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Prior-free imaging beyond the memory effect (ME) is critical to seeing through the scattering media. However,
methods proposed to exceed the ME range have suffered from the availability of prior information of imaging
targets. Here, we propose a blind target position detection for large field-of-view scattering imaging. Only ex-
ploiting two captured multi-target near-field speckles at different imaging distances, the unknown number and
locations of the isolated imaging targets are blindly reconstructed via the proposed scaling-vector-based detection.
Autocorrelations can be calculated for the speckle regions centered by the derived positions via low-cross-talk
region allocation strategy. Working with the modified phase retrieval algorithm, the complete scene of the multi-
ple targets exceeding the ME range can be reconstructed without any prior information. The effectiveness of the
proposed algorithm is verified by testing on a real scattering imaging system. © 2020 Chinese Laser Press

https://doi.org/10.1364/PRJ.388522

1. INTRODUCTION

Scattering media widely exist in our daily life, which possess a
non-uniform reflective and refractive index distribution. It dis-
turbs the light rays coming from the imaging targets, which
hinders the direct analysis of object information behind it using
traditional optical systems. To overcome this challenge, nowa-
days, novel methods based on the memory effect (ME) [1–4]
achieve non-invasive scattering imaging via speckle correlation
[5–7]. Compared with other scattering imaging methods, such
as the ballistic-light-based approach [8–13], wavefront shaping
[14,15], and transmission matrix measurement [16–21], the
speckle correlation technique realizes prior-free imaging only
by traditional instruments and has the capability of quick im-
aging in currently inaccessible scenarios. However, the field-
of-view (FOV) of this method is limited by the ME range.
Prior-free imaging beyond the ME range is critical to seeing
through scattering media.

To exceed the ME range, some techniques have been pro-
posed by introducing the prior information of isolated imaging
targets. Li et al. introduced the position prior of each imaging
target during the point spread function (PSF) calibration [22];
Sahoo et al. used the wavelength prior of each imaging target
during the PSF calibration [23]; and Guo et al. exploited the
shape prior or the PSF closing to the imaging target to exceed
the ME range [24]. Wang et al. proposed a dual-target non-
invasive scattering imaging method via Fourier spectrum guess-
ing and iterative energy constrained compensation [25].
However, this method can only be used for dual-target separa-
tion and the number of targets serves as the known prior

information before reconstruction. Boniface et al. achieved
non-invasive target localization beyond the ME by analyzing
the speckle envelope of each target [26], but this localization
method was not available when an unknown number of targets
were illuminated simultaneously.

Here, we put forward a multi-target large FOV scattering
imaging method based on the blind target position detection.
It blindly detects the unknown number and positions of the
isolated targets only using two multi-target near-field speckles
captured at different imaging distances. The theoretical scaling
relationship between two speckles is derived and demonstrated
and the scaling centers correspond to the positions of imaging
targets. Based on the theoretical derivation, scaling-vector-
based target position detection is proposed, which recognizes
the target position using the length and direction information
of scaling vectors. After that, the autocorrelations can be calcu-
lated for speckle regions centered by the derived positions via
the low-cross-talk region allocation strategy. Working with the
modified phase retrieval algorithm [27] to select the optimal
recovery with no prior information, especially for the auto-
correlation with interference, the complete scene of multiple
isolated targets exceeding the ME range is reconstructed.
Experiments on a real imaging system demonstrate the effec-
tiveness of the proposed algorithm in multi-target blind
reconstruction through scattering media. Visually distinguish-
able reconstructions are experimentally achieved with the whole
scene of multiple isolated targets exceeding the ME range. In
principle, the exceeding times can be increased as long as the
acquisition equipment can fully collect the scattered speckle in
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larger FOV. Further, we verified the accuracy for multi-target
positioning, capability for multi-target blind reconstruction,
and the experimental analysis about limitations and restraints
of the proposed method in the end.

