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Optical activity (OA) is the rotation of the polarization orientation of the linearly polarized light as it travels
through certain materials that are of mirror asymmetry, including gases or solutions of chiral molecules such as
sugars and proteins, as well as metamaterials. The necessary condition for achieving OA is the birefringence of two
circular polarizations in material. Here, we propose a new kind of self-accelerated OA in free space, based on the
intrinsic Gouy phase induced mode birefringence of two kinds of quasi-non-diffracting beams. We provide a
detailed insight into this kind of self-accelerated OA by analyzing angular parameters, including angular direc-
tion, velocity, acceleration, and even the polarization transformation trajectory. As the Gouy phase exists for any
wave, this kind of self-accelerated OA can be implemented in other waves beyond optics, from acoustic and elastic
waves to matter waves. © 2020 Chinese Laser Press

https://doi.org/10.1364/PRJ.380675

1. INTRODUCTION

Optical activity (OA) was first observed in 1811 when plane-
polarized light passing through quartz, manifested itself as
the rotation of the orientation of linear polarization. Soon
afterwards, various materials demonstrated optically active
capability, such as sugars, proteins, gases, solutions, and solids
that consist of chiral molecules, and even artificial materials
[1,2]. Fundamentally, OA is a result of circular birefringence,
as the right- and left-handed circular polarizations have different
phase velocities because of the interaction between light and
chiral molecules. Therefore, the rotation of the polarization
plane is dependent on the chiral birefringence of molecules,
i.e., the refractive index differenceΔn of two circularly polarized
components. Moreover, it is directly proportional to the path
length through the substance. However, because of the depend-
ence of molecular chirality, this typically physical phenomenon
occurs only in chiral materials, which greatly limits its practical
application.

In recent years, vector beams, which have spatially struc-
tured polarizations, have invoked interest in the scientific
community due to their intriguing polarization properties
[3–11]. Remarkably, based on various spatial modulation tech-
niques, some vector beams with a longitudinally variant state of
polarization have been proposed and demonstrated their analo-
gous OA phenomena in free space [12–16]; for instance, the

polarization oscillating beams resulting from the longitudinal
intensity modulation [13], and vector Bessel beams with lon-
gitudinally varying polarization based on the modulation of
transverse polarization structures [15,16]. Substantially, these
active phenomena in free space are the result of the mode differ-
ence between Bessel beams with various longitudinal wave vec-
tors, i.e., the mode birefringence [17]. However, for the Bessel
beams, this mode birefringence induces an inevitable problem
that two components with opposite circular polarizations have
distinct intensity profiles, whose difference increases with the
birefringence [18]. Furthermore, this linearly accumulated bi-
refringence can only induce linear OA in free space.

In this paper, we propose a new kind of self-accelerated OA
in free space based on the Gouy phases of two kinds of
quasi-non-diffracting beams. The distinct Gouy phases of
Laguerre–Gaussian (LG) beams with high-radial-order and
profile-equivalent Bessel beams induce z-dependent mode bi-
refringence, resulting in self-accelerated OA in free space. We
provide a detailed insight into this kind of self-accelerated OA
by demonstrating the controllability of rotation direction, an-
gular velocity, and acceleration. Moreover, from a fundamental
point of view, the intrinsic property of the Gouy phase indicates
that this type of OA can be implemented to any wave beyond
optics, ranging from other electromagnetic waves to matter
waves [19–21].
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2. THEORETICAL PRINCIPLE

The prior consideration of the OA is that the beam should sus-
tain its profile upon polarization transformation, i.e., the mode
stability. Considering the evolution properties of beams that
have been reported, the non-diffracting beam understandably
is the best candidate. However, as mentioned above, two
Bessel beams used to generate OA have distinct intensity pro-
files. Therefore, we propose other spatially structured modes
with a radially variant amplitude profile on the basis of transverse
intensity consideration, e.g., the LG mode with large radial in-
dex. The LG beamwas well known as its intrinsic orbital angular
momentum (OAM) is associated with spiral phase [22] (char-
acterized by the topological charge l ). Currently, the radial index
has demonstrated the significant influence on the beam propa-
gation as an LG beam with a high radial order (p ≫ 1)
exhibits quasi-non-diffraction property in free space [23].

