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We propose a scheme to generate strong squeezing of a mechanical oscillator in an optomechanical system
through Lyapunov control. Frequency modulation of the mechanical oscillator is designed via Lyapunov control.
We show that the momentum variance of the mechanical oscillator decreases with time evolution in a weak cou-
pling case. As a result, strong mechanical squeezing is realized quickly (beyond 3 dB). In addition, the proposal is
immune to cavity decay. Moreover, we show that the obtained squeezing can be detected via an ancillary cavity
mode with homodyne detection. © 2020 Chinese Laser Press
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1. INTRODUCTION

Quantum fluctuation is the essential characteristic of quantum
mechanics. Reducing quantum fluctuation below the standard
fluctuation of zero-point level, called quantum squeezing, is
always worth investigation [1], because quantum squeezing
on the one hand plays an important role in fundamental phys-
ics, such as exploring the quantum-classical boundary [2–4],
and on the other hand has an important value in practical
applications, which include improving ultrasensitive detection
[5–8] and enhancing coupling [9–11]. Squeezing of the
mechanical mode is of special interest. The demonstration
of mechanical squeezing was first reported in Ref. [12], using
a spring constant tuned silicon microcantilever. With the
development of quantum optics and the needs of precise quan-
tum measurement, schemes realizing mechanical squeezing
based on various systems, for instance the NV-center system
[13] and trapped-ion system [14], have subsequently been
proposed.

The cavity optomechanical system, due to the interaction be-
tween the cavity field and mechanical motion, provides us with a
promising platform for high-precision measurements [15–18].
Therefore, the mechanical squeezing is necessary in the cavity op-
tomechanical system in order to reduce additional noise [19–21].
The basic mechanism for generating mechanical squeezing is to
introduce a mechanical parametric amplification in the cavity op-
tomechanical system [22–25]. Using the mechanical parametric
amplification, the squeezing of the mechanical oscillator has been
achieved both theoretically and experimentally [26,27]. However,

the squeezing can be restricted by the so called 3 dB limit due to
the instability caused by the parametric amplification process
[28–30]. To surpass the 3 dB limit of mechanical squeezing,
schemes including injecting a squeezed light into the cavity
[31,32], kicking the mechanical mode by the bang-bang control
technique [33], jointing the effect between Duffing nonlinearity
and parametric pump driving [34], and applying continuous
weak measurement and feedback to the system [35] have been
proposed. Recently, strong squeezing of the mechanical oscillator
is demonstrated via the coherent feedback process, which can be
performed by driving the cavity with two-tone driven field
[36–40] or introducing a sine modulation of the free term to
the mechanical oscillator in the optomechanical system [41].

On the other hand, quantum control is a powerful tool in
modern quantum technologies [42–44]. In the Lyapunov con-
trol method, an index function (i.e., Lyapunov function) can
monotonically increase or decrease to the target by designing
the control field. Until now, Lyapunov control has been suc-
cessfully used for processing diverse quantum tasks, such as
realizing quantum synchronization [45], speeding up adiabatic
passage [46], preparing quantum states [47], and designing
quantum optical diode [48]. With the advances of microscale
and nanoscale fabrication, it is becoming possible to engineer
and to control the mechanical oscillator in the cavity optome-
chanical system. Recently, the mechanical oscillator with tun-
able frequency has been reported experimentally [49]. With the
engineered mechanical oscillator, the quantum process, such as
cooling [50] and squeezing [41], can be enhanced.
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Although Lyapunov control and the optomechanical sys-
tem have both been extensively studied separately, there are
few studies which employ Lyapunov control to manipulate
the optomechanical system. In this paper, by introducing a
modulation of the frequency to the mechanical oscillator,
a scheme to generate strong mechanical squeezing in an op-
tomechanical system is proposed. Unlike modulating the fre-
quency of the mechanical resonator periodically as in previous
research [41,50,51], in our scheme, the frequency variations
are designed based on Lyapunov control theory. By designing
special time-varying mechanical frequency, the momentum
variance of the mechanical mode can be decreased with time
evolution, which results in the strong mechanical squeezing
(larger than 10 dB in our parameter region). Moreover, the
squeezing is immune to cavity decay in the weak coupling
regime.

Our proposal generating mechanical squeezing based on
Lyapunov control has three distinct merits. First, we can
quickly obtain the strong squeezing, since the momentum
variance of the mechanical oscillator decreases monotonically
without oscillation. Second, our scheme generates squeezing
without using assistant squeezing source. Therefore, the com-
plexity of the experiment may be reduced. Third, as there is no
parametric amplification term in our system, the instability
caused by parametric amplification is avoided, thus leading
to the squeezing beyond 3 dB possible.

