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Distributed optical fiber Brillouin sensors detect the temperature and strain along a fiber according to the local
Brillouin frequency shift (BFS), which is usually calculated by the measured Brillouin spectrum using Lorentzian
curve fitting. In addition, cross-correlation, principal component analysis, and machine learning methods have
been proposed for the more efficient extraction of BFS. However, existing methods only process the Brillouin
spectrum individually, ignoring the correlation in the time domain, indicating that there is still room for improve-
ment. Here, we propose and experimentally demonstrate a BFS extraction convolutional neural network
(BFSCNN) to retrieve the distributed BFS directly from the measured two-dimensional data. Simulated ideal
Brillouin spectra with various parameters are used to train the BFSCNN. Both the simulation and experimental
results show that the extraction accuracy of the BFSCNN is better than that of the traditional curve fitting algo-
rithm with a much shorter processing time. The BFSCNN has good universality and robustness and can effectively
improve the performances of existing Brillouin sensors. © 2020 Chinese Laser Press

https://doi.org/10.1364/PRJ.389970

1. INTRODUCTION

Distributed optical fiber sensors can realize a variety of physical
quantity measurements at each point along an optical fiber [1].
Among them, distributed optical fiber Brillouin sensors are able
to obtain the temperature and strain along a fiber by measuring
the distributed Brillouin frequency shift (BFS) [2]. This tech-
nology is widely used in the monitoring of large structures, such
as bridges and dams, and long-distance temperature measure-
ments for pipelines and tunnels [3]. The distributed BFS is gen-
erally obtained by measuring the Brillouin gain spectrum
(BGS) of an optical fiber. Since the BGS theoretically satisfies
a Lorentzian shape, the BFS can be obtained by performing
Lorentzian curve fitting (LCF) on the BGS, which is measured
at a limited frequency sampling interval [4]. However, the ac-
curacy of LCF is easily affected by the initial values of the fitting
parameters [5,6]. When the signal-to-noise ratio (SNR) is low,
improper initial values may lead to a serious error in the fitting
result. In addition, the curve fitting algorithm is iterative.
Therefore, its processing time is relatively long, which affects
the response time of the sensor. To improve the sensing
performance, a more accurate and efficient BFS extraction
method is needed.

Recently, other methods, such as cross-correlation [5,7],
principal component analysis [8], and machine learning meth-
ods, have been proposed to analyze the BGS [9–13]. Although

these algorithms can achieve better results than LCF under
certain conditions, they also have some drawbacks. The
cross-correlation method calculates the frequency difference
to obtain the BFS by convolving the ideal BGS with the mea-
sured BGS. It has a higher requirement for the frequency sam-
pling interval than LCF. Clustering and classification
algorithms such as principal component analysis and support
vector machine have shown good performance for BFS extrac-
tion [8–11]. Nevertheless, these algorithms have a trade-off
problem between the number of principal components or
classes and capability. The accurate extraction of BFS depends
on classes or subdivided principal components and large storage
databases. Alternatively, artificial neural networks have also
been proven effective [12,13]. However, neural networks are
usually trained based on specific data. Retraining or fine-tuning
is required to accommodate different actual data, which signifi-
cantly affects its application potential. In addition, all of the
above methods are designed to analyze only a single BGS at
a time to estimate its corresponding BFS. However, the mea-
sured result of a distributed Brillouin sensor is natural two-
dimensional (2D) data with both time-domain and
frequency-domain information. Existing methods only con-
sider the frequency-domain characteristics of the data and
do not take advantage of its time-domain correlation, indicat-
ing that there is still room for improvement [14].
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To achieve more efficient BFS extraction with better univer-
sality and robustness, a distributed BFS extraction convolu-
tional neural network (BFSCNN) is proposed in this paper.
Multilayer 2D convolution is used to analyze the frequency
and time features of the measured data and realizes an end-
to-end transformation from the 2D data to a one-dimensional
(1D) distributed BFS. To adapt the BFSCNN to different in-
struments and application scenarios, a large number of ideal
BGSs with random BFSs, spectral widths (SWs), and SNRs
are generated by simulation. These BGSs are randomly com-
bined into 2D data as the input of the BFSCNN, and the cor-
responding distributed BFS is used as the training target. By
optimizing the network structure, training data, and training
process, the BFSCNN realizes a high-precision distributed
BFS extraction for both the simulation and experiment data.
In addition, the proposed BFSCNN is a full convolutional net-
work that can fully utilize the parallel computing power of the
hardware and effectively reduce the processing time.

