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First-photon imaging is a photon-efficient, computational imaging technique that reconstructs an image by re-
cording only the first-photon arrival event at each spatial location and then optimizing the recorded photon
information. The optimization algorithm plays a vital role in image formation. A natural scene containing spatial
correlation can be reconstructed by maximum likelihood of all spatial locations constrained with a sparsity regu-
larization penalty, and different penalties lead to different reconstructions. The l 1-norm penalty of wavelet trans-
form reconstructs major features but blurs edges and high-frequency details of the image. The total variational
penalty preserves edges better; however, it induces a “staircase effect,” which degrades image quality. In this work,
we proposed a hybrid penalty to reconstruct better edge features while suppressing the staircase effect by com-
bining wavelet l 1-norm and total variation into one penalty function. Results of numerical simulations indicate
that the proposed hybrid penalty reconstructed better images, which have an averaged root mean square error
of 12.83%, 5.68%, and 10.56% smaller than those of the images reconstructed by using only wavelet l 1-norm
penalty, total variation penalty, or recursive dyadic partitions method, respectively. Experimental results are in
good agreement with the numerical ones, demonstrating the feasibility of the proposed hybrid penalty. Having
been verified in a first-photon imaging system, the proposed hybrid penalty can be applied to other noise-removal
optimization problems. © 2020 Chinese Laser Press

https://doi.org/10.1364/PRJ.381516

1. INTRODUCTION

Single-photon counting is an important technique for scene
detection under long-distance or weak illumination conditions
[1–4]. Whenever the detector senses a photon arrival event
after the object is illuminated by a laser pulse, the number
of counting increases by one. However, photon detection is
not necessarily triggered by every laser pulse, but rather it is
a statistical event that is related to many aspects. Besides the
illumination energy, the detector quantum efficiency, and the
propagation loss, the detection probability p of a photon arrival
event being detected, which is calculated as the ratio between
the number of detected photons m and the number of emitted
laser pulses l , is mainly proportional to the reflectivity of an
object. The problem of single-photon counting is that even as
the detector has the capability to sense a single photon, it needs
to accumulate a large number of photon arrival events to obtain
different reflectivity information of different spatial locations
of a scene.

First-photon imaging [5,6] addressed this problem by re-
cording only the first-photon arrival event and the number of
illumination pulses k required at each spatial location of the
scene. Theoretically, 1∕k contains the information of photon
detection probability p as well; however, due to its statistical
nature, it contains a random noise because k ≪ l . Given a

certain a priori knowledge of the scene, the random noise at
different spatial locations can be suppressed by optimization
algorithms, and the image of the scene can be reconstructed
by suppressing the noise for all spatial locations. Usually, the
noise is described as Poisson [5–8] when the scene is illumi-
nated by a pulsed laser, and it can be suppressed by minimizing
the weighted sum of the negative log-likelihood and a sparsity
penalty constraint for all spatial locations of the scene [5].

The spatial correlation of a natural scene is usually described
in certain transform domains, such as discrete wavelet transfor-
mation and total variation (TV) [9–12]. In the wavelet domain,
the coefficients of a natural scene image contain only a few large
values while the rest are close to zero. Therefore, the l 1-norm
of the wavelet coefficients can be used as a penalty constraint
for noise suppression optimization [13]. The l 1-norm of the
wavelet coefficients penalty constraint is referred to as the
l 1-norm hereafter. Unfortunately, the coefficients of both high-
frequency details, such as edges, and noise of the reconstructed
image are also large in the wavelet domain; consequently, noise
having frequencies similar to the details cannot be suppressed
by applying the l1-norm penalty directly [14,15]. Alternatively,
the TV norm reflects the smoothness of the image’s gradient,
which is essentially the l1-norm of the derivatives [16]. The
TV norm represents the sparsity of the gradient of the
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image [10,17], and denoising of a reconstructed image can be
performed by minimizing the TV norm as a penalty constraint
[10,18–20]. However, TV regularization causes a “staircase ef-
fect” [21] that severely degrades the image fidelity. Therefore,
while different sparsity penalty constraints suppress the noise of
the reconstructed image, they also induce different side effects,
jeopardizing the quality of the reconstructed image.

In this work, we address the problem by introducing a hy-
brid penalty constraint, which combines the l1-norm and the
TV norm, to balance the noise suppression and the induced
side effects and to improve the quality of the reconstructed
images. Compared to the images independently reconstructed
by the l1-norm or TV, the images reconstructed using the
proposed hybrid penalty demonstrate better qualities in both
numerical simulations and experiments. The proposed hybrid
penalty combining the l 1-norm and TV norm is referred to as
l 1-TV hereafter.

