
αz

p
fyz :

According to augmented Lagrangian and the method of multi-
pliers, we compute the following update steps for each ADMM
iteration:

�f k�1, dk�1� � min
f , d

nα
2
khLS � f − gk22 � φ�d �

� ρ
2 ·

h
kdxx − αhfxx − bkxxk22

� kdyy − αhfyy − bkyyk22
� kdzz − αzfzz − bkzzk22
� kdxy − 2αhfxy − bkxyk22
� kdxz − 2 ffiffiffiffiffi

αz
p

fxz − b
k
xzk22

� kdyz − 2 ffiffiffiffiffi
αz

p
fyz − b

k
yzk22

io
,

(B2)

bk�1
i � bki � δ�cbi f k�1

i − dk�1
i �, i � xx, yy, zz, xy, xz, yz:

(B3)

Alternately solve the joint optimization of each variable as fol-
lows. The f -minimization step is expressed as

f k�1 � min
f

nα
2
khLS � f − gk22

� ρ
2 ·

h
kdk

xx − αhfxx − b
k
xxk22

� kdk
yy − αhfyy − b

k
yyk22

� kdk
zz − αzfzz − b

k
zzk22

� kdk
xy − 2αhfxy − b

k
xyk22

� kdk
xz − 2

ffiffiffiffiffi
αz

p
fxz − b

k
xzk22

� kdk
yz − 2

ffiffiffiffiffi
αz

p
fyz − b

k
yzk22

io
,

(B4)

and the d -minimization step is expressed as

dk�1
xx � min

dxx

�
kdxxk1 �

ρ

2
kdxx − αhf k�1

xx − bkxxk22
�
,

dk�1
yy � min

dyy

�
∥dyy∥1 �

ρ

2
∥dyy − αhf k�1

yy − bkyy∥22

�
,

dk�1
zz � min

dzz

�
∥dzz∥1 �

ρ

2
∥dzz − αzf k�1

zz − bkzz∥22

�
,

dk�1
xy � min

dxy

�
∥dxy∥1 �

ρ

2
∥dxy − αhf k�1

xy − bkxy∥22

�
,

dk�1
xz � min

dxz

�
∥dxz∥1 �

ρ

2
∥dxz − 2

ffiffiffiffiffi
αz

p
f k�1
xz − bkxz∥22

�
,

dk�1
yz � min

dyz

�
∥dyz∥1 �

ρ

2
∥dyz − 2

ffiffiffiffiffi
αz

p
f k�1
yz − bkyz∥22

�
, (B5)

and the dual variables bi, i � xx, yy, zz, xy, xz, yz, are solved by

bk�1
xx � bkxx � δ�αhf k�1

xx − dk�1
xx �,

bk�1
yy � bkyy � δ�αhf k�1

yy − dk�1
yy �,

bk�1
zz � bkzz � δ�αzf k�1

zz − dk�1
zz �,

bk�1
xy � bkxy � δ�2αhf k�1

xy − dk�1
xy �,

bk�1
xz � bkxz � δ�2 ffiffiffiffiffi

αz
p

f k�1
xz − dk�1

xz �,
bk�1
yz � bkyz � δ�2 ffiffiffiffiffi

αz
p

f k�1
yz − dk�1

yz �, (B6)

where δ is a step size and k is the iteration counter.

Research Article Vol. 8, No. 6 / June 2020 / Photonics Research 1019



The f -minimization involves solving a minimum Euclidean
norm problem. And f is solved by

f k�1 � ifft

�α
ρ fft�hLS�fft�g� � fft�Lk�
α
ρ jfft�hLS�j2 � jfft�C�j2

�
, (B7)

where

C � αh∇2
xx � αh∇2

yy � αz∇2
zz � 2αh∇2

xy

� 2
ffiffiffiffiffi
αz

p
∇2
xz � 2

ffiffiffiffiffi
αz

p
∇2
yz ,

Lk � αh�∇2
xx�T �dk

xx − bkxx� � αh�∇2
yy�T �dk

yy − bkyy�
� αz�∇2

zz�T �dk
zz − bkzz� � 2αh�∇2

xy�T �dk
xy − bkxy�

� 2
ffiffiffiffiffi
αz

p �∇2
xz�T �dk

xz − bkxz� � 2
ffiffiffiffiffi
αz

p �∇2
yz�T �dk

yz − bkyz�,
fft is the fast Fourier transform, and ifft is the inverse fast
Fourier transform. ∇xx is the second-order partial derivative
operator in the x direction, i.e., ∇xx � �1, −2, 1�, and ∇xx ,
∇yy, ∇zz , ∇xy, ∇xz , and ∇yz are defined similarly.

The d -minimization involves solving a closed-form solution
by using subdifferential calculus. And the auxiliary variables
d i, i � xx, yy, zz, xy, xz, yz, are solved by

dk�1
xx �

8>>>>><
>>>>>:

αhf k�1
xx � bkxx − 1

ρ , αhf k�1
xx � bkxx ∈

�
1
ρ ,∞

�

0, αhf k�1
xx � bkxx ∈

�
− 1
ρ ,

1
ρ

�

αhf k�1
xx � bkxx � 1

ρ , αhf k�1
xx � bkxx ∈

�
−∞, −1

ρ

�

� S1∕ρ�αhf k�1
xx � bkxx�,

dk�1
yy � S1∕ρ�αhf k�1

yy � bkyy�,
dk�1
zz � S1∕ρ�αzf k�1

zz � bkzz�,
dk�1
xy � S1∕ρ�2αhf k�1

xy � bkxy�,
dk�1
xz � S1∕ρ�2

ffiffiffiffiffi
αz

p
f k�1
xz � bkxz�,

dk�1
yz � S1∕ρ�2

ffiffiffiffiffi
αz

p
f k�1
yz � bkyz�: (B8)
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