The LG mode solution of the Helmholtz function can be
expressed as
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where (r,φ, z) are the cylindrical coordinates; Ljl jp �·� is the
Laguerre polynomials; p and l are the radial and azimuthal in-
dices, respectively; Φ � �2p � jl j � 1� arctan�z∕zR� denotes
the Gouy phase; R�z� � z�1��zR∕z�2] and w�z� � w0 are
the curvature and waist radii, respectively; and zR � kw2
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is the Rayleigh length. For an LG mode with high radial order,
i.e., p ≫ 1, the Laguerre polynomial and Gaussian exponential
term can be represented by the Bessel and Γ polynomials
as [23]

exp

�
−

r2

w2�z�

�� ffiffiffi
2

p
r

w�z�

�jl j
Ljl jp

�
2r2

w2�z�

�

≈
Γ�p� jl j � 1�

p!N jl j∕2 J l

�
2

ffiffiffiffiffiffiffi
2N

p r
w�z�

�
, (2)

with N � p� �jl j � 1�∕2. Thus, the LG field can be
rewritten as

ELG�r,φ, z� ∝ J l �kr�p, l�r� exp
�
i
kr2

2R�z�

�

· exp�−iΦ� exp�ilφ� exp�ikz�, (3)

where J l �·� denotes the l th-order Bessel function of the first
kind, kr�p, l� � 2∕w�z� is the equivalent transverse wave vec-
tor of the Bessel field, and R0 � w0 is the effective radius of the
LG field. Remarkably, the LG field presents amplitude profile
exactly similar to a Bessel field, which has a transverse wave
vector dependent on the radial and azimuthal indices of the
corresponding LG field. To ensure the intensity similarity,
in practice we first select indices of l and p and then calculate
the parametersN and kr to determine the Bessel beam intensity
pattern.

Figures 1(a)–1(d) display the intensity distributions of the
LG0

15 and LG1
15 beams, as well as their corresponding zeroth-

(l � 0) and first-order (l � 1) Bessel beams without apodiza-
tion, respectively. Figures 1(e) and 1(f ) show the comparisons
of intensity distributions along the radial direction. We can find
that the inner rings (denoted by radial order p 0) of the LG
beams, whose radial order is below p∕2, i.e., p 0 < p∕2, have
identical intensity profiles with the Bessel beams. This eluci-
dates that the coaxially superimposed field of such two kinds
of beams has homogeneous polarization in such a region. More
importantly, higher-radial-order LG beams have demonstrated
the capability of quasi-non-diffracting and self-healing within
the same region that belongs to the corresponding Bessel beam
[23]. This means that the superimposed field can keep well
the homogeneous polarization state in a certain longitudinal
interval.

Besides the unique amplitude profiles, another characteristic
associated with the transverse confinement of structured beams is
the Gouy phase shift [24–27], which exists for any wave and
accumulates with wave propagation according to specific func-
tion. The dependence of the Gouy phase on the spatial mode has
induced some intriguing physical phenomena, such as lateral
spin transport [28], polarization transition of focused vector vor-
tex beams [29,30], and Gouy rotation of focused non-relativistic
electron vortex beams [19]. Here, although the LG beam and its
corresponding Bessel beam present similar amplitude profiles,
their Gouy phases are distinctly different. The Gouy phase of
the LG beam strongly depends on the azimuthal and radial in-
dices simultaneously. The relationship is described in Eq. (1),
i.e., ΦLG � �2p� jl j � 1� arctan�z∕zR� [31], where z � 0
corresponds to the position of the Gaussian beam waist. While
the Gouy phase of the Bessel beam only depends on the trans-
verse wave vector, i.e.,ΦB � �k − β�z � �k −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − k2r

p
�z [26].