2. PRINCIPLE OF l1-TV PENALTY-BASED IMAGE
RECONSTRUCTION ALGORITHM

Compared to conventional photon counting imaging schemes,
first-photon imaging greatly reduces the number of photons
needed to be detected by recording only the number of trans-
mitted pulses when the first photon arrival event is detected at
each spatial location [5,6]. However, if the image is recon-
structed using only maximum likelihood estimation based on
the probability model of photon detection, severe random
noises exist in the reconstructed image. Taking advantage of the
spatial correlation in the natural scenes, i.e., adjacent spatial
locations having strong correlations can be captured via sparse
coefficients of the discrete wavelet transform, the mathematical
model of these random noises can be approximately viewed as a
convex optimization problem, which can be solved numerically
and efficiently. Here, a new hybrid penalty is proposed for the
convex optimization algorithm of first-photon imaging, and its
principle is given as follows.

A. Pixelwise Reflectivity Maximum Likelihood
Estimation
The statistical model of returning photons for each spatial
location in the first-photon imaging process obeys the Poisson
distribution. When a discrete spatial location (i, j) is illumi-
nated by a laser pulse, the probability of no photon detected
is [22]

p0�i, j� � e−γ�f i,jS�BT r �, (1)

where γ is the detection efficiency, f i,j denotes scene reflectivity
at the spatial location (i, j), and S is the average photon num-
ber in the reflected signal received from a single laser pulse
illuminating a unity-gray-scale spatial location, defined as
S � R T r

0 s�t�dt. s�t� is the intensity-modulated laser pulse
shape function. The Gaussian laser pulse waveform is chosen
in this paper. B denotes the arrival rate of background photons
at the detector; T r is the pulse repetition period. Because each
transmitted pulse gives rise to one independent photon detec-
tion event, the probability of the first-photon detection at the
ni,jth transmitted pulse obeys the geometric distribution in
Eq. (2):

pr �ni,j � k� � p0�i, j�k−1�1 − p0�i, j��, for k � 1, 2…:

(2)

Using the second-order Taylor series approximation of Eq. (2)
with the assumption that γ�Sf i,j � BT r� ≪ 1, a negative log-
likelihood function, which relates the reflectivity of the scene
to the counts of transmitted pulses, can be given as

F �f i,jjni,j� � �γSf i,j � BT r��ni,j − 1� − log�γ�Sf i,j � BT r��:
(3)

Given the constraint of nonnegative reflectivity, the pointwise
maximum likelihood estimation of f i,j is

f 0
i,j � max

�
1

�ni,j − 1�γS
−
BTr

S
, 0
�
: (4)

B. Sparsity Penalties of the Image Reconstruction
It is necessary to select a penalty term to constrain the sparsity
of the underlying image over the transform domain. The reflec-
tivity estimation f 0 is an optimization problem that consists of
a probabilistic statistical model and a sparse penalty,

f 0 � argmin
Xn
i

Xn
j

F �f i,jjni,j� � τpen�f �

subject to f i,j ≥ 0, for all i, j, (5)

where pen�·� is the selected sparsity penalty constraint and τ is
a weighing factor indicating how strictly the penalty will be
applied. We solve this optimization problem using the SPIRAL
algorithm [9,23–26]. For one generation of the optimization,
Eq. (5) can be rewritten into Eq. (6) via separable approxima-
tion [22]:

f k�1�argmin
f ∈Rn

ϕk�f ��argmin
f ∈Rn

1

2
kf − skk22�

τ

αk
pen�f �, f ≥0,

sk�f k −
1

αk
∇F �f k�: (6)

The generation stops when f k�1 satisfies the criterion

ϕ�f k�1� ≤ max
i��k−M ��,…k

ϕ�f i� − σα
k

2
kf k�1 − f kk22, (7)

where the initial value of αk is chosen using a modified Barzilai–
Borwein method [27] and safeguarded to be within the range
�αmin, αmax�. Its value will be repeatedly increased by a factor η
until the solution satisfies Eq. (7), M is a nonnegative integer,
and σ ∈ �0, 1� is a small constant.

The l 1-norm and TV can be used as penalty function in
Eq. (5) [9]. The l 1-norm suppresses the noise but blurs the edges
as well. The TV penalty enhances the edge features but also
induces the staircase effect. In this work, we propose a hybrid pen-
alty that combines the l 1-norm and TV with weighting param-
eters. The reflectivity estimation is performed by Eq. (8),

f 0 � argmin
Xn
i

Xn
j

F �f i,jjni,j� � τ�kθk1 � μkf kTV�, (8)

where θ � WT f are the expansion coefficients of the discrete
wavelet transform, μ is a weighting constant to balance the
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asymmetry between the two penalties, and kf kTV is described
in Eq. (9),

kf kTV �
Xn−1
i

Xn
j

jf i,j − f i�1,jj �
Xn
i

Xn−1
j

jf i,j − f i,j�1j: (9)

The weighted sum of these convex functions, being either smooth
convex, such as negative log-likelihood and the l 1-norm, or non-
smooth such as the TV, can be solved via convex optimization.