2. PRINCIPLE

The principle of the method is depicted in Fig. 1. We excite
multiple isolated targets, O1,O2,…,On, hidden behind a scat-
tering medium, with a spatially incoherent illumination. Each
imaging target falls within the ME range, while the spacing
between any two targets is beyond. The large FOV speckle im-
age at Distance 1, I d 1

, which consists of speckles produced by
each target, I 1d 1

, I 2d 1
,…, Ind 1

, is captured by a 2D camera array.
Certainly, the proposed imaging system is applied for the sit-
uation that the number and locations of the imaging targets
cannot be seen directly from the captured speckle. This posi-
tion information is hidden in I d 1

. To extract it, a second
speckle I d 2

is captured at another imaging distance,
Distance 2. The ME range, Δθ, corresponds to the angle
FOV of the diffuser, within which the points on the object
plane produce random speckles with high correlation. For
the spatially incoherent imaging system via speckle correlation,
its ME range is constrained by Δθ ≪ λ∕πL [5], where λ de-
notes the wavelength of the spatially incoherent light source
and L is the effective thickness of the scattering media.
Since the speckle patterns generated within the ME range
are translational invariant, the large FOV speckle of multiple
targets recorded by the camera array at Distance 1, I d 1

in
Fig. 1 can be formulated by (so as d 2 for I d 2

)

Id 1
�

Xn
k�1

Ikd 1
�

Xn
k�1

Ok � PSFkd 1
, (1)

where � denotes the convolution operation; n denotes the total
number of the imaging targets and Ok �k � 1, 2,…, n� are all
the imaging targets; PSFkd 1

represents the translational invariant
point spread function at Distance 1 corresponding to the point
where Ok is located in the object plane; and I kd 1

denotes the
speckle pattern generated by Ok with imaging distance d 1.
The translational invariance of the PSF can be further expressed
by the envelope of each PSF, which is normally removed during
the image processing and seen as the obstacle for reconstruction
[5]. It varies with the distance away from the corresponding
point of each PSF. Especially for multi-target scattering imag-
ing, multiple envelopes couple the multi-target information

with the hidden target position information, which increases
the difficulty for imaging exceeding the ME. The intensity dis-
tribution of each PSF can be divided into two parts by

PSFkd 1
�x, y� � C�x − uk, y − vk� · Skd 1

�x, y�, (2)

where �x, y� is 2D coordinates in the sensor plane; �u, v� is 2D
coordinates in the object plane, and �u � uk, v � vk� is the
location of Ok in the object plane. C denotes the envelope
property (or energy distribution of the PSF), which has high
value if �x, y� is close to �uk, vk� with relatively low value if
�x, y� is far away from �uk, vk� [1] and shows the same property
for the PSF produced by a point-like source or the speckle gen-
erated by a small size object. Skd 1

denotes the system response at
Distance 1 corresponding to Ok after removing the envelope
and the autocorrelation of Skd 1

equals a sharp peak function
[5]. Substituting Eq. (2) into Eq. (1), we have

Id 1
�x, y� �

Xn
k�1

C�x − uk, y − vk� · �Ok � Skd1
��x, y�: (3)

From Eq. (3), the number, the shapes, and the locations of
the imaging targets are coupled together in the captured
speckle. This is the problem with an infinite number of solu-
tions when reconstructing all the target shapes only via Id 1

,
since there are so many unknown variables in Eq. (3). One
effective way for simplifying this problem and reducing the sol-
ution space is to detect the total number of the objects n and
the location of each object �uk, vk�, k � 1, 2,…, n without any
prior information. Thus, the blind target position detection
algorithm is proposed and introduced in the following.

We exploit a second near-field speckle Id 2
captured at an-

other imaging distance for position detection. The theoretical
scaling relationship between the two near-field speckles derived
by us indicates that some areas (called scaling centers) in the
near-field speckles do not scale with the imaging distance and
these scaling-invariant areas correspond to the locations of
imaging targets. To the best of our knowledge, no work has
been proposed to investigate the relationship between two
near-field speckles at different imaging distances. Inspired
by the existing statistical analysis of the far-field speckles in
3D space [18,28,29], and the novel technique using speckle
correlation to improve axial sectioning [30], without loss of
generality, we first analyze the scaling relationship between
two near-field on-axis PSFs. With an ideal pinhole at the optical
axis in the object plane as the corresponding point where one
imaging target (supposed as Ok) is located in the object plane,
using the Fresnel diffraction formula, the field on the front
surface of the scattering media, Us, is expressed by

Us�xs,ys��
ej2πd 0∕λ

jλd 0

Z �∞

−∞

Z
δ�u,v�ju�0

v�0
· e

jπ
λd0

��u−xs�2��v−ys�2 �dudv

� ej2πd 0∕λ

jλd 0

· e
jπ
λd0

�x2s �y2s �, (4)

where we assume that the on-axis pinhole is located at
�u � 0, v � 0�; �xs, ys� is the 2D coordinates corresponding
to the diffuser plane. Here, the scattering medium regarded
as an unknown random 2D phase disturbance, TM�xs, ys�,
is introduced into the propagation model. Using the near-field