Figures 2(a) and 2(b) depict the Gouy phases of these two
kinds of beams with different transverse parameters versus the
propagation distance, respectively. Here, the parameters shown
in Fig. 2(a) correspond to zeroth-order (l � 0) Bessel beams
with different transverse wave vectors. Clearly, for a Bessel
beam, the Gouy phase linearly accumulates with the increase
of propagation distance, whose gradient is proportional to its

Fig. 1. Comparison of intensity distributions of higher-radial-order
LG beams and their corresponding Bessel beams. (a), (b) l � 0,
p � 15. (c), (d) l � 1, p � 15. (e), (f ) Comparisons of intensity dis-
tributions of the LG (blue lines) and Bessel (red lines) beams along the
radial direction. The dotted black lines in (e) and (f ) depict the sim-
ilarity of intensity profiles.
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transverse wave vector, i.e., the equivalent parameter. In com-
parison, Fig. 2(b) shows the Gouy phases of LG beams with
15th-order radial index, i.e., p � 15, but variant topological
charges. These significantly different Gouy phases intuitively
indicate that these two kinds of beams have obvious birefrin-
gence in free space. To obtain a generic model, under the pre-
condition of intensity profile, we set l 1 � �l2 � l ; the Gouy
phase difference thus can be expressed as

ΔΦ�z� �
�
k −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − k2r

p �
z − �2p� jl j � 1� arctan

�
z
zR

�
:

(4)

Supposing that the LG and Bessel beams have right- and
left-handed circular polarizations, i.e., jRi and jLi states, re-
spectively, so that the superimposed beam presents a superpo-
sition state expressed as E�z� � ELG�z� � EB�z� ≈ EBjRi�
exp�iΔΦ�z��jLi, where EB denotes the complex amplitude
of the Bessel component. Clearly, the z-dependent Gouy phase
difference produces longitudinally variant polarization. To in-
tuitively observe the polarization transformation induced by
Gouy phase, we map the trajectory on the Poincaré sphere,
as shown in Fig. 2(c). On this Poincaré sphere, the superpo-
sition state with respect to two spin polarizations is located
on the equator with longitude angle equal to ΔΦ, and the cor-
responding linear polarization orientation is θ � ΔΦ∕2.
Therefore, with the increase of Gouy phase difference of
two component beams, the superimposed beam rotates its
polarization, with an angular velocity expressed as

ω � ∂
∂z

θ�z� �
�
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − k2r

p �
∕2 − N

zR
z2R � z2

, (5)

from which we instantly find the angular acceleration as
follows:

β � ∂
∂z

ω�z� � 2NzRz
�z2R � z2�2 : (6)

According to Eqs. (4)–(6), we find that the superimposed beam
rotates its polarization at a non-constant angular velocity
and also a non-constant angular acceleration, which strongly
depend on the transverse mode parameters, i.e., l and p.

Figure 2(d) displays the z-dependent Gouy phase difference
of an LG0

15 beam and the corresponding zeroth-order Bessel
beam. Here, the LG0

15 beam and Bessel beam have left and right
spin polarizations, respectively, i.e., the jL0i and jR0i states. As
a result, the rotation direction of the OA is clockwise along the
equator on the Poincaré sphere upon beam propagation, as the
red trajectory mapped in Fig. 2(c). The corresponding OA of a
zeroth-order non-diffracting beam is schematically shown in
Fig. 2(e). It is worth noting that the rotation direction of
the OA is tunable by exchanging the spin polarizations of
two component beams. Furthermore, the basic states of the
LG and Bessel components can be defined as any pair of
orthogonal polarizations on the Poincaré sphere. As a result,
it is possible to control the polarization trajectory as any great
circle, e.g., the blue meridian mapped in Fig. 2(c). In addition,
from results shown in Figs. 2(a), 2(b), and 2(d), we can find
that, in theory, the z-dependent Gouy phase difference decel-
erates, close to linear accumulation; that is, the accelerating ef-
fect disappears when the propagation distance is great enough.

3. EXPERIMENT AND RESULTS

Figure 3 reports the experimental setup. A linearly polarized
laser (λ � 532 nm) passing through a half-wave plate is ex-
panded, collimated, and then orderly input into a beam splitter
(BS) and a polarized beam splitter (PBS). Two orthogonally
polarized beams output from the PBS are incident onto two
identical reflective-type spatial light modulators (SLMs,
HOLOEYE, Pluto, 1920 × 1280 pixels), which upload com-
puter-generated holograms to generate the LG and Bessel com-
ponents. Two reflected beams are then coaxially reproduced by
the PBS and orderly pass through the BS and a 4f filter system
consisting of two lenses, a quarter-wave plate (QWP), and a
filter, which allows only two �1st-order diffraction compo-
nents to pass through. The inset QWP in the 4f filter system
is used to transform two linearly polarized components into
circular polarizations or other orthogonal polarizations.
Nearby the back focal plane of the 4f filter system, a CCD

Fig. 2. (a), (b) Gouy phases of Bessel and LG beams with different
transverse parameters, respectively. (c) Canonical Poincaré sphere.
(d) Gouy phase difference between LG0

15 beam and its corresponding
zeroth-order Bessel beam versus propagation distance. (e) Gouy phase-
induced self-accelerated OA of zeroth-order superimposed beam.