In each generation, we solve Eq. (6) with τpen�f � �
τ�kθk1 � μkf kTV� via three steps.

Step 1. Fixing the TV term, the problem of Eq. (8) becomes a
minimization problem, which can be solved by solving its
Lagrangian dual, i.e., SPIRAL-l1 [9]:

θk�1
l 1

� argmin
θ∈Rn

ϕk�θ� � argmin
θ∈Rn

1

2
kθ − skk22 �

τ

αk
kθk1,

subject to W θ ≥ 0: (10)

Step 2. Fixing the l 1-norm term, the problem of Eq. (8) be-
comes a TV-regularized problem, which can be solved via a
dual approach with a fast gradient projection method [9,18]:

f k�1
TV � argmin

f ∈Rn
ϕk�f � � argmin

f ∈Rn

1

2
kf − skk22 �

τ

αk
kf kTV ,

subject to f ≥ 0: (11)

Step 3. The final gray-scale image is the weighted sum of f l1
and f TV as Eq. (12):

f k�1 � λ1f k�1
l 1

� λ2f k�1
TV , (12)

where weighting factors λ1 and λ2 are used to balance the denoise
effects of the l 1-norm and the TV during reconstruction. The
values of λ1 and λ2 are determined by the smoothness of the
image after each iteration. Particularly, in order to consider both
the global and local smoothness of the reconstructed image, we
divide the image into 8 × 8 sections and calculate the average of
the adjacent pixel gradients of each small section gi and the aver-
age of the adjacent pixel gradients of the whole image G. The
more complex structure of the image, the smaller the number of
gi > G. Therefore, we define λ1 �

P
i�gi > G�∕�8 × 8�;

and λ2 � 1 − λ1.
The schematics of the SPIRAL algorithm using the l1-norm,

TV, and l1-TV are illustrated in Fig. 1. The starting reflectivity
image f �0� of the optimization is the maximum likelihood
estimation of the recorded first-photon information. Steps 1–3
are repeated for each generation till Eq. (7) is satisfied. The
termination criterion for the whole optimization is

jϕk�1 − ϕkj∕ϕk ≤ tolp: (13)

It is worth mentioning that the l 1-TV method is proposed with
the aim of balancing the noise suppression and the induced side
effects of the l 1-norm and the TV, and it is difficult to strictly
prove its convergence. Other algorithms with a stronger theo-
retical convergence guarantee, such as the alternating direction
method of multipliers (ADMM)-based method [28], could be
used to solve the convex optimization here. Nevertheless, in
Fig. 2, the mean square error (MSE) term of error function
ϕk�f � in Eq. (6) is plotted versus the number of optimization
generations, showing that the proposed hybrid l 1-TV has a

similar convergence profile to the l 1-norm and the TV. A re-
cent work of parallel proximal algorithm also presented a sim-
ilar observation for hybrid regularization [29].

3. EXPERIMENTAL RESULTS

To evaluate the performance of the SPIRAL optimization
algorithm based on different penalties, i.e., the l 1-norm, TV,
and l1-TV, a group of 35 general images, which are pictures of
general objects or scenes, are used in numerical simulations.
Taking one image as an example, the first-photon detection
process based on the geometric distribution of the transmitted
pulse counts is simulated independently for each transverse spa-
tial location of the scene image. The counts of the transmitted
pulses and the arrival times of the single photon consist of the
first-photon information of the image. The maximum likeli-
hood estimation of the first-photon information is retrieved
numerically to be the starting reflectivity image f �0�, and
the SPIRAL optimization algorithm is then performed until
Eq. (13) is satisfied. The root mean square error (RMSE) be-
tween the reconstructed image and the ground truth is calcu-
lated to evaluate the quality of the reconstructed image as

RMSE �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i�1

Pn
j�1 �f i,j − f

0
i,j�2

m × n

s
, (14)

Fig. 1. SPIRAL algorithm using the l1-norm, TV, and l 1-TV.
FGP, fast gradient projection.

Fig. 2. MSE convergence profiles of the l1-norm, TV, and l1-TV.