2. MATERIALS AND METHODS

A. LCF
The most general method to obtain the BFS is the LCF because
the BGS theoretically satisfies a Lorentzian shape:

g�v� � gB
1�

�
v−vB
ΔvB∕2

�
2
, (1)

where gB is the Brillouin gain coefficient, ΔvB is the full width
at half-maximum of the spectrum, which is the SW, and vB
represents the BFS. Before fitting, the initial values of these
parameters should be set. The maximum value of the BGS
is assigned to gB , and its corresponding frequency is assigned
to vB. The initial value of the SW is estimated by calculating
the frequency range, where the intensity exceeds half of the
maximum gain.

Starting with the initial values, the least squares method is
used to find parameters to best fit Eq. (1) iteratively. That is, for
a set of measured data (vi, gi), the purpose of the method is to
find the parameters â so that the sum of the square error is
minimized:

â ≡ argmina
Xm
i�1

�gi − g�vi; a��2: (2)

The Levenberg–Marquardt algorithm (LMA) is employed to
solve this nonlinear least squares problem [6,15]. The LMA
combines the advantages of the Gauss–Newton algorithm and

gradient descent method to obtain better robustness. Based
on the LMA, the parameters are continuously evolved through
iteration until the iteration step is less than the stopping criteria,
which is set to 10−8.

B. Proposed BFSCNN
As illustrated in Fig. 1, the proposed BFSCNN consists of three
parts. The first part starts with an input layer of 151 × N × 1.
The number 151 represents the number of frequency sampling
points, which is a general choice considering the sampling time.
N means the number of input BGS traces. It is important to
note that there is a one-to-one correspondence between the in-
put BGS and the output BFS. Therefore, the length of the sig-
nal at the time dimension should not be reduced over the
BFSCNN during the process. The input data are first processed
by 64 convolutional filters (Conv) of size 3 × 3 to generate 64
feature maps. Convolution operation can extract different fea-
tures from images using different convolutional filters [16]. In
shallow layers, the elementary features such as edges, end
points, and corners are obtained. These features are then com-
bined in higher layers to learn characteristics of the input.
However, it is hard to train a network with only Conv, so batch
normalization (BN) is introduced to help the training process.
By normalizing the layer’s input without changing what the
previous layer represents, BN can reduce the internal covariate
shift problem in the training process [17]. And the rectified
linear unit (ReLU) activation function is adopted to add non-
linear factors [18]. After that, a max pooling layer with a spatial
extent of 2 × 1 and a step size of 2 × 1 is used to reduce the size
of the feature map. This down-sampling process replaces each
spatial extent with its maximum value, which helps the
BFSCNN to focus on more valuable information.

The second part is an 18-layer residual subnetwork [19].
There are six ResBlocks with the structure of Conv�1 × 1� −
Conv�3 × 3� − Conv�1 × 1�. The 3 × 3 convolution kernels
are used to perceive features in both the time and frequency
domains. The 1 × 1 convolution kernels are employed to intro-
duce more nonlinearly with the ReLU. All convolutional layers
in the first two parts are in the same padding mode to ensure
that the number of points in the time dimension is N .

The third part is a plain net that aims to obtain the 1D BFS
from the 2D data. Therefore, M × 1 convolution kernels with-
out padding are used. After testing and optimization, a seven-
layer scheme that utilizes 7 × 1 and 3 × 1 convolution kernels is
chosen, through which the number of points in the frequency
dimension gradually decreases. Finally, the output size is 1 × N ,
corresponding to the BFSs for N input BGSs. The number of

Fig. 1. Architecture of the proposed BFSCNN.
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input BGS traces is not fixed because the BFSCNN can traverse
the input two-dimensional data and output correspond-
ing BFSs.

C. Data Preparation
To ensure the efficient operation of the BFSCNN, the input
data must be normalized as shown in Fig. 2. First, the maxi-
mum value of the BGS is transformed to 1. The BFS is nor-
malized according to the frequency sweep range:

BFSN � BFS − f min

f max − f min

, (3)

where f max and f min represent the maximum and minimum
values of the frequency sweep range, respectively. The SW is
also normalized according to the frequency sweep range:

SWN � SW

f max − f min

: (4)

D. Training Process
Simulated BGSs are used to train the BFSCNN. The BGSs are
generated as Lorentzian curves with a random BFS and SW. To
further enhance the robustness, Gaussian white noise is added
to the ideal BGSs with a random SNR. The SNR is defined as
the ratio between the maximum gain of a signal and the power
of noise. According to the general Brillouin sensing data, the
random range of the BFS is set to 5% to 95%, the range of
the SW is 10% to 50%, and the range of the SNR is 5 to
20 dB. The random values of BFS, SW, and SNR are uniformly

distributed. By combining the simulated BGSs randomly, 2D
data are generated as the input of the BFSCNN, and its cor-
responding distributed BFS is used as the training target as
shown in Fig. 3.