Fig. 1. Schematic of our multi-target large FOV scattering imaging
system via the blind target position detection. Multiple isolated targets,
O1,O2,…,On, behind the diffuser form a large FOV scene.
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Huygens diffraction theory, the light field on the first sensor
plane, h1, can be expressed by

h1�x, y� �
ej2πd0∕λd 1

−λ2d 0

ZZ
xs , ys

TM�xs, ys�

·
e

jπ
λd0

�x2s �y2s � · e
j2π
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d 2
1��xs−x�2��ys−y�2

p

d 2
1 � �xs − x�2 � �ys − y�2

dxsdys

≈
ej2π�d 0�d1�∕λd 1

−λ2d 0

e
jπ
λd1

�x2�y2�
ZZ

xs , ys
TM�xs, ys�

·
e
jπ
λf �x2s �y2s � · e−j2π�

x
λd1

xs� y
λd1

ys�

d 2
1 � �xs − x�2 � �ys − y�2

dxsdys, (5)

where 1∕f equals �1∕d 0 � 1∕d 1�. The scattered PSF shown in
Eq. (2) at Distance 1 plane, PSFkd 1

(so as d 2 for PSFkd 2
at

Distance 2 plane), is the square of the magnitude of h1 as

PSFkd 1
�x, y� � jh1�x, y�j2

�
�

d 1

λ2d 0

�
2
����
ZZ

xs , ys
TM�xs, ys�

·
e
jπ
λf �x2s �y2s � · e−j2π�

x
λd1

xs� y
λd1

ys�

d 2
1 � �xs − x�2 � �ys − y�2

dxsdys

����
2

: (6)

To describe the scaling relationship, we introduce the cor-
relation function between on-axis PSFkd 1

and PSFkd 2
as

T �d 1, d 2,m� �
ZZ

PSFkd 1
�x, y� · PSFkd 2

�mx,my�dxdy, (7)

where m is a constant value which represents that the spatial
coordinates of PSFkd 2

are scaled to PSFkd 1
. In theory, the optimal

m value corresponds to the peak of the correlation function, T ,
where PSFkd 1

and the scaled PSFkd 2
are the most relevant.

However, based on the above formula, multiple variables are
coupled to each other in near-field PSFs and we cannot derive
the analytical solution of m with the peak of the correlation
function between PSFkd 1

and PSFkd 2
. In this case, we simulated

the PSFs by computer via Eq. (6) and search the most relevant
areas by block matching to explore the statistical optimal sol-
ution of m.

The simulated PSFs are conducted as shown in Fig. 2, where
the scattering process is created from a random phase mask
based on the projection model [31,32]. A point light source
was set at the on-axis position in the object plane as the cor-
responding point where Ok is located in the object plane. The
simulated PSFs (normalized by removing the envelope) at dif-
ferent imaging distances through the modeled scattered layer
are shown in Figs. 2(a) and 2(b). Visually, the intensity distri-
bution of the two PSFs is strongly correlated, such as the green
rectangles. Inspired by the wavefront slopes used from adaptive
optics [33,34], we introduce the scaling vector into the algo-
rithm to explore the detailed relationship between two imag-
ing-distance PSFs, which is estimated by discrete block
matching. We traverse PSFkd 2

to search the optimal area most
relevant to a selected block in PSFkd 1

, and the translational re-
lation from the selected block in PSFkd 1

to the optimal block in
PSFkd 2

is equivalent to the scaling vector from the center point
of the selected block in PSFkd 1

to PSFkd2
. The block matching

strategy can be expressed as

�xd 2
, yd 2

� � arg max
�x,y�

�Corr�Mx,y,Nxd1 , yd1
��, (8)

where Nxd1 , yd1
denotes the selected block with �xd 1

, yd 1
� as the

center in PSFkd 1
;Mx,y denotes the searching block with �x, y� as

the center in PSFkd 2
to match Nxd1 , yd1

; and the matched block

in PSFkd 2
is centered around �xd 2

, yd 2
�. Corr�·� calculates the

correlation between two pixel blocks and we use the cross cor-
relation in this paper [5]. In this way, a scaling vector is defined
as an arrow with direction from �xd 1

, yd 1
� in PSFkd 1

to �xd 2
, yd 2

�
in PSFkd 2

. To balance the computational complexity, we just
utilized part of the discrete scaling vectors built by block match-
ing, as shown in Fig. 2(c). The space between any two vectors
vertically or horizontally is 20 pixels.