The rest of this paper is organized as follows. We first briefly
introduce the method of quantum Lyapunov control in
Section 2. Then we present the model and its solution in
Section 3. In Section 4, we discuss the generation of mechanical
squeezing by employing the Lyapunov control. In Section 5,
we give the proposal for detecting the obtained mechanical
squeezing. The discussions and conclusions are summarized
in Section 6.

2. METHOD OF QUANTUM LYAPUNOV
CONTROL

We first briefly review quantum Lyapunov control method.
For a controlled system, the total Hamiltonian can be generally
expressed as

H � H res �
X
n

f n�t�Hn, (1)

where Hn is the control Hamiltonian, and f n�t� is the time-
varying control field with n � 1, 2,…. H res is the rest
Hamiltonian except the control Hamiltonian. The index func-
tion, which is also known as the Lyapunov control function, is
selected according to the purpose. Here, we consider the mean
value of operator O as the index function, i.e., V �t� �
hOi � Tr�ρO�. In the interaction picture, we have

_O � −i
�
O,H res �

X
n
f n�t�Hn

�
: (2)

Therefore, the derivative of control function V �t� satisfies
_V �t� � Tr�ρ _O� �

X
n
f n�t�h−i�O,Hn�i, (3)

where for simplicity, �O,H res� � 0 is assumed to obtain Eq. (3).
Actually, even if �O,H res� ≠ 0, we can design one of the terms
in the control field to cancel h−i�O,H res�i, hence we can always
obtain the above equation. Supposing we want to reduce hOi,
we can design the control field as f n�t� � −ch−i�O,Hn�i�
(c > 0). The derivative of V �t� then becomes

_V �t� � h _Oi � −c
X
n

jh−i�O,Hn�ij2: (4)

We see that _V �t� ≤ 0 is always satisfied, which means
hOi will decrease monotonically during evolution. Therefore,
the purpose of control has been realized by the selection of
the control field f n�t� � −ch−i�O,Hn�i�. It should be
noted that although f n�t� seems to depend on the evolution
of h−i�O,Hn�i�, we do not need to measure the value of
h−i�O,Hn�i�. The control field is actually obtained by the
simulation, which is measurement-independent. In the experi-
ment, one can pulse the simulated control field to the system,
and the system will evolve toward the goal of design. In the
following, we will decrease the momentum variance of the
mechanical oscillator based on the Lyapunov control method,
so as to obtain strong squeezing of the mechanical oscillator.

3. MODEL AND SOLUTION

The system under consideration is a cavity optomechanical sys-
tem, where a frequency-tunable mechanical oscillator couples
to a single-mode cavity with the coupling strength g0, as sche-
matically shown in Fig. 1. To tune the frequency of the
mechanical resonator, one can apply a gate voltage V g between
the mechanical oscillator and the underlying electrode experi-
mentally [52–54], or couple the mechanical oscillator with a
low-Q driven assisted mode (see Appendix A for details).
The Hamiltonian of the system then reads

H � ℏωca†a�
p2x
2m

� 1

2
mω2

r �t�x2 − ℏga†ax

� iℏE�e−iωd t a† − eiwd t a�, (5)

where a (a†) is the annihilation (creation) operator of the cavity
mode with the resonant frequency ωc, and x and px are the
position and momentum operators of the mechanical resona-
tor. Here ωr�t� is the controllable frequency of the mechanical
mode tuned from the static frequency ωm and can be modu-
lated by V g. The last term in Eq. (5) describes the external
classical driving to the cavity with the driven amplitude E
and frequency ωd. By introducing the dimensionless position
and momentum operators of the mechanical resonator �q, p�
through

Fig. 1. Schematic of the considered system, where the mechanical
frequency is modulated through the tuning electrode. The left setups
are used to detect the obtained mechanical squeezing.
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q �
ffiffiffiffiffiffiffiffiffiffi
mωm

ℏ

r
x, p � pxffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏmωm
p , (6)

the Hamiltonian of Eq. (5) can be rewritten as

H � ℏωca†a�
ℏωm

2
p2 � ℏω2

r �t�
2ωm

q2 − ℏg0a
†aq

� iℏE�e−iωd t a† − eiwd ta�: (7)

In the interaction picture with H 0 � ℏωd a†a, and taking
the dissipation and noise into consideration, we can write
the quantum Langevin equations of the system as