Fig. 3. Experimental setup. HWP, half-wave plate; BS, beam split-
ter; PBS, polarized beam splitter; SLM, spatial light modulator; QWP,
quarter-wave plate; L, lens; F, filter; M, mirror; P, polarizer. Insets:
computer-generated holograms.
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camera placed on a linear stage is used to three-dimensionally
(3D) observe the output field. The QWP and polarizer denoted
by the dashed graphs are combined to measure the superposi-
tion state. The insets show the holograms loaded onto the
SLMs. It should be noted that, because of the aperture effect
of the SLM and the finite waist of incident beam, the output
beams actually present quasi-Bessel patterns and non-dif-
fracting propagation in a finite distance.

Initially, we demonstrate the self-accelerated OA of a scalar
quasi-non-diffracting beam, i.e., l1 � l 2 � 0, of which the OA
has a rotation dynamic as shown in Fig. 2(e). In experiment, the
azimuthal and radial indices of the LG component are l � 0
and p � 15, respectively. For such a case, N � 15.5, the cor-
responding zeroth-order Bessel component has a transverse
wave vector of kr � 44869 m−1. Figure 4(a) shows the mea-
sured intensity distribution of the superimposed beam consist-
ing of these LG and Bessel components in a 3D space. It can be
seen that, on the whole, the beam keeps its intensity profile in a
long distance. In other words, it presents non-diffracting prop-
erty in this interval. The inset white dashed lines correspond to
two special planes, where ΔΦ � π and 2π, respectively. In
practice, we set ΔΦ � 0 at the z � 0 (z0) plane, so that
the output superimposed beam has a horizontal polarization,
i.e., θ � 0.

Figure 4(b) displays the intensity distributions of the total
field, horizontal and vertical components at the z0, z1, and
z2 planes, respectively. As shown by results, this scalar quasi-
non-diffracting beam has an initial jHi state, and then orderly
transforms its state along a circle of jHi → jVi → jHi within
inequivalent intervals, validating the rotation effect of
polarization. Note that, for the LG beam having quasi-Bessel
propagating behavior, its non-diffracting distance is directly pro-
portional to the efficient radiusR0, i.e., zmax ≈ R0∕2 tan α, with

sin α � kr∕k. Here, for such experimental parameters, the non-
diffracting distance is slightly larger than zR , fulfilling an OA
period. To achieve more OA periods, we can enhance the
non-diffracting distance by increasing the radial index.

The self-accelerated property is evident from Fig. 4(c),
which reports the measured polarization state on the axis in
a period of OA. In the upper graph, the red squares and blue
curve correspond to the detected and prospective polarization
orientations, respectively. The below graph depicts the mea-
sured polarization ellipticities. The experimental results are cal-
culated according to the Stokes parameter method. The
measured data are consistent with the theoretical predictions,
that is, the polarization state automatically varies along the ex-
pected trajectory on the Poincaré sphere with prospective self-
accelerated property. As shown in the aforementioned theory,
when ω · β > 0, the angular velocity increases with z, which
can be intuitively observed from the gradient of rotation angle
shown in Fig. 4(c). Furthermore, it should be noted that,
because the practically generated Bessel component has a
Gaussian-like intensity profile along the z direction [32], the
polarization ellipticity of the quasi-non-diffracting beam ac-
tually appears with a perturbation, whose profile is similar
to the z-dependent intensity profile of the Bessel component.