Research Article Vol. 8, No. 3 / March 2020 / Photonics Research 327



where m and n are the dimensions of the image, and f i,j and
f 0
i,j are the gray scale at the spatial location (i, j) of the recon-

structed image and ground truth.
For each image, the optimization is performed 3 times, with

the l1-norm, the TV, and the l1-TV being the penalty func-
tion each time. For the l 1-norm and l1-TV penalty, a typical
wavelet basis, DB-6 basis [9], is chosen for wavelet trans-
form. For numerical simulations, we set γ � 0.08, S � 0.02,
BT r � 0.001, η � 2, σ � 0.1, M � 10, μ � 0.333, and
αmin � 1∕αmax � 1 × 10−3. τ in Eq. (5) is chosen from
f0.1, 0.2,…, 1g for each image individually to guarantee that
the RMSE of the resulting image is minimized. tolp in Eq. (13)
is set to 1 × 10−4, which guarantees that the optimization con-
verges well. It is worth mentioning that some parameters, such
as detection efficiency γ and pulse repetition rate T r , are
directly related to the specification of the experimenting devi-
ces, while other parameters, such as average reflected photon
number S, step factor η, and penalty weighting constant μ, de-
pend on the illumination condition as well as the structure
of the image. These parameters can be estimated automatically
via methods of different sophistications [30,31]. In this work,
weighting factors λ1 and λ2 of the proposed hybrid penalty are
automatically estimated; other parameters are either given or
manually tuned for optimal reconstruction.

For comparison, a cycle-spun translation-invariant version
of recursive dyadic partitions method (RDP-Ti) [9,32] is also
performed during our simulations. Furthermore, many other
penalties, such as nonlocal low-rank [33,34] and tensor decom-
position [35], can be used to solve the minimization problem
of Eq. (6). However, in this work, the major focus is on the
l 1-norm and the TV, which is closely related to the proposed
hybrid l 1-TV penalty; results yielded by RDP-Ti are also pro-
vided for comparison.

The RMSEs of all resulting images reconstructed via the
four methods are given in Fig. 3. Thirty images, out of all
35, reconstructed with the l1-TV have the smallest RMSE,
compared to those yielded by the l 1-norm, the TV or the
RDP-Ti. The averaged RMSE of the 35 images reconstructed
by the l1-TV penalty is 0.0881, which is 12.83%, 5.68%, and
10.56% smaller than those of the images reconstructed by the
l 1-norm, the TV, and the RDP-Ti, respectively, demonstrating
that the proposed l1-TV hybrid penalty effectively improves
the quality of the reconstructed images. It is worth mention-
ing that the l 1-norm reconstructs images with the smallest

RMSEs in 2 cases where the ground truths have high-frequency
details similar to noise. The TV also yields the best quality
images in another 3 cases where the original images contain
larger blocky areas so that staircase effect does not degrade
the reconstruction quality much. These demonstrate the
reconstruction features using the l1-norm and TV penalties
and support the proposition of the hybrid l1-TV penalty in
the purpose of balancing the reconstruction features of the
l 1-norm and the TV.

Samples of resulting images are illustrated in Fig. 4.
Different reconstruction features yielded using the l 1-norm,
TV, RDP-Ti, and l 1-TV can be observed from the correspond-
ing columns. The TV works better with smooth images (drawer
and sofa), while the l1-norm is superior for a complex image
(church). The images reconstructed by the l1-TV, which pre-
serves certain high-frequency details while reducing the stair-
case effect, have the smallest RMSEs for all three sample
groups, in comparison to those of the l 1-norm, the TV, and
the RDP-Ti reconstruction results.

Interestingly, the first-photon imaging technique captures
not only 2D images but 3D structures. The convex optimiza-
tion algorithm for depth information reconstruction is very
similar to that of reflectivity reconstruction. Only the negative
log-likelihood function of Eq. (3), which relates the reflectivity
to the counts of transmitted pulses, is replaced with another
negative log-likelihood function, now relating the depth to the
arrival time of the first counted photon. The details of the al-
gorithm can be found in the supplementary material of Ref. [5].
Here, the proposed hybrid l 1-TV penalty is also applied to re-
construct the depth information of a scene. The reconstructed
results using different methods are illustrated in Fig. 5. Because
the scene, being three planes with a 5 mm interval between the
adjacent two, has a simple structure, the performances of the
TV and l 1-TV are much better than those of the l1-norm and
RDP-Ti.

An experiment is performed to further verify the feasibility
of the proposed l 1-TV penalty. The experimental system
schematic is shown in Fig. 6. Instead of a scanning galvo in

Fig. 3. RMSEs of the reconstructed images using the l1-norm
(green square), TV (blue diamond), RPD-Ti (purple dot), and
l 1-TV (red triangle).