Then we calculate the m value of each estimated scaling vec-
tor in Fig. 2(c), which equals the distance between �xd 2

, yd 2
�

and the scaling center divided by the distance between
�xd 1

, yd 1
� and the scaling center, as shown in Eq. (7).

Theoretically, all the scaling vectors which were estimated by
block matching with maximum cross correlation share the same
m value and the statistical analysis for Fig. 2(c) bears this out.
The histogram distribution of m values as shown in Fig. 2(d)
demonstrates thatm stabilizes around 1.015 as a constant value,
which meets the description of Eq. (7). Although the analytical

Fig. 2. Simulated experiments to analyze the relationship be-
tween two PSFs at different imaging distances (d 0 � 120 mm,
pixel size � 4.8 μm, 600 × 600 pixels). The point light source was
set at the optical axis (u � 300, v � 300), as the corresponding point
where Ok located in the object plane. (a) Normalized PSFkd 1

with
d 1 � 17 mm. (b) Normalized PSFkd 2

with d 2 � 19 mm. (c) The es-
timated low-density scaling vectors based on (a) and (b). The space
between any two vectors vertically or horizontally is 20 pixels. The
green rectangle in (b) is the matched block of the green rectangle
in (a) and the enlarged arrow in (c) represents the estimated scaling
vector corresponding to these two green rectangles. The blue point
in (c) is the location of the light source. (d) The histogram distribution
of m values extracted from all the scaling vectors in (c). Scale bar,
50 camera pixels.
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solution of Eq. (7) is hard to derive, the scaling relationship
between near-field PSFs statistical analysis does exist, which
was proved by the above statistical analysis. We tentatively con-
clude that the on-axis �u � 0, v � 0� near-field scaling rela-
tionship between PSFkd 1

at Distance 1 plane and PSFkd 2
at

Distance 2 plane can be expressed as

PSFkd1
�x, y� → PSFkd 2

�mx,my�, (9)

where→ denotes that PSFkd 1
is most relevant to the coordinate-

scaled PSFkd 2
with the constant coordinate-scaled value m. Also,

the on-axis scaling relationship in Eq. (9) can be generalized to
the off-axis case as

PSFkd 1
�x, y� → PSFkd 2

�mx − �m − 1�uk,my − �m − 1�vk �, (10)

and the corresponding point where Ok is located changes from
(u � 0, v � 0) to (u � uk, v � vk). As described in Eq. (10),
for the off-axis scaling relationship situation, the scaling vector
that starts at �x, y� in PSFkd 1

will end at �mx − �m − 1�uk,
my − �m − 1�vk � in PSFkd 2

. This reveals that the scaling vectors
have two features representing the location of Ok, which is also
regarded as the scaling center from Distance 1 to Distance 2.
First, the length of the scaling vector is proportional to the dis-
tance between the scaling vector and the scaling center. Second,
the scaling center falls on the defined line by each scaling vector
and each scaling vector points away from the scaling center
(if d 2 > d 1).

Under the spatially incoherent illumination, the speckle
generated by one certain imaging target (supposed as Ok) is
the linear superposition of many highly correlated PSFs.
Actually, each PSF possesses a different scaling center corre-
sponding to one point belonging to the imaging target.
Considering the schematic of the proposed scattering imaging
system in Fig. 1, the size of each imaging target falls within the
ME range but the spacing between any two targets beyond. All
the PSFs that form the single-target speckle possess the same
scaling center approximately where the imaging target located
around. Equation (11) explains the scaling relationship be-
tween the single-target near-field speckles as

Ikd 1
�Δx�uk,Δy � vk� → Ikd 2

�m · Δx�uk,m · Δy� vk�,
(11)

where �uk, vk� represents the scaling center of these two speck-
les which equals the location of Ok; �Δx,Δy� denotes the 2D
coordinate differences between the scaling vector and the scal-
ing center. Theoretically, the mentioned feathers between scal-
ing vectors and scaling centers for PSFs still apply to the
estimated scaling vectors by near-field speckles from
�Δx � uk,Δy � vk� to �mΔx � uk,mΔy � vk�.

