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We propose a conceptual design of optical power limiters with abrupt limiting action and enhanced power-
handling capabilities that is based on exceptional point degeneracies (EPDs). The photonic circuit consists of
two coupled cavities with differential Q factors. One of the cavities includes a Kerr-like nonlinear material.
The underlying mechanism that triggers an abrupt transmittance suppression relies on the interplay between
a nonlinear instability and an abrupt destruction of EPDs due to a resonance detuning occurring when the in-
cident power exceeds a critical value. Our proposal opens up possibilities for the use of EPDs in optical power
switching, Q switching, routing, and so on. © 2020 Chinese Laser Press
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1. INTRODUCTION

Spectral singularities have always been an interdisciplinary
research theme, offering exciting opportunities to mathemati-
cians, physicists, and engineers [1–3]. While most of the effort
has up to now been focused on Hermitian spectral singularities
(also known as diabolic points) [4–6], the recent interest in
non-Hermitian wave physics has brought to the center of at-
tention a class of spectral singularities known as exceptional
point degeneracies (EPDs). Theoretically discussed more than
50 years ago [7], EPDs are non-Hermitian degeneracies emerg-
ing when the variation of a control parameter of the system
enforces two (or more) eigenvalues and their corresponding
eigenvectors to coalesce [7,8]. In fact, the study of EPDs has
revealed a variety of fundamental phenomena, which spawned
next generation technological developments [9]. Examples
range from hypersensitive biosensing [10,11] and navigation
devices [12,13] to lasing control [14–16] and unidirectional
invisibility [17]. Recently, nonlinear effects in systems contain-
ing exceptional points also attracted significant attention
[18,19]. In fact, nonlinear systems with non-Hermitian singu-
larities have been investigated for some time, in the framework
of critical coupling of optical cavities (see, for example,
Ref. [20]).

In this paper, we consider the possibility of using EPD-based
photonic circuits with Kerr-effect-like nonlinearities for optical
limiting and switching. A typical optical limiter is supposed to
transmit low-intensity input light while blocking the light with
excessively high intensity, thereby protecting sensitive optoelec-

tronic components or the human eye from laser-induced
damage. One common problem with the existing optical limit-
ers is that their limiting threshold (LT) (i.e., incident intensity
for which a transmittance drop to small values occurs) [21] is
often too high for some important applications. The challenge
is to lower the LT while maintaining the ability to withstand
high input power without damaging the limiter itself. Here we
show that the EPD-based approach allows us to do just that. In
addition, the proposed conceptual design can provide an abrupt
and fast transition from high transmittance below the LT to
nearly total reflectance above the LT. The high reflectance
(as opposed to high absorptance) above the LT can prevent
overheating and thus drastically increase the limiter damage
threshold (LDT).

In the proposed design, we implemented a second-order
EPD combined with a nonlinear detuning mechanism in a
one-dimensional photonic crystal (see Fig. 1). The EPD is
achieved by judiciously tailoring differential Q factors of two
defect components of the photonic crystal. One of the defect
components is made of a nonlinear (e.g., Kerr-effect-like)
material that produces a resonance detuning when the input
intensity exceeds the LT. At low input intensity, such that
the self-induced nonlinear resonance detuning is proportional
to the differential Q factor, the photonic structure is transpar-
ent over a frequency range around the EPD. When, however,
the incident intensity exceeds the LT, the two distinct resonant
modes emerge when the EPD is lifted due to the nonlinear
detuning. One mode undergoes an underdamping-to-over-
damping transition due to the differential Q factor, while
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the other acquires a narrow resonance width that leads to strong
bistability effects, resulting in an abrupt resonance destruction.
The EPD-based photonic circuits are therefore excellent can-
didates for transceiver and other sensitive opto-electronic com-
ponent protection. Not only do they show an abrupt limiting
action, their dynamical range is enhanced due to nearly zero
absorption and nearly total reflection of the incident high-
power radiation.

In Section 2 we describe the basic idea of the EPD-based
approach to optical limiting and demonstrate its efficiency by
using a coupled mode theory (CMT) [22]. The analysis first
focuses on the linear CMT system. Then, in Section 2.B we
proceed with the transport properties of the corresponding
nonlinear CMT model. In Section 3 we consider a specific de-
sign of a free-space optical limiter based on a one-dimensional
multilayer photonic crystal supporting an EPD. Finally, our
conclusions are given in Section 4.

2. PRINCIPLE OF OPERATION AND
THEORETICAL ANALYSIS OF AN EPD OPTICAL
LIMITER USING COUPLED MODE THEORY

A. Transport via Two Linear Coupled Modes at EPD
We start our analysis by considering two coupled degenerate
modes with differential Q factors. The underlying physical sys-
tem can be a multilayered photonic crystal with two defect layers
(as in Fig. 1) or two coupled optical resonators [as in the trans-
parent box in Fig. 2(a)]). Using a CMT formalism, the system is
described by the following effective Hamiltonian Ĥ :

Ĥ �
�
−Ω − iγ1 −κ

−κ −Ω − iγ2

�
, (1)

where κ denotes the coupling between the two modes [23,24],
−Ω is the resonance frequency of each individual cavity (i.e., in

the absence of coupling), and γ ≡ γ2 − γ1 is the differential loss
between the two cavities. The underlying physical mechanism of
the mode losses γ1,2 can be due to ohmic or radiative dissipation
(or any other type of loss). We assume, without loss of generality,
that γ1 < γ2.