Next, we consider the self-accelerated OA of vector quasi-
non-diffracting beams. For such cases, the LG and Bessel com-
ponents have non-zero azimuthal indices, i.e., l1 � −l 2 ≠ 0. So
the superimposed beam presents azimuthally variant polariza-
tion, namely, vector mode [33], of which the azimuthal varia-
tion of polarization can be depicted by the polarization orderm.
To intuitively describe the polarization structures, high-order
and hybrid Poincaré spheres have been proposed [34,35], as
shown in Fig. 5(a), whose poles depict spatial modes with
homogenous spin polarizations but non-zero OAMs. Here,
as an example, we set two components that have opposite
first-order vortices and spin polarizations, i.e., l 1 � 1 and
l 2 � −1, respectively. The corresponding states are denoted as
jL�1i and jR�1i, respectively. Consequently, the superimposed
beam has a vector mode with a parameter of m � l 1 � 1. Four
typical vector modes with locally linear polarization are de-
picted on the equator of this first-order Poincaré sphere, as
shown in Fig. 5(a). The insets display the local polarization di-
rection of such modes. It is crucial to note that the LG and
Bessel components have not exactly the same intensity profiles,
but within the p 0 < p∕2 rings, polarizations are radially
homogeneous.

For a vector beam with azimuthally variant polarization, i.e.,
m ≠ 0, Eqs. (4)–(6) can only describe the OA of local polari-
zation separately [36,37]. However, as shown in Fig. 5(b), the
rotation of local polarization presents an overall effect at the
transverse plane, as the transformation of the polarization
mode. We therefore need to define corresponding parameters
to represent this overall effect induced by the Gouy phase, be-
cause this overall effect can be described by the transformation
of the polarization mode [38,39], with an intuitive trajectory
mapped on the higher-order Poincaré sphere. We decompose
the polarization mode as a superposition state with respect to
the horizontal and vertical polarizations, i.e., the jHi or jVi
states. Significantly, as shown in the inset of Fig. 5(b), the

Fig. 4. Self-accelerated OA of a scalar (zeroth-order) quasi-non-
diffracting beam. (a) 3D intensity profile of light field composed
by an LG0

15 component and a corresponding Bessel component.
(b) Intensity distributions of total field, horizontal, and vertical com-
ponents at the z0, z1, and z2 planes. The white arrows denote the
orientation of polarizer. (c) Upper graph: comparison of theoretically
calculated (blue curve) and measured (red squares) polarization orien-
tations; below graph: measured polarization ellipticities. Both are the
measured results on the axis.
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linearly polarized component has an impressive petal-like inten-
sity profile relevant to the polarization order m. Therefore, we
here use the rotation of this petal-like intensity profile to de-
scribe the overall effect induced by the Gouy phase [40], that is,
the self-accelerated OA of a vector non-diffracting beam. So,
the rotation angle can be rewritten as

θ � 1

2jmj

��
k −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − k2r

p �
z − 2N arctan

�
z
zR

��
: (7)

The angular velocity and acceleration of the rotation thus can
be rewritten as

ω � 1

2jmj

��
k −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − k2r

p �
− 2N

zR
z2R � z2

�
,

β � 2NzRz
jmj�z2R � z2�2 : (8)

Clearly, the rotation directly depends on the polarization
order m. Moreover, the parameter N affects closely the self-
accelerating rotation. This means that by modulating the radial
index p, it is also possible to control the self-accelerated OA.
According to Eq. (8), we can point out that the rotation angle
and angular acceleration are inversely proportional to the
polarization order m but proportional to the radial index p,
as the description in the diagram of Fig. 5(c).

Figure 5(d) shows the simulated intensity distribution of the
first-order vector quasi-non-diffracting beam in the y–z plane
with parameters of l � 1 and p � 15. Figures 5(e) and 5(f )
display the measured total intensity and diagonal component

at the z1 and z2 planes, respectively. In the interval of z1 and
z2, the Gouy phase difference increases π, i.e., ΔΦ�z2� −
ΔΦ�z1� � π. As is known, one issue of critical importance
of the LG beam with zeroth radial index is the divergence that
the beam enlarges during propagation with divergence angle,
which is strongly dependent on its topological charge. Here,
it is observed that the LG component keeps well intensity pro-
file during beam propagating in such a distance. In addition, as
expected, the petal-like intensity profile rotates π∕2.

Figure 6 reports the comparison of theoretical and experi-
mental results about the self-accelerated OA of vector quasi-
non-diffracting beams with different polarization orders. In this
diagram, the intensity distributions of the vertical component
in several sliced planes are shown as backgrounds; the rotated
white lines and angle values depict the theoretical rotation an-
gles that are calculated from Eq. (7). Overall, the experimental
and theoretical results are in good agreement. In Fig. 6, the first
row shows a first-order vector beam, i.e., m � 1, since it is
composed by an LG−1

15 component with jRi state and an
l 2 � 1 Bessel component with jLi state. The increase of
Gouy phase difference between these two spin components
leads to the superposition state rotating anticlockwise along the
equator on the first-order Poincaré sphere. Intuitively, the di-
pole-like intensity profile rotates in a clockwise direction. As
shown, it rotates −20° after propagating 15.5 cm, while the ro-
tation angle increases another 20° just in the next 4 cm. Clearly,
the angular velocity accelerates as the increase of z, but verges
on a maximum value. The second row corresponds to a second-
order vector beam that consists of an LG−2

15 component with
jRi state and an l2 � 2 Bessel component with jLi state.
As expected, the rotation velocity and acceleration both are
lower than those of the first-order vector beam. Moreover, it
should be noted that, for the vector beam with polarization
order m < 0, the petal-like pattern rotates along the opposite
direction. This means that, besides exchanging the spin states of
two components, we can also control the direction of angular
velocity and acceleration by exchanging the topological
charge signs.

Fig. 5. Self-accelerated OA of vector non-diffracting beams.
(a) Higher-order Poincaré sphere composed by two kinds of quasi-
non-diffracting components carrying OAMs. Insets: jR�1i and
jL�1i, intensity and phase distributions; jH�1i, jA�1i, jV�1i, and
jD�1i, polarization orientation distributions of four typical vector
modes on the equator. (b) Schematic polarization transformation of
vector non-diffracting beam and the corresponding rotation of
petal-like intensity (horizonal component I x). Arrows: local polariza-
tion orientations. (c) Correlation of rotation angular parameters and
spatial mode indices. (d) Calculated intensity distribution in the y–z
plane. (e), (f ) Measured intensity distributions of the total and diago-
nal components at the z1 and z2 planes.

Fig. 6. Self-accelerated OA of different vector quasi-non-diffracting
beams. Backgrounds: intensity distributions of the vertical compo-
nent; white lines and values denote the theoretical rotation angles.
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Furthermore, we demonstrate the dependence on the radial
index. The compared results about second-order quasi-non-
diffracting beams with different radial indices are shown in
the two bottom rows in Fig. 6, where the last column depicts
the total intensity patterns of two vector fields. As theoretical
prediction, angular parameters are proportional to the radial
index. Significantly different from the OA induced by two
Bessel beams, this kind of quasi-non-diffracting beam rotates
its polarization but keeps well intensity distribution. As shown
in the experimental results, clear bright rings always can be ob-
served during propagation, which means that the field has uni-
form polarization ellipticity along the radial direction in such
ring regions.

These results demonstrate the controllability of this kind of
self-accelerated OA, including angular velocity, acceleration,
and transformation trajectory. One of the experimental limita-
tions is the fact that Bessel and LG beams cannot be created
with infinite amounts of energy, because the SLM actually plays
the role of the aperture, which leads to the decrease of the
amount of OA period. Furthermore, in the aforementioned ex-
perimental realization, the OA periods are in the scale of tens of
centimeters. For better realization, greater angular acceleration
requires a bigger N ; in other words, the LG beam should have
more rings. Inevitably, there is also a problem about the aper-
ture in experimental realization.

4. CONCLUSIONS

We have theoretically and experimentally studied the self-
accelerated OA within scalar and vector quasi-non-diffracting
beams induced by the Gouy phase in free space. Moreover,
we discussed the dependence of rotation on the spatial param-
eters, including azimuthal and radial indices. The results show
that the rotation of a scalar beam depends on the mode param-
eters of the LG component. The rotation of a vector beam is
mainly related to its polarization order, so that the vector beam
with higher polarization order presents lower rotation velocity
and acceleration, but higher radial order enhances the rotation.
It not only demonstrates this intrinsic phenomenon, but more
fundamentally, reveals an original scenario that could be further
investigated in other waves.
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