After that, the scaling-vector-based detection algorithm, as
shown in Fig. 3, is proposed based on Eq. (11) for multiple
targets in Fig. 1 under the spatially incoherent light source.
First, the scaling vectors are estimated by block matching
as Eq. (8) from two imaging-distance multi-target speckles.
We traverse I d 2

to search the optimal area most relevant to
a selected block in I d 2

. The density of estimated scaling vectors
vertically or horizontally can be adjusted appropriately with the

speckle resolution. Then, multiple targets mean that multiple
scaling centers exist around the estimated scaling vectors. In the
case that there is an uncertain number of scaling centers, we use
the length information of each estimated scaling vector to de-
termine some regions where the targets may locate. Any posi-
tion whose scaling vector length is below a certain threshold is
listed as the possible region. Next, the connected component
analysis (8-connected) [35] will be applied for clustering these
regions and the number of the connected components equals
the number of imaging targets. The algorithm will choose the
area with the minimum length of the scaling vector in each
connected component as the rough location of each target.
Finally, the direction information of the scaling vector would
be used for each rough location to adjust the positioned row
and column where the imaging target located accurately, be-
cause the line defined by each scaling vector belonging to
one connected component theoretically passes through the tar-
get position in that component. The proposed scaling-vector-
based detection algorithm is assisted with the block matching
method and the connected component analysis to achieve
blind target position detection, only exploiting two captured
multi-target near-field speckles at different imaging distances.
The detected position information includes the number, n,
and the locations of the imaging targets corresponding to
the object plane, �uk, vk�, k � 1, 2,…, n, like the blue points
in the Section 3.

After target position detection, the low-cross-talk region
allocation strategy is proposed to extract the autocorrelation
of each target, in order to simplify the infinite-solution problem
in Eq. (3). We can select a small square region of the captured
speckle, ε, in I d1

for autocorrelation calculation, which is cen-
tered by one detected target location (O1 as an example) with
side length β as

ε��
�x,y�

����k�x,y�−�u1,v1�k2≪k�x,y�−�uk,vk�k2
k�x,y�−�u1,v1�k∞≤β∕2

,k�2,…,n
�
:

(12)

Considering the envelope properties of speckle, the selected
region affects the weight of each imaging target in I d 1

by

C�x − u1, y − v1� ≫ C�x − uk, y − vk�, k � 2,…, n,

∀ �x, y� ∈ ε: (13)

Fig. 3. The block diagram of the scaling-vector-based detection
algorithm.
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This weight difference would be doubled if I d 1
is transferred

into the autocorrelation domain [25] as

I ε ⊗ I ε�x, y� �
Xn
k�1

C�x − uk, y − vk�2 · Ok ⊗ Ok�x, y�

≈ C�x − u1, y − v1�2 · O1 ⊗ O1�x, y� ≈ O1 ⊗ O1�x, y�,
(14)

where I ε denotes the selected square region in I d1
belonging

to ε; C�x − uk, y − vk� is spatially constant when ε is much
smaller than the whole speckle to describe the remained weight
for Ok caused by the envelope. Via the doubled weight differ-
ence, the autocorrelation of O1 can be extracted from the
autocorrelation of the selected region in I d 1

centered by the
location of O1. Repeat the above steps n times for each target
location and the autocorrelation of each imaging target will be
reconstructed with low cross talk by other autocorrelations as
shown in Eq. (14).

However, the extracted autocorrelations of each imaging tar-
get do carry some interference from other autocorrelations in
theory, which leads to an unstable output after the traditional
phase retrieval algorithm with the random phase as the initial
input. In order to improve the stability of reconstruction, the
modified phase retrieval algorithm is applied in the paper es-
pecially for the autocorrelation signal with interference. First,
we blindly reconstruct a number of object images by the
“hybrid input-output” and the “error-reduction” algorithms
via different random initial phases [27]. Then, for each object
image, the part whose intensity is less than 20% of the maxi-
mum intensity of that image is regarded as unstable noise and
the intensity of that part is set to zero. Finally, the object image
with the least change in the autocorrelation domain between
the unprocessed one and the processed one is taken as the final
optimal output.

Working with the modified phase retrieval algorithm, each
target can be reconstructed with the help of the detected num-
ber and locations of the imaging targets. Then, these targets will
be placed at the detected position to form a complete scene of
the multiple targets exceeding the ME range without any prior
information, eventually. It has been verified by the real experi-
ments that the approximations that appear in this section are
acceptable and the extracted position information is sufficient
for a visually distinguishable reconstruction. In addition, we
discuss the limitations of the proposed algorithm in the next
section.

3. EXPERIMENTAL DEMONSTRATION

In the following section, we first describe the optical setup of
the scattering imaging system, then detail the tests on a real
scattering imaging system, and finally analyze the limitations
of the proposed algorithm.

A. Experimental Setup
The multi-target large FOV scattering imaging system setup via
the blind target position detection is shown in Fig. 4, which is
extended from the single-shot scattering system proposed by
Katz et al. [5]. A narrow bandwidth 532 nm single-frequency
CW laser (Cobolt SambaTM-100) serves as the light source

whose coherence is attenuated via rotating ground glass.
One Thorlabs Optics 220-grit diffuser whose effective ME
range is 16.6 mrad is placed between multiple targets and
the sensor plane [25]. We used a single CMOS camera
(Filr, pixel size � 4.8 μm, 1280 × 1024 pixels) on a 3D mov-
ing platform (DHC, minimum scale � 10 μm) to capture the
large FOV speckles at different imaging distances.

B. Tests on a Real Scattering Imaging System
First, various multiple targets were tested to demonstrate the
effectiveness of the proposed algorithm. The left column shows
the test on the mask “2FL” and the right column shows the
test on a larger and more complex scene “01234.” Figures 5(a)
and 5(f ) describe the detailed parameters of multiple targets.
The minimum distance between any two targets is 3.5 mm,
and each target size is within 0.5 mm. In this part, the object
distance (d 0) equals 120 mm. The total scene size is much
larger than the ME range �120 mm × 16.6 mrad�, but each
target size is smaller than it. The real multi-target large FOV
near-field speckles through scattering media at different imag-
ing distances are captured via a 3D moving camera. Figures 5(c)
and 5(h) are captured with d 2 � 17.0 mm and Figs. 5(d) and
5(i) with d 1 � 16.5 mm. Visually, no prior information
(including the number and locations of the imaging targets) can
be seen directly from these multi-target superimposed speckles.
The red arrows in Fig. 5(e) show all the estimated scaling vec-
tors using the block matching method based on the near-field
speckles for mask “2FL,” which describe the scaling relationship
between these two imaging-distance speckles. Obviously, there
are three scaling centers that exist among these scaling vectors.
Meanwhile, Fig. 5(e) shows the extracted connected compo-
nents for mask “2FL” in the bottom right and the blue points
denote the final detected multi-target locations. The number of
the extracted connected components matches the number of
the imaging targets and this multi-target scattering imaging
problem is specified as the process of reconstructing three ob-
jects. After that, the autocorrelation of each imaging target as
shown in Fig. 5(d) can be reconstructed via the operations as
Eq. (14) in the selected speckle region centered by the detected
position information in Fig. 5(e). Working with the modified
phase retrieval algorithm, each imaging target can be recon-
structed successfully and then put at its location to form a
complete scene as shown in Fig. 5(b), which is visually close
to the original one. The process of Figs. 5(h)–5(j) for target

Fig. 4. Multi-target large FOV scattering imaging system setup via
the blind target position detection.
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“01234” is the same as the process of Figs. 5(c)–5(e). The ob-
jective similarity evaluations between the reconstructions and
the original targets by peak signal-to-noise ratio (PSNR) are
shown in Table 1 and the detected target locations are shown
in Figs. 5(b) and 5(g). Compared with the original scene in
Figs. 5(a) and 5(f ), these reconstructed results demonstrate that
the multiple targets can be accurately positioned by scaling-
vector-based position detection and the proposed method
achieves multi-target large FOV blind reconstruction through
scattering media in the real imaging system.

Second, to test the applicability of our proposed method for
large FOV fluorescent biological observation through scattering
media, the neuron-shape scattering imaging experiments are
conducted. The neuron-shape mask scaled from the real den-
drites of hippocampal neurons [36] has the complex shapes
of targets and distribution irregularity of target locations,
which increases the difficulty for reconstruction but satisfies
the requirements for practical scattering scenes. The mask
was set as the imaging targets in the proposed scattering
imaging system with other experimental conditions consistent
with Fig. 5. Figure 6(a) shows the neuron-shape mask for
reconstruction and the detailed parameters. The reconstructed
whole scene via the proposed method is shown in Fig. 6(b) and
the main features are faithfully recovered. Certainly, no prior
information can be seen directly from the captured large
FOV speckle, as shown in Fig. 6(c), which was recorded
with d 1 � 16.5 mm as the Distance 1 plane. In principle,
the presented millimeter-scale experiments can be scaled to
micrometer- or meter-scale scenarios for scattering imaging
exceeding the ME range.

C. Analyzing the Limitations
In the case that multiple targets are separated from each other as
shown in Fig. 1, the proposed method blindly achieves multi-
target localization and reconstruction exceeding the ME range.
However, how to define the effective spacing between any two
targets, beyond which the scaling-vector-based detection and

Fig. 5. Tests on a real scattering imaging system. (a) The multi-
target mask “2FL” with the detailed parameters as the imaging targets.
(b) The final large FOV reconstruction with the detected position in-
formation. (c) The captured near-field speckle with d 2 � 17.0 mm.
(d) The captured near-field speckle with d 1 � 16.5 mm and the ex-
tracted autocorrelation of each imaging target centered by the detected
locations in (e). (e) The estimated scaling vectors (shown as the red
arrows) by block matching and the detected locations (shown as the
blue points). The connected component analysis result is shown in the
bottom right in a smaller scale. (f )–(j) As in (a)–(e) for a larger and
more complex scene “01234.” Scale bar, 50 camera pixels.

Table 1. PSNRs Between Reconstructions and Targets

Scenes Targets PSNR (dB) Averaged PSNR (dB)

2FL (3.5 mm) 2 17.6459 18.4545
F 18.5682
L 19.1494

01234 (3.5 mm) 0 17.9687 19.7870
1 24.1154
2 18.4623
3 18.3745
4 20.0140

Fig. 6. Real tests for biological scattering observation. (a) The neu-
ron-shape mask with the detailed parameters as the imaging targets.
(b) The final reconstructed scene. (c) The captured near-field speckle
with d 1 � 16.5 mm. Scale bar, 50 camera pixels.
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scattering imaging algorithm works for multi-target speckles?
To evaluate this limitation, we adjust the spacing between
any two targets for mask “2FL” in Fig. 7(a) from 3.25 mm
to 1.5 mm. Besides spacing, other parameters remain the same
as those in Fig. 5(a), with the effective ME range keeping 2 mm
in the object plane and the size of each imaging target falling
within 0.5 mm. In this experimental environment, it is obvious
that the reconstructed targets and locations are visually distin-
guishable when the spacing changes from 3.25 mm to
2.25 mm, as shown in Fig. 7(b). The estimated scaling vectors
and detected locations with a spacing of 2.75 mm are shown
in Fig. 7(d) as an example of reconstructions in good quality.
As the spacing between any two targets reaches lower than
2.25 mm, the reconstructions are visually distorted, and the
quality degrades. Meanwhile, the proposed blind position de-
tection algorithm estimates the wrong number and the wrong
locations of the imaging targets from the near-field speckles
as shown in Fig. 7(e) with a spacing of 1.75 mm, which
serves as misleading for the following reconstruction process.
Objectively, the three-target averaged PSNRs curve between
the reconstructions and the original targets with respect to the
decreasing spacing is provided in Fig. 7(c). Theoretically, the
autocorrelation of one selected target like Eq. (14) is noised
more by other target autocorrelations with the decreasing
spacing between any two targets, which makes the final
reconstruction after phase retrieval worse. Meanwhile, accord-
ing to Eq. (13), the captured multi-target speckle region
centered by one detected target location (O1 as an example)
is mainly composed of the speckle generated by O1 and the

speckles generated by other imaging targets only make a small
contribution for this region. Therefore, the scaling vectors in
this region regard the location of O1 as the scaling center and
there are multiple different scaling centers that exist between
two imaging-distance speckles which correspond to the loca-
tions of different imaging targets. This is the reason why the
proposed blind position detection algorithm can extract multi-
target positions from two large FOV imaging-distance speckles,
and Figs. 5(e) and 5(j) show the obvious boundaries of the
speckle regions serving for different imaging targets. However,
with the decreasing spacing, the weight differences in Eq. (13)
are reduced and the scaling vectors in the speckle region cen-
tered by the location of O1 are noised more by other imaging
targets. That will result in the low-accuracy target localization,
and even the wrong number of the identified imaging targets.