The parameters of the BFSCNN are initialized randomly as
a uniform distribution. Then, the optimization function Adam
is employed to optimize the parameters according to the train-
ing data [20]. For each iteration, the training data go through
forward propagation as shown in Eq. (5). Then, the backward
propagation of the loss value is calculated according to Eq. (6).
Finally, the network parameters are updated based on Eq. (7):

xl �
�
1, l � 1
, σ�wlxl−1 � bl �, l � 2 to L , (5)

δl �
�
MSE�zl �, l � L
, δl�1 � rot180�wl�1� ∘ σ 0�zl �, l � L − 1 to 2

,

(6)

θlt�1 � θlt − α
m̂tffiffiffiffiffiffiffiffiffiffiffiffi
v̂t � ε

p , (7)

where xl represents the output of the l th layer in the forward
propagation and δl represents the gradient of the l th layer in
backward propagation. θl refers to the parameters of the l th
layer, including weight w and bias b. σ and MSE are the acti-
vation function and loss function, respectively. The symbol ∘ in
Eq. (6) represents the Hadamard product. In Eq. (7), m̂t and v̂t
are bias-corrected first moment and second raw estimations in
Adam, respectively. In addition, a is the learning rate.

The BFSCNN is trained for 22 epochs with a mini-batch
size of 8. For each epoch, the parameters of BFSCNN is up-
dated 375 times using 672,000 BGSs. For each update, 224 × 8
BGS traces are used, which is constrained by the memory size
of GPU. The learning rate starts from 0.001 and gradually de-
creases with a decay of 0.0001 over each update. It takes ap-
proximately 2 h and 53 min to complete the training process
based on a Python environment running on a computer with
an AMD Ryzen 1950X 16-core processor and an Nvidia
GeForce GTX 1080 GPU.

E. Experimental Setup
To demonstrate the validation of the trained BFSCNN on the
actual distributed Brillouin sensors, a Brillouin optical time-

Fig. 2. Normalized simulation BGSs. BGS1: BFS � 20%,
SW � 13%, SNR � 20 dB; BGS2: BFS � 50%, SW � 30%,
SNR � 15 dB; BGS3: BFS � 73%, SW � 50%, SNR � 10 dB.

Fig. 3. Simulation data used for training. (a) Simulation BGSs of random parameters; (b) corresponding BFSs.
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domain analyzer (BOTDA) is set up to measure the distributed
BGS data of a stand single-mode fiber that is approximately
25 km long. As shown in Fig. 4, the output of a narrow line-
width laser at 1550 nm is split into two branches through a
3 dB coupler. The probe light in the upper branch is modulated
by an electro-optic modulator (EOM) operated in carrier-
suppression mode to produce sidebands. The EOM is driven
by an MS to control the frequency of the sidebands. Then, the
probe passes through a polarization switch (PS) and launches
into one end of the fiber. The output polarization state of the
PS is controlled by an arbitrary function generator (AFG) to
mitigate the polarization effects.

In the lower branch, an SOA driven by the AFG is exploited
to generate optical pump pulses with a high extinction ratio
(>50 dB). After amplification by an erbium-doped fiber ampli-
fier (EDFA), the pump pulses are launched into the other end of
the fiber through a circulator. Due to the stimulated Brillouin
scattering effect, a part of the energy of the high-frequency pump
light is transferred to the low-frequency probe light. Finally, the
Brillouin-amplified probe wave is obtained through a BVTF and
eventually detected by a 125 MHz PD. By continuously sweep-
ing the frequency difference between the pump and probe light
around the local BFS, the distributed BGS is obtained. The fre-
quency scanning range is from 10.6 to 10.9 GHz at a step of
2 MHz, and the time-domain sampling rate is 250 MSa/s.

3. RESULTS AND DISCUSSION

To fully demonstrate the performance of the proposed
BFSCNN, first, simulated ideal BGSs with different parameters
are generated to verify the universality and robustness of the
BFSCNN to various SNRs, BFSs, and SWs. Then, the actual
measured distributed BGS is used for testing. These data are
processed using the LCF and the trained BFSCNN to compare
their performances.