The supermodes of the composite structure are found via
direct diagonalization of Eq. (1). Specifically, we get

ω� � −Ω − iγ̄ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 −

�
γ

2

�
2

s
, (2)

where γ̄ ≡ γ1�γ2
2 . The corresponding eigenvectors are

v− ∝
�
−
iγ−

ffiffiffiffiffiffiffiffiffiffi
4κ2−γ2

p
2κ
1

�
; v� ∝

�
−
iγ�

ffiffiffiffiffiffiffiffiffiffi
4κ2−γ2

p
2κ
1

�
: (3)

Equations (2) and (3) imply that at κEPD � γ
2 the two modes are

degenerate, forming a second-order EPD with ω� � ωEPD �
−Ω − iγ̄ and the corresponding degenerate eigenvectors
v− � v� � 1ffiffi

2
p �−i, 1�T . In the following, we will use the

dimensionless ratio α ≡ γ∕2κ as the EPD parameter (α � 1
will indicate the formation of an EPD).

Next, we assume that one of the modes experiences a detun-
ing Δ under the condition α � 1. To be specific, we assume
that the detuning mechanism is associated with the first
cavity. The corresponding CMT Hamiltonian Ĥ �Δ� is then
of the same form as the one of Eq. (1) but with the substitute
Ω → ΩΔ ≡ Ω� Δ in the matrix element Ĥ 11. Direct

Fig. 1. Multilayer structure involving two coupled cavities with ju-
diciously chosen differential Q factors. (a) At low input intensity (in
the linear regime), the photonic circuit supports an EPD and displays
resonant transmittance. (b) If the input intensity exceeds the LT, the
nonlinearity causes an abrupt lift of the EPD, rendering the photonic
circuit highly reflective.

(a)

(c)(b)

Fig. 2. (a) Schematic of a two-coupled-cavity system (inside a trans-
parent box) connected to two transmission lines. The coupling is
asymmetric, i.e., jw1j < jw2j, enforcing differential radiative losses
(and therefore Q factors) between the first and the second resonator.
The system is designed to support an EPD. (b) Parametric evolution of
the frequency difference Δω ≡ jω� − ω−j and the corresponding
imaginary parts of the two eigenmodes versus the linear detuning
Δ [analytical results derived from Eq. (4) are shown by symbols, while
the numerical results derived from Eq. (8) are shown by solid lines
with a corresponding color]. The solid black line has slope 1/2, while
the dashed black line has slope 1 and is drawn in order to guide the eye.
Note that Δω ≤ maxfjIm�ω��jg in the domain where the frequency
difference scales as ∝

ffiffiffiffi
Δ

p
. (c) Transmission spectrum for

various detuning strengths Δ (see labels in the inset).
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diagonalization of Ĥ �Δ� allows us to evaluate the influence of
the detuning Δ on the supermodes ω��Δ�. We have

ω��Δ� � ωEPD −
Δ
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2iγΔ� Δ2

p
2

, (4)

which in the two limiting cases of Δ ≪ γ and Δ ≫ γ takes the
following forms:

ω��Δ� ≈
�
ωEPD � �

1−i
2

� ffiffiffiffiffiffi
γΔ

p �O�Δ�, Δ ≪ γ
−Ω − iγ2, Δ ≫ γ

, (5)

and, similarly for ω−,

ω−�Δ� ≈
�
ωEPD −

�
1−i
2

� ffiffiffiffiffiffi
γΔ

p �O�Δ�, Δ ≪ γ
−�Ω� Δ� − iγ1, Δ ≫ γ

: (6)

Further analysis of Eqs. (5) and (6) reveals that the two superm-
odes ω� are initially (Δ < γ) shifted in opposite directions,
away from the EPD frequency Re�ωEPD� � −Ω with a rate
∝

ffiffiffiffi
Δ

p
[see the purple stars in Fig. 2(a), showing the frequency

splitRe�Δω�]. When Δ > γ, the ω− mode keeps moving away
from −Ω with an increased rate ∝ Δ, while ω� comes back at
−Ω and stays there. In parallel, the linewidth of ω− is initially
(Δ < γ) decreasing with a rate ∝

ffiffiffiffi
Δ

p
[see the blue circles in

Fig. 2(b)], while the linewidth of ω� increases with the same
rate [red triangles in Fig. 2(b)]. Since for Δ < γ, the mode line-
width and the modal spacing scale with Δ in a similar fashion,
the two modes can be treated as quasi-degenerate. Under these
conditions, the transmittance acquires high values for a fre-
quency range ∝

ffiffiffiffiffiffi
γΔ

p
around the EPD. In the opposite limit

of Δ > γ, the linewidths of ω� asymptotically approach the
values γ2,1. Therefore, the quality factor of mode (ω�) de-
creases, while that of mode (ω−) increases. Consequently,
the resonant transmission via mode ω� will degrade, while
mode ω− will demonstrate a relatively sharp resonance peak.

The characteristic responses of the eigenmodes to small de-
tunings Δ [see Eqs. (4)–(6)] also manifest themselves in the
case of scattering setup, i.e., when each resonator is coupled
to a transmission line; see Fig. 2(a). In this setting, the eigenm-
odes turn to resonant modes, whose resonant frequencies and
linewidths are associated with the real and imaginary parts of
the poles of the scattering matrix S�ω�. The latter is expressed
in terms of the Hamiltonian Ĥ �Δ� of the isolated system
[25] as

Ŝ � −Î 2 − iŴ
T 1

Ĥ eff − ωÎ2
W ;

Ĥ eff � Ĥ �Δ� � Λ −
i
2
Ŵ Ŵ T , (7)

where Î 2 is the 2 × 2 identity matrix and Ŵ describes the
resonator-lead coupling. Its elements are W nm � ffiffiffiffivgp wnδnm,
where wn are dimensionless coupling strengths and vg �
∂ω�k�∕∂k. Finally, the renormalization matrix Λ originates
from the coupling of the system to the leads, and it is specific
to the properties of the transmission line. For example, when
the transmission lines consist of coupled resonator optical
waveguide (CROW) arrays [see Fig. 2(a)], supporting propa-
gating waves with a dispersion relation ω�k� � 2t l cos�k�
(k is the wavevector and t l � −1 is the coupling constant
between the resonators in the leads), the group velocity is
vg � −2t l sin�k�, while Λ � − 1

2 cot�k�WWT .

Equation (7) allows us to identify the poles ω� of the scat-
tering matrix Ŝ as the zeros of the secular equation:

det�Ĥ eff − ωI2� � 0, (8)

which, in the case of CROW transmission lines, needs to be
evaluated numerically. In fact, the analysis can be further sim-
plified if we consider a wide band approximation corresponding
to k ≈ π∕2. In this case, the tight-binding dispersion reduces
to the free-space dispersion, and the analysis of the poles of
Ŝ boils down to the study of the eigenvalues of Ĥ fs

eff �
Ĥ �Δ� − i

2 Ŵ
fs�Ŵ fs�T . Since Ŵ fs is diagonal with coupling el-

ements W fs
nm�k � π∕2� � ffiffiffi

2
p

wnδnm, the eigenvalues of
Ĥ fs

eff are essentially the same as the eigenvalues of Ĥ �Δ� with
the substitutions γ1 → γ1 − w2

1∕t l and γ2 → γ2 − w2
2∕t l .

Therefore, the resonant modes are affected by the detuning
Δ in the same manner as the eigenfrequencies of ĤΔ.

We have calculated the resonances of the scattering setup of
Fig. 2(a) by numerically solving Eq. (8) for CROW transmis-
sion lines. Furthermore, we assumed that the underlying physi-
cal origin of the differential Q factor of the two modes is due to
their asymmetric coupling with the transmission lines w1 �
−1.9 × 10−2 and w2 � −4.43 × 10−2, while γ1 � γ2 � 0 [in
Eq. (1)] and κ � κEPD � 8 × 10−4. In our simulations we as-
sumed that the resonant frequency of the two resonators is
Ω � 0. Our results for the frequency splitting Re�Δω� versus
Δ are shown with symbols in Fig. 2(b). In the same figure, we
also report the parametric evolution of Im�ω�� of the eigenm-
odes of Ĥ �Δ� [see Eq. (1)] with equivalent mode losses
γ1,2 � −w2

1,2∕t l . The nice overlap validates the prediction that
the parametric behavior with Δ, of the resonant modes and the
eigenmodes of Ĥ �Δ�, is the same.

The effect of Δ on the resonance splitting has direct con-
sequences to the shape of the transmittance spectrum T �ω� ≡
jS1,2�ω�j2; see Fig. 2(c). Specifically, for Δ � 0, T �ω� shows
only one resonance peak associated with the EPD. The position
of this peak is at ω � −Ω, and its linewidth is γ̄. As Δ increases,
the EPD is lifted. However, the emerging two resonant peaks at
ω� are not resolved as long as Δ < γ. This is because the res-
onant mode linewidths are larger than the mode spacing
Re�Δω�; see Fig. 2(b). For larger values of Δ > γ, the reso-
nance peaks are shifted apart from each other, and their line-
widths acquire fixed values γ1,2 where γ1 < γ̄ < γ2 < Re�Δω�.
In this Δ regime, the transmittance peak associated with the
resonant mode ω� broadens to the linewidth γ2 and becomes
suppressed due to the decrease of the Q factor of the mode. On
the other hand, the resonance peak associated with ω− narrows
to the linewidth γ1 < γ̄ < γ2. Either way, both modes acquire
reduced transmittance due to the strong resonance detuning
Δ > γ between the modes. Alternatively, the reduced transmit-
tance for large Δ values can be seen as a consequence of an
increasing impedance mismatch between the two resonators,
which leads to an enhanced reflection.