As for the times that the proposed algorithm can exceed the
ME range, it is not restricted by theory, only if the camera array
can capture the full speckles when the number of imaging
targets increases.

4. CONCLUSION AND DISCUSSION

To summarize, we developed a multi-target large FOV scatter-
ing imaging method based on the blind target position detec-
tion. This technique only exploits two captured multi-target
near-field speckles at different imaging distances, from which
the target position cannot be seen directly. A major advantage
of our approach is that target position information including
the number and the locations of the imaging targets can be

Fig. 7. Real reconstructions for mask “2FL” when the spacing is decreasing from 3.25 mm to 1.5 mm. (a) The original imaging targets with
detailed distance parameters. (b) The final reconstructed large FOV scenes corresponding to (a). (c) The averaged PSNRs curve between recon-
structions and original targets with respect to the decreasing spacing. (d) The estimated scaling vectors and locations when spacing equals 2.75 mm as
an example of reconstructions in good quality. (e) The estimated scaling vectors and locations when spacing equals 1.75 mm as an example of
degraded reconstructions.
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blindly reconstructed via the scaling-vector-based detection
algorithm. After that, the autocorrelations can be calculated for
speckle regions centered by the derived positions via the low-
cross-talk region allocation strategy. Working with the modified
phase retrieval algorithm, the whole scene of the multiple iso-
lated targets exceeding the ME range can be successfully recov-
ered. Unlike other methods of exceeding the ME range, no
prior information of the target is required, which makes our
technique more applicable for prior-information-free large
FOV imaging and other scattering imaging techniques can
cooperate with our proposed method to further improve the
performance [25,26]. The real scattering imaging experiments
demonstrate the effectiveness of the proposed method.

Actually, the detected target position information contains
some errors compared with the initial multi-target positions.
These errors come from three main sources: (1) the discrete
sampling during camera acquisition and image processing;
(2) the approximations of the theoretical derivation from
Eq. (9) to Eq. (11) aiming to simplify the scattering model;
and (3) a certain divergence angle of the experimental illumi-
nation, which makes the target positions change slightly from
the object plane to the sensor plane. Actually, these errors did
not affect the effectiveness of the proposed algorithm for target
localization and reconstruction. On the other hand, the min-
imal effective spacing between any two targets for the proposed
algorithm is not only limited by the target size and the proper-
ties of the scattering medium, but also the distance between the
scattering medium and the camera sensor, and even the shape
of the imaging target. In the future, a deeper research will be
focused on this problem.

Additionally, the main time consumption of our proposed
algorithm is spent in the process of estimating scaling vectors
from two imaging-distance speckles and the time consumption
will increase along with the increasing FOV of the captured
speckles. When the resolution of the captured speckles in
Figs. 5(c) and 5(d) is 1600 × 2500 pixels, the length of the se-
lected square region (β) is set as 400 pixels and the total time
consumption in MATLAB 2018b is about 6.1 h. In addition,
in the image processing part, the raw captured multi-target
speckle with the slowly varying envelope is normalized by
dividing the raw speckle by a low-pass-filtered version of it be-
fore calculating autocorrelations [5]. Especially in the process
of estimating scaling vectors, the normalized speckle is further
smoothed by a low-pass filter to remove the existing noises by
camera which are spatially invariant at different imaging distan-
ces and improve the accuracy for localization.

Finally, the imaging distances, d 1 and d 2, are not fixed
in the proposed method, so as the gap between two near-
field speckles, d 2 − d 1. In addition, these distance parameters
were not used as the known information for reconstruction in
this paper. In practice, the imaging distance can be adjusted
to satisfy the requirements for different scenes, as long as the
near-field scaling relationship between two imaging-distance
speckles exists, and the light field techniques [37] may be ap-
plied to the proposed system to speed up the acquisition pro-
cess. Meanwhile, the relationship between parameter m and
multiple variables (including d 0, d 1, d 2, and TM) via statistical
analysis will be the research plan in the future, aiming to dig out

more useful information from two near-field speckles at differ-
ent imaging distances. Furthermore, the proposed method
can still work theoretically when the imaging targets are sand-
wiched between two scattering layers or looked around corners
[5], which will be tested experimentally in the future work,
and the raw data used to generate the results presented in this
manuscript is available at https://cloud.tsinghua.edu.cn/d/
296c066dbcc243839f52/.
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