A. Simulation Results
The root-mean-square error (RMSE) and standard deviation
(SD) are used as evaluation parameters to compare the perfor-
mances of the LCF and BFSCNN. As shown in Eq. (8), the
RMSE characterizes the difference between the extracted BFS
and its true value. The SD characterizes the dispersion of the
extracted BFS as Eq. (9):

RMSE �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i�1

�y − ŷ�2
vuut , (8)

SD �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i�1

�y − ȳ�2
vuut , (9)

where y and ŷ are the predicted and true BFSs, respectively, and
ȳ is the average of the predicted BFSs.

First, the performance of the BFSCNN at different SNRs is
analyzed. The SW of the simulated BGSs is fixed at 25%, and
the BFS is fixed at 30%. For each SNR in Table 1, 4480 noisy
BGSs are generated by adding Gaussian white noise. As shown
in Figs. 5(a) and 5(b), the RMSE and SD decrease as the SNR
increases. The RMSE of the BFS extracted by the BFSCNN is
better than that extracted by the LCF when the SNR is lower
than 16 dB. A similar trend is found in the SD when the SNR is
lower than 19 dB. By utilizing the 2D information of the BGSs,
the BFSCNN can extract the BFS from the noisy data more
accurately. Since the simulated BGSs are generated based on
the Lorentzian shape, the LCF can achieve better results when
the SNR is high.

To show the effects of the BFSCNN on different BFS data,
the SW and SNR are chosen to be 25% and 11 dB, respectively.
For each BFS in Table 1, 4480 BGSs are simulated for testing.
As shown in Figs. 5(c) and 5(d), the processing results of the
BFSCNN are better than those of the LCF for all cases. In ad-
dition, the BFSCNN has good consistency for different BFS
data. However, when the BFS approaches the edge of the scan-
ning range, the results using the LCF significantly deteriorate.
This means that the BFSCNN has a higher tolerance for the
incompleteness of the BGS and can achieve high-precision BFS
extraction with less information.

Fig. 4. Experimental setup of the BOTDA system. EOM, electro-optic modulator; MS, microwave synthesizer; PS, polarization switch; FUT,
fiber under test; SOA, semiconductor optical amplifier; AFG, arbitrary function generator; EDFA, erbium-doped fiber amplifier; BPF, bandpass
filter; BVTF, bandwidth-variable tunable filter; PD, pin photodetector.

Table 1. Test Parameters

Parameters Range Interval

SNR 5–19 dB 2 dB
BFS 10%–90% 5%
SW 10%–50% 5%
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BGSs with various SWs are also simulated, while the SNR
and BFS are fixed at 11 dB and 25%, respectively. As shown in
Figs. 5(e) and 5(f ), it is harder to extract the BFS accurately via
both methods when the SW increases. The results of the
BFSCNN are always better than those of the LCF. For the
LCF results, the changes in RMSE and SD with SW are
basically consistent. However, the results obtained by the
BFSCNN have less deterioration in the SD when the SW is
large. Because the BFSCNN exploits the time-domain charac-
teristics of the data, there is a correlation between adjacent
BGSs, which causes the SD to be small.

To compare the performances of the BFSCNN and LCF
more comprehensively, 4480 BGSs are simulated for each case
in Table 1. We subtract the BFS RMSE using the BFSCNN
from that of the result using the LCF and plot the differences
in Fig. 6(a). Analogously, Fig. 6(b) shows the SD differences.
Positive results are shown in blue, indicating that the RMSE
or SD using the LCF is larger than that using the BFSCNN.
Red indicates that the BFSCNN performs worse than the
LCF in that case. In addition, the images with darker tones re-
present larger performance differences. The results indicate once
again that the BFSCNN can extract the BFS more accurately
when the SNR is low, and the correlation between different

BGSs is stronger under this algorithm than the LCF. In the cases
of low SNR, the values near the edges in the subgraphs are
smaller, which indicates that the BFSCNN is more robust to
the BGS than the LCF and can handle more extreme cases.

B. Experimental Results
Figure 7(a) shows the measured distributed BGSs when the
pump pulse width is 40 ns and the average time is 32. It con-
tains 62,000 BGS traces. They are processed by the BFSCNN
and LCF, and the extracted BFSs are shown in Fig. 7(b). The
values of the extracted BFSs are almost the same with some
fluctuation. As the SNR decreases with distance, the fluctuation
range becomes more severe. The fluctuation is weaker when
using the BFSCNN than when using the LCF. However,
the magnitude of the fluctuation is generally not used directly
to judge the accuracy of BFS. Because the true BFS of the fiber
is unknown, the fluctuation may be caused by temperature and
strain.