B. Transport via Two Nonlinear Coupled Modes
at EPD
In the previous analysis we did not discuss the physical origin of
the mode detuning Δ in one of the cavities/modes. For exam-
ple, it can be induced externally by a temperature or a pressure
variation, by an injected current that changes the permittivity
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of the resonator, or as a consequence of an externally applied
electric field. In this subsection, we will focus on the case where
the detuning is self-induced via a nonlinear light–matter
interaction. Specifically, we will assume that the detuning is
associated with a nonlinear mechanism, like the Kerr effect,
i.e., Δ � χjC1j2, where jC2

nj is the field intensity at the
n � 1, 2 cavity.

First, we will analyze the stationary nonlinear supermodes of
the two coupled resonators. For simplicity we will assume that
γ1 � 0 and γ2 � γ. We request the total power normalization
such that jC1j2 � jC2j2 � N . The stationary nonlinear ei-
genmodes of this system can be evaluated using the following
CMT equations:�

−Ω − χjC1j2 −κ
−κ −Ω − iγ

	�
C1

C2

	
� ω

�
C1

C2

	
, (9)

where, without loss of generality, we will assume that C1 is real
and C2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N − jC1j2

p
eiϕ. Straightforward manipulations of

Eq. (9), together with the normalization condition, lead to
the following transcendental equation:�

η� η

y

�
2

� α2 � 1

1 − y2
; tan�ϕ� � αy

η�1� y� , (10)

where C1,2 have been parametrized in terms of the variable y as
jC1,2j2 � �1� y�N∕2, while their relative phase ϕ is given by
the second equation in Eq. (10). Above, we have defined
η � χN∕4κ and α � γ∕2κ. We note that for χ � 0, the
EPD is formed when α � 1.

We request the solutions y� of the first Eq. (10) to be real.
Their direct substitution in one of the equations in Eq. (9) al-
lows us to calculate the nonlinear stationary eigenfrequencies of
the system described by Eq. (9). The latter are given as

ω�∕κ � −Ω∕κ − η�1� y��2∕y� − iα�1 − y��: (11)

In Fig. 3(a), we show (for α � 1) the behavior of Re�Δω�
(stars) and Im�ω�� (triangles and circles) resulting from
Eq. (11) versus the nonlinear detuning Δ � χjC1j2. In this
calculation, the value of jC1j2, and therefore of the detuning,
determine the total power N . The latter might have two differ-
ent values for a fixed Δ (see inset) due to the presence of bist-
abilities—a phenomenon typical to nonlinear optics. In the
same figure, we also plot (solid lines of blue and red colors
for imaginary parts and violet for the real part) the predictions
from the linear analysis [see Eq. (4)] assuming a specific Δ
value. We also report in Fig. 3(b) the same quantities versus
N by identifying the Δ values [see inset in Fig. 3(a)] that
are associated with a fixed N . In both cases, the resonance shift
Re�Δω� is initially smaller than the resonance linewidths, in-
dicating that the two modes ω� are indistinguishable from one
another. We find that the behavior of ω� versus the detuning is
essentially the same as the one found for the corresponding
linear system. In fact, the similarities with the linear problem
extend also to the regime where Δ > γ. We find that
ω� is stabilized at −Ω and acquires a broad linewidth
jIm�ω��j → γ2, which indicates a decrease of the Q factor
and therefore suppression of the transmittance [see Fig. 3(c)
and related discussion/analysis below]. On the other hand,
ω− moves away from −Ω, while its linewidth narrows to

jIm�ω−�j → γ1. In the following, we will show that the en-
hancement of theQ factor of ω− has dramatically different con-
sequences on the transmittance spectrum as compared to the
linear case (see below).

Next, we analyze the transport properties of the CMT sys-
tem described by Eq. (9). We consider the same scattering
setup with semi-infinite CROW transmission lines as shown
in Fig. 2(a). We assume that the differential Q factor is due
to an asymmetric coupling to the leads w1 ≠ w2 while
γ1 � γ2 � 0. We also assume the same parameter values as
those in the case of the linear scattering setup analyzed in
Fig. 2(c).

For the calculation of the transmittance T �ω�, we employ
the so-called backward transfer map [26,27], where we have
assumed that the incident wave is entering the dimer structure
from the left transmission line. We also assume that the out-
going field at the right transmission line takes the form
Cn � teikn (n > 2), where t is the transmission amplitude
and Cn indicates the field amplitude at the nth resonator.