Fig. 4. Comparison of three groups of reconstructed images using
different penalties. From left to right are ground truth (GT), l1-norm,
TV, RDP-Ti, and l 1-TV. The RMSEs between the reconstructed
images and their corresponding ground truth are listed below,
respectively.
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the experimental system of Ref. [5], here, a digital micro-
mirror device (Texas Instruments Discovery 4100, spatial res-
olution 1024 × 768, operating at 10 kHz modulation rate),
illuminated by a pulsed laser (PicoQuant LDH-P-635, average
power 5.2 mW, 80 MHz repetition rate), is used to raster-
scan the object using a 128 pixel × 128 pixel resolution. The
information of the first photon detection event of each
scanned spatial location is recorded by a photomultiplier tube
(PicoQuant PMA Hybrid 07, time resolution <50 ps) and the
time-correlated single-photon counting module (PicoQuant
HydraHarp400, time bin 1 ps), the latter of which is synchron-
ized with the pulsed laser. The raw first-photon data are then
transferred to a computer for image reconstruction using the
process described in Section 2.

To provide a reference image for the calculation of RMSE,
an image captured by conventional photon counting is given in
Fig. 7. For the photon-counting image, the averaged photon
counts and corresponding illumination laser pulses per pixel
are 43 counts and 8000 pulses, respectively, satisfying the
photon-starved condition for time-correlated single-photon de-
tection. Contrarily, for the first-photon image, the averaged
numbers are 1 count and 202 pulses per pixel. First-photon
imaging shows approximately 40 times better energy efficiency
over conventional photon-counting imaging. The images re-
constructed using different penalties are shown in Fig. 7. Both
visual observation and calculated RMSEs indicate that the pro-
posed hybrid l 1-TV penalty yields images with better qualities
than the other three methods do. The experimental results are

in good agreement with those of the numerical simulation,
indicating the feasibility of the proposed method.

Like numerical simulation, another experiment is performed
to reconstruct the depth information of a scene. In this experi-
ment, the object in Fig. 6 is replaced with a simple 3D struc-
ture, which consists of three flat surfaces with a 5 mm interval
between the adjacent two. The depth information recon-
structed using different methods is shown in Fig. 8. RMSEs
calculated between the ground truth and the reconstructed
depth indicate that the proposed hybrid l1-TV penalty re-
trieves more accurate depth information than the other three
methods do.

4. CONCLUSION

In summary, the characteristics of noise suppression using
the l 1-norm- or TV-based convex optimization for first-photon
image are analyzed. In order to overcome the side effects in-
duced by the two penalties during the optimization, a hybrid
penalty combining the l 1-norm and the TV is proposed to be
applied to the image reconstruction algorithm. Results of
numerical simulations show that the averaged RMSE of 35 im-
ages reconstructed by the l1-TV penalty is 12.83%, 5.68%,
and 10.56% smaller than those of the images reconstructed
by the l1-norm, the TV, and the RDP-Ti, respectively. The
experimental results are in good agreement with the numerical
ones, further demonstrating the feasibility of the proposed
l 1-TV penalty. The effectiveness of the proposed hybrid l 1-TV
penalty is also verified in depth information reconstruction,
both numerically and experimentally. The work presented here
mainly focuses on first-photon imaging. However, the pro-
posed method can also be applied to solve other Poisson noise
problems caused by photon detection, such as fluorescence
microscopy.

Fig. 5. Comparison of reconstructed depth information using dif-
ferent penalties. From left to right are ground truth (GT), l1-norm,
TV, RDP-Ti, and l 1-TV. The RMSEs between the reconstructions
and the ground truth are listed below, respectively.

Fig. 6. Schematic of experimental system. A repetitive pulsed laser is
modulated by a digital micromirror device (DMD) and raster-scans the
object pixel by pixel. The reflected photons from the object arrive at a
photomultiplier tube (PMT) and trigger a photon-arrival event accord-
ing to the photon detection probability. The first-photon data are then
recorded by a time-correlated single-photon counting (TCSPC) module
and transferred to a computer for image reconstruction.

Fig. 7. Comparison of experimental results yielded by different ap-
proaches. From left to right are photon counting (PC), l 1-norm, TV,
RDP-Ti, and l1-TV. The RMSEs between the reconstructed
images and the photon counting image are listed below, respectively.

Fig. 8. Comparison of experimentally reconstructed depth informa-
tion using different penalties. From left to right are ground truth (GT),
l1-norm, TV, RDP-Ti, and l 1-TV. The RMSEs between the recon-
structions and the ground truth are listed below, respectively.
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