Here we use uncertainty as the basis for evaluating the per-
formance of the extraction algorithms [4]. The distributed
BGSs of the same fiber are continuously measured, and the data
are processed by the BFSCNN and LCF. The uncertainty is
defined as the quadratic fitted trace of the SD of the continuous

Fig. 5. Normalized BFS RMSE and SD of the simulation data. (a) Normalized RMSE and (b) SD for different SNR data; (c) normalized RMSE
and (d) SD for different BFS data; (e) normalized RMSE and (f ) SD for different SW data.
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extracted BFSs. To illustrate the universality and robustness of
the proposed BFSCNN, several experiments are performed
with different average times and pulse widths. Average times
of 4 and 32 and pulse widths of 20, 30, and 40 ns are selected
to achieve a large SNR range and SW variation. As shown in
Fig. 8, the BFSCNN performs better than the LCF in almost
all cases. When the uncertainty reaches below 0.4 MHz, the
BFSCNN still has certain advantages, which verifies the con-
jecture in the simulation section: the BFSCNN may work

better than the LCF for actual BGS even when the SNR is
high.

The spatial resolution is a key parameter for distributed
Brillouin sensors and is defined as the fiber length of the
BFS transition region between 10% and 90% of the peak
frequency. To investigate whether the spatial resolution is af-
fected by the BFSCNN, approximately 100 m of the fiber
end is placed in a temperature-controlled chamber and heated
to 50°C, while the rest of the fiber is at room temperature.

Fig. 6. Performance differences in BFSs extracted by the LCF and BFSCNN. (a) Normalized BFS RMSE using the LCF minus the normalized
BFS RMSE using the BFSCNN for different simulation data. (b) Normalized BFS SD using the LCF minus the normalized BFS SD using the
BFSCNN for different simulation data.
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Figure 9 shows the BFSs extracted by the LCF and BFSCNN
when the pump pulse width is 40 ns and the average time is 32.
The BFSs obtained by the two methods are basically the same
in the transition region. Because the BFS of the training data
varies randomly, the BFSCNN can adapt to arbitrary data with-
out changing the spatial resolution.

C. Processing Time
For distributed Brillouin sensors, data-processing time is one of
the key factors affecting the system response time. Especially for
high-speed acquisition systems, the extraction time of LCF has
become a bottleneck [21,22]. It takes approximately 0.129 s
for the BFSCNN to process 1000 BGSs based on the

Fig. 7. Measurement results when the pump pulse width is 40 ns and the average time is 32. (a) Measured BGSs along an optical fiber;
(b) distributed BFSs extracted by LCF and BFSCNN.

Fig. 8. BFS uncertainty as a function of fiber length. BFS uncertainty traces when the pump pulse width is (a) 20 ns, (b) 30 ns, and (c) 40 ns.

Fig. 9. Extracted BFSs along the optical fiber when the fiber end is heated. The inset image shows the BFS profiles around the start of the heat
section.
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Python environment running on the same computer for train-
ing. For the same data and operating environment, the LCF
takes approximately 0.814 s, which is much longer than that
of the CNN. It should be pointed out that the results of pre-
vious articles are generally running on MATLAB software.
Therefore, the LCF processing time using MATLAB is also
given as a reference here, which is approximately 12.14 s.

4. CONCLUSIONS

In this paper, a BFSCNN is proposed for the BFS extraction of
distributed Brillouin sensors. Because of the full convolutional
structure, the BFSCNN can obtain the distributed BFS directly
from the measured 2D distributed BGSs. By making full use of
the information of the 2D data, the BFSCNN achieves better
BFS extraction accuracy than the traditional LCF. Both the sim-
ulation and experimental results confirm that the BFSCNN has
better universality and robustness. Due to the comprehensive
analysis of adjacent BGSs, the uncertainty of the BFS obtained
by the BFSCNN has been significantly improved. In addition,
the processing time of the BFSCNN is much shorter thanks to
its suitable net structure for parallel computation.

The proposed BFSCNN can be applied to any distributed
Brillouin sensor and effectively improve the performance with
no hardware modification. We believe that the extraction
accuracy and processing time could be further improved with
optimized network structure and training dataset.
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