(d)

(a) (b)

(c)

Fig. 3. Parametric evolution of the frequency deference Δω and of
the imaginary parts Im�ω�� of the two nonlinear stationary modes of a
nonlinear dimer [see Eq. (9)] with α � 1, χ � 10−4, γ1 � 0,
γ2 � γ � 1.6 × 10−3, Ω � 0 versus (a) the nonlinear detuning
Δ � χjC1j2 and (b) normalized powerN . The solid black line has slope
1/2, while the dashed black line has slope 1 and is drawn in order to
guide the eye. Note that Δω ≤ maxfjIm�ω��jg in the domain where
the frequency difference scales as ∝

ffiffiffiffi
Δ

p
. In the inset of (a), we plot the

dependence of χjC1j2 versus N for each of the two modes ω�.
(c) Transmission spectrum of the nonlinear dimer for four representa-
tive values of incident power. (d) TransmissionT versus incident power
jI j2 for four representative frequency detunings. Note that the trans-
mission T associated with the resonant frequency ω � −Ω defines
the boundary for all other cases. It drops from unit value at small in-
cident powers to (essentially) zero for high incident powers. In (c) and
(d), the parameters of the dimer are the same ones used in Fig. 2(c).

740 Vol. 8, No. 5 / May 2020 / Photonics Research Research Article



A backward iteration of the CMT equations describing the
setup allows us to evaluate the wave at the left transmission
line, Cn � I eikn � re−ikn (n ≤ 0), where I and r are the inci-
dent and reflected amplitudes, respectively. Thus, jI j2 repre-
sents the incoming intensity, and R � jrj2 is the reflectance.
Straightforward algebra leads to the following expression for
the transmittance T ≡ jt∕I j2:

T �




 2 sin�k�
F ·G�T �

κt l
− κt l

w1w2





2, k > 0, (12)

where F � �ω�Ω� t l
w2
− w2e−ik, G � �ω�Ω� χjC0j2� t l

w1
−

w1eik, and jC0j2 � j IFκ j2T . Equation (12) is a transcendental
equation with respect to T and has to be solved numerically.
Since no dissipative losses are involved, the reflectance can be
evaluated as R � 1 − T . Typically, these nonlinear variations of
the real part of the refraction index are accompanied by varia-
tions in the imaginary part of the index due to Kramers–Kronig
(KK) relation. In our analysis, these variations of the imaginary
refractive index are disregarded in order to highlight the pro-
posed limiting mechanism. We have checked, however, that the
addition of these nonlinear losses does not have any qualitative
impact on the performance of the device. In case of high in-
cident intensities, the growth of the absorption due to the
KK nonlinear losses will transition the system to the over-
damped regime. As a consequence, the system is still rendered
strongly reflective and not absorptive.

In Fig. 3(c), we report some representative transmittance
spectra T �ω� for the nonlinear dimer at α � 1 and
χ � 10−4. All other parameters are the same as the ones used
in Fig. 2(c). For low incident powers, the transmittance shows
the same behavior as in the linear case (χ � 0), i.e., a single
quasi-degenerate peak at ω ≈ −Ω, where T ≈ 1. As the incident
power increases, the two resonance peaks at ω� separate from
each other: the frequency position of ω� � −Ω remains unaf-
fected from the incident power and the self-induced nonlinear
detuning, while its linewidth increases until it reaches its
asymptotic value γ � −w2

2∕t l . This decline in the Q factor
of the resonant mode leads eventually to a gradual suppression
of the transmittance peak. The other emerging resonant mode,
associated with ω−, is “pushed away” from −Ω and becomes
“sharper” due to the narrowing of its linewidth. In the nonlin-
ear scenario, however, this “upgrade” to a highQ triggers a non-
linear bistability, which leads to an abrupt suppression of the
resonance peak. As a result, the structure demonstrates a (near-)
unity reflectance at ω− for high-power incident radiation (large
nonlinear detuning). An overview of the transmittance versus
the incident power jI j2 for various frequencies is shown in
Fig. 3(d). The results indicate that the optimal limiting behav-
ior (high transmittivity for low powers and transmittivity drop
for high incident powers) occurs for a range of frequencies
� ffiffiffiffiffiffi

Δγ
p

around the EPD at ω ≈ −Ω.
We stress that the transition from a (near-) unity transmit-

tance to a (near-) unity reflectance is associated with the pres-
ence of the EPD. In order to clarify this point, we present an
analysis of the transport properties of the two nonlinear
coupled resonant modes for α < 1 and α > 1; see Figs. 4(a)
and 4(b). A further insight is gained by an extended analysis
of the parametric evolution of the nonlinear stationary modes

ω� of Eq. (9) versus the nonlinear detuning Δ � χjC1j2 (and
also the total mode power N ). This analysis is reported in
Appendix A (see also Fig. 7). For α < 1 [Fig. 4(a)], both modes
have the same linewidth γ̄ � −0.5 · �w2

1 � w2
2�∕t l (under-

damped regime) up to a nonlinear detuning Δ ∼ γ. As a result
the transmission spectrum is unaffected in this Δ range. It is
instructive to compare the transmittance data shown by the
blue and purple filled circles in Fig. 4(a) with the transmittance
spectra at the same incident powers for α � 1 [see the same
color symbols in Figs. 3(c)]. In the latter case, the increase in
the incident power leads to a transmittance drop by ΔT ∕T �
60%. WhenΔ increases further (α < 1), the Im�ω�� bifurcate
to their asymptotic values. Similarly to the α � 1 case, one of
the modes acquires a narrow linewidth and gets destroyed due
to nonlinear effects while the other one is “spoiled” due to an
increase of its linewidth. This linewidth increase, though, is less
steep as compared to the α � 1 case, and therefore the suppres-
sion of the corresponding resonance peak is gradual. When
α > 1 [see Fig. 4(b)], the ω− mode is extremely sharp, even
for small incident powers (nonlinear detuningΔ), and therefore
it becomes bistable and is immediately destroyed due to the
presence of nonlinearities [see the purple line drops on the left
of Fig. 4(b)]. At the same time, ω� has the maximum linewidth
−w2

2∕t l due to the strong coupling to the leads, and its reso-
nance peak is well below unity (∼35%). We conclude that
the presence of an EPD (i.e., α � 1) combined with the non-
linear bistabilities can be used in order to design a power limiter
with optimal transport characteristics: (almost) perfect trans-
mittance at low incident powers and (almost) perfect reflec-
tance at high incident powers. We point out that the
coexistence of nonlinearity with losses (or asymmetric cou-
pling) can produce an asymmetric transmission leading to an-
other functionality of the proposed photonic circuit [28].

3. FREE-SPACE MULTILAYER LIMITER DESIGN

The theoretical understanding of the interplay between the
nonlinearities and the existence of EPDs in the transport

(a) (b)

Fig. 4. Transmittance spectra of the system of Fig. 2(a) when the
first resonator experiences a nonlinear detuning with nonlinear suscep-
tibility (χ � 10−4) and the coupling to the leads is asymmetric. We
have used the same parameters as those used in Fig. 3(c). Various in-
cident powers (see inset) are shown. (a) The control parameter is
α � γ∕2κ � 0.4. Note that the transmittance for incident power
jI j2 � 10−2 remains unaffected, while in the corresponding case in
Fig. 3(c) we observed a drop by ΔT∕T � 60%. (b) The control
parameter is α � 3. In this case the peak transmittance T � 34%
is already too low for low incident powers. One needs to compare
it with the corresponding case in Fig. 3(c) where T � 1.
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properties of two coupled resonant modes allows us to propose
a design for a free-space photonic limiter as opposed to wave-
guided or localized-CROW-based designs. The structure con-
sists of a multilayer one-dimensional photonic crystal with two
optically identical defect cavities placed symmetrically with re-
spect to a mirror plane; see Fig. 1. The geometric arrangement
of the photonic crystal is �AB�nAD1�AB�mAD2�AB�nA, where
A and B denote quarter-wave thick layers. The two cavities are
designed in a way that they support defect modes in the middle
of the band-gap of the photonic crystal. Under such conditions,
the two degenerate defect modes are isolated from the rest of
the Fabry–Perot modes, and thus they can be described by the
two-level system of Eqs. (1) and (9). Finally, the coupling
strength that controls their mutual interaction is dictated by the
number of layers between the two cavities. Specifically, we have
that κ ∼ 1

ξ e
−L∕ξ, where L is the number of in-between layers and

ξ is the so-called localization length of these defect modes.
The designed Fabry–Perot cavities are both tuned at

f 0 � 563.9 THz resonant frequency (λ0 � 532 nm), and
the A and B layers denote quarter-wave-thick layers of TiO2

with refractive index nA � 2.45 [29] and LaF3 with refractive
index nB � 1.59 [30]. The first cavity D1 has a nonlinear half-
wave-thick ZnS defect layer with intensity-dependent refractive
index nD1 ≈ 2.4� 6.67 × 10−16m2∕V 2 · jE2j [31]. jE�z�j2 is
the electric field intensity at position z inside the layer, which
is responsible for the nonlinear detuning Δ. The second Fabry–
Perot cavity D2 has tiny (radiative or ohmic) losses γ modeled
in our simulations via a complex refractive index nD2

�
2.45 × �1� iγ� of the half-wave-thick doped TiO2 defect layer.
The coupling coefficient κ between two Fabry–Perot cavities is
controlled via the number m of bilayers (AB) between the two
defect layers D1 and D2.

First, we identify the number n, m of bilayers and loss
strength γ, which leads to the formation of an EPD in the
low incident power limit. In this case, the system is linear,
i.e., nD1

is essentially constant and independent of the incident
power. The EPD condition α � 1 has been identified via a de-
tail scaling analysis of the resonance splitting Δf � jf � − f −j
versus Δ for various values of α � γ∕2κ. The detuning has
been controlled by “manually” changing the value of nD1

,

i.e., Δ ∝ ΔnD1
nD1

. The photonic design that supports an EPD has

been identified as the configuration where Δf ∼
ffiffiffiffi
Δ

p
for

Δ < γ, while Δ ∼ Δ for Δ > γ. In our case, this behavior is
achieved when γ ≈ 1.424 × 10−6 and for n � 10, m � 22
number of bilayers. In Fig. 5(a) we show the results of this
analysis for three different cases corresponding to α � 0.8,
1, and 1.2. In the former case, the resonant modes are not de-
generate for Δ � 0, and they acquire a fixed resonant split that
remains unaffected from any index modulation up to
Δ ∼ γ ≈ 10−6. Above this value, the frequency difference be-
tween the two resonant modes increases linearly with Δ; see
Fig. 5(a). In contrast, for α � 1.2, the resonant modes are de-
generate for Δ � 0, and their degeneracy is lifted very slowly,
following a linear relation with detuning Δ, i.e., Δf ∼ Δ.

Next we consider the nonlinear transport properties of the
multilayer system once it is brought at the EPD (α � 1). We
assume that the defect D1 has a nonlinear index of refraction

nD1
corresponding to ZnS material (see above). In our simu-

lations, we have involved a backward transfer matrix approach
[26,27] for the evaluation of transmittance T and reflectance R.
Figure 5(b) shows the transmission spectra for three represen-
tative incident powers. The results confirm the predictions of
the two-mode CMT modeling [see Fig. 3(c)]. Namely, for low
incident powers, the transmittance is (almost) unity at the EPD
frequency f 0; for higher incident powers the resonant peak
splits in two, with the first one remaining at f 0 while the other
one is shifted away. The first peak broadens, leading to a
deterioration of the resonant mode and a consequent suppres-
sion of the transmittance. The second transmission peak is
abruptly suppressed, showing a bistable behavior due to the
presence of the nonlinearity. The destruction of the resonant
defect modes is also evident from the spatial intensity distribu-
tion illustrated in Fig. 5(c). In this figure we show the low-
intensity incident scattering profile (dark red line) at resonant
mode f 0 together with the scattering field corresponding to
high incident powers (bright red line). In the former case,
the intensity is exponentially enhanced at the vicinity of the
defect layers D1 and D2, leading to a strong enhancement
of the nonlinearity and therefore to strong nonlinear detuning.
Further increase of the latter due to higher incident radiation
powers is the source of the resonance destruction (bright red
line) and consequent transmission resonant peak suppression.
As a result, the structure turns to an (almost) completely reflec-
tive one at high incident powers.

An overview of the transmittance (T ) and reflectance (R) in
the vicinity of the resonant frequency f 0 as functions of input
intensity is shown in Figs. 6(a) and 6(b). At the resonant
frequency f 0 [yellow lines in panels Figs. 6(a) and 6(b)],

(c)

(a) (b)

Fig. 5. (a) Resonant split Δf as a function of nD1 refractive index
perturbation when loss is higher (red diamonds) or lower (blue trian-
gles) than losses at EPD and when the system is at EPD (purple
circles). (b) Transmittance spectra of the free-space multilayer at differ-
ent incident field intensities. (c) Normalized (with respect to incident
field Ei) spatial field intensity distribution within the multilayer at low
incident field intensity 104 W∕m2 (dark red line) and high incident
field intensity 1012 W∕m2 (bright red line).
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the transmittance decay at high intensities is correlated with an
abrupt growth of the reflectance. At lower frequencies [blue and
orange lines in panels Figs. 6(a) and 6(b)], the transmittance
demonstrates bistable behavior at high incident intensities,
and its magnitude is highly suppressed over a broad intensity
range, implying that in this region the multilayer provides high
reflectivity at any incident intensity level. At frequencies above
f 0, the system does not show any bistable behavior [purple line
in panels Figs. 6(a) and 6(b)], and the transmittance is highly
suppressed across a broad incident irradiance range.

We can therefore conclude that the proposed photonic
structure can be utilized as a power limiter with an extremely
sharp transition from a high (near-unity) resonant transmit-
tance to a broadband reflectance. As opposed to other reflective
photonic limiters, this proposal does not involve absorption
growth at any incident intensity levels, and it therefore has
an enhanced dynamical range.

4. CONCLUSIONS

In this paper, we have analyzed an EPD-based photonic circuit
and demonstrated its efficiency for optical limiting and switch-
ing. The circuit consisted of two optically identical cavities with
differential Q factors embedded in a multilayer structure. One
of the cavities involves a nonlinear component that is respon-
sible for triggering a resonant detuning once the incident radi-
ation intensity is above a critical value. For low input intensities
(linear regime), the structure displays strong EPD-related
resonant transmittance. For high input intensities, the light-
induced detuning lifts the EPD. Specifically, one of the
emerging resonances is abruptly suppressed due to nonlinear
instabilities, while the other becomes overdamped. This renders
the photonic circuit highly reflective for a broad frequency
range, with negligible absorption, preventing the circuit from
overheating at high input light intensities. The limiting thresh-
old, which defines the transition from resonant transparency to
broadband near-complete reflectivity, can be tailored by arrang-
ing the thicknesses of the two defect cavities. Specifically, an
increase in nonlinear layer thickness results in enhanced detun-
ing of nonlinear resonant frequency and sharper transition to
the reflective state. The advantages of the proposed design

include the possibility of a much lower limiting threshold
(LT) and much higher limiter damage threshold (LDT), com-
pared to those achievable with passive limiters or switches using
optical materials with nonlinear absorption. Finally, based on a
nonlinear coupled mode theory, we have developed analytical
designing tools for the photonic structures with EPD.

APPENDIX A

For completeness, we have also analyzed the behavior of the
nonlinear stationary modes ω��Δ� for the cases of α < 1 and
α > 1; see Figs. 7(a) and 7(b). A parallel analysis on the behav-
ior of ω��N � is shown in Figs. 7(c) and 7(d) and reveals the
same qualitative characteristics. We will therefore focus our dis-
cussion in the analysis of the behavior of the stationary modes
as a function of the nonlinear detuning. For comparison pur-
poses we also present the results of the α � 1 case. We point
out that the analysis of the stationary modes ω��Δ� can
provide a useful insight on the behavior of the transmission
spectrum and specifically on the resonant peaks. In the
numerical analysis below we assume that γ1 � 0 and
γ2 � γ � 1.6 × 10−3.

Similar to the case of α � 1, the evaluation of ω� requires
us to numerically solve Eqs. (10) and (11). For α > 1, we find
that the ω� mode acquired the maximum linewidth γ2 � γ,
even for small values of Δ � χjC1j2; see Fig. 7(a). The corre-
sponding supermode resides, mainly at the low-Q resonator
n � 2 and does not “tunnel” to the first resonator because
of the impedance mismatch (γ∕2 > κ) between them. In con-
trast, the supermode associated with ω− resides mainly at the
first site, which has γ1 � 0. Therefore, the imaginary part
jIm�ω−�j ≪ γ2 of the corresponding stationary frequency is
very small; see Fig. 7(b). The increase of the detuning Δ in-
creases further the impedance mismatch between the two sites
and enforces a complete decoupling between the resonators.
The two supermodes reside exclusively at their corresponding
resonators and acquire frequencies ω� � −Ω − iγ and
ω− � −Ω associated with the resonant frequencies of these

(a) (b)

Fig. 6. (a) Transmittance and (b) reflectance of the nonlinear multi-
layer photonic structure as functions of incident intensity at different
frequencies in the vicinity of the resonant frequency of the multilayer
f 0. The colors indicate the frequency f of the incident wave and are
“correlated” with the vertical lines of the same color from Fig. 5(c).
The photonic crystal is designed in a way that supports an EPD
(i.e., α � 1) for low incident powers.

(a)

(b)

Fig. 7. (a) Re�Δω�, Im�ω�� of the nonlinear stationary modes
ω� versus the nonlinear detuning Δ � χjC1j2 for three representative
values of α. (b) Same as in (a), but now we report the Im�ω−�; (c) same
as in (a), but now versus N ; and (d) same as in (b), but now versus N .
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resonators. This scenario is analogue to the one observed in
parity-time (PT )-symmetric systems in the symmetry-broken
phase (see, for example, Ref. [32]) and has its roots to a super-
radiant-subradiant phenomenon familiar to us from the frame-
work of nuclear physics.

In the case of α < 1, both modes have the same linewidth
γ̄ � �γ1 � γ2�∕2 up to a nonlinear detuning Δ ∼ γ; see
Figs. 7(a) and 7(b). In this detuning regime, the corresponding
supermodes are supported symmetrically by both sites n � 1, 2
and therefore experience the same amount of losses. For larger
values of Δ, an impedance mismatch between the two resona-
tors starts to develop. As a result, the jIm�ω��j of the two
modes bifurcate to their asymptotic values γ1 and γ2. The latter
is achieved when the detuning Δ is large enough to enforce a
complete decoupling between the resonators. This scenario is
shown in Figs. 7(a) and 7(b), where we see that one of the
modes acquires a narrow linewidth while the other one is
“spoiled” due to an increase of its linewidth. This increase,
though, is slower as compared to the α � 1 case, where the
differential Q factor is optimal. In fact, our analysis indicates
that jIm�ω��α> 1��j≥ jIm�ω��α� 1��j≥ jIm�ω��α< 1��j,
while jIm�ω−�α> 1��j ≤ jIm�ω−�α� 1��j ≤ jIm�ω−�α< 1��j
for all values of Δ and N .
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