_q � ωmp,

_p � −
ω2
r �t�
ωm

q − γp� g0a
†a� ξ,

_a � −�κ � iΔc�a� ig0aq � E �
ffiffiffiffiffi
2κ

p
ain, (8)

where Δc � ωc − ωd is the detuning between the cavity mode
and driven field, and κ and γ represent the damping rates of the
optical mode and mechanical mode, respectively. The noise op-
erators ain and ξ satisfy the following correlation functions:

hain�t�a†in�t 0�i � �n̄Tc � 1�δ�t − t 0�,
hξ�t�ξ�t 0� � ξ�t 0�ξ�t�i∕2 � γ�2n̄Tm � 1�δ�t − t 0�, (9)

under Markovian approximation, where n̄Tc and n̄Tm are the
equilibrium mean thermal photon numbers of the cavity mode
and mechanical oscillator, respectively. Generally, n̄Tc ≈ 0 due
to the high optical frequency.

By performing the standard linearization process, we write
the operators as their mean values plus small quantum fluctua-
tions, i.e., a � α� δa, q � qc � δq, p � pc � δp, where α,
qc , and pc are complex numbers determined by

_qc � ωmpc ,

_pc � −
ω2
r �t�
ωm

qc − γpc � g0jαj2,

_α � −�κ � iΔ0
c�α� E , (10)

with Δ0
c � Δc − g0qc . Correspondingly, the fluctuation parts

satisfy

_δq � ωmδp,

_δp � −
ω2
r �t�
ωm

δq − γδp� G�δa† � δa� � ξ,

_δa � −�κ � iΔ0
c�δa� iGδq �

ffiffiffiffiffi
2κ

p
ain, (11)

where G � g0α is the effective coupling rate. It should be
pointed out that G can achieve any desirable value in principle
by modulating the corresponding driving E�t� [55,56]. By
introducing the quadrature operators δX � �δa� δa†�∕ ffiffiffi

2
p

,
δY � �δa − δa†�∕ ffiffiffi

2
p

i and the corresponding noise operators
X in � �ain � a†in�∕

ffiffiffi
2

p
, Y in � �ain − a†in�∕

ffiffiffi
2

p
i, the linearized

Langevin equations for the fluctuation operators can be con-
cisely expressed as

_u�t� � A�t�u�t� � N �t�, (12)

where u�t� � �δX �t�, δY �t�, δq�t�, δp�t��T , N �t��
� ffiffiffiffiffi

2κ
p

X in�t�,
ffiffiffiffiffi
2κ

p
Y in�t�, 0, ξ�t��T , and A�t� is

A�t� �

0
BBBB@

−κ Δ0
c 0 0

−Δ 0
c −κ

ffiffiffi
2

p
G 0

0 0 0 ωmffiffiffi
2

p
G 0 −ω2

r �t�∕ωm −γ

1
CCCCA: (13)

The formal solution of Eq. (12) can then be given as

u�t� � L�t�u�0� � L�t�
Z

t

0

dτ 0L−1�τ 0�N �τ 0�, (14)

where L�t� � T exp�R t
0 dτA�τ��L�0� with T the time order

operator.
To calculate the quantum fluctuation of the mechanical

mode, we introduce the covariance matrix R�t� defined as

Rij�t� � �hui�t�uj�t� � uj�t�ui�t�i�∕2: (15)

By using Eqs. (14) and (15), we can obtain

R � L�t�R�0�LT �t� � L�t�M�t�LT �t�, (16)

where

M�t� � 1

2
�W �t� �WT �t��,

W �t� �
Z

t

0

dτ

Z
t

0

dτ 0L−1�τ 0�C�τ, τ 0��L−1�τ��T : (17)

Here C�τ, τ 0� is the noise operator correlation matrix with its
matrix element Cij�τ, τ 0� � hN i�τ�N j�τ 0�i. Obviously

hN ij�τ�N ij�τ 0� � NT
ij �τ�NT

ij �τ 0�i∕2 � Dijδ�τ − τ 0�: (18)

Here, Dij is the matrix element of the diagonal matrix
D � Diag�κ, κ, 0, γ�2n̄Tm � 1��. Substituting Eq. (18) into
Eq. (17), we obtain

M �t� �
Z

t

0

dτL−1�τ�D�τ��L−1�τ��T : (19)

By substituting Eq. (19) into Eq. (16), the derivative of the
covariance matrix is given by

_R�t� � A�t�R�t� � R�t�AT �t� � D: (20)

For a mechanical oscillator, the rotating quadrature oper-
ator is X �θ, t� � cos θ · δq � sin θ · δp. Correspondingly,
the variance of the mechanical quadrature operator ΔX 2 �
hX 2�θ, t�i − hX �θ, t�i2 is given by

ΔX 2 � cos2θhδq2i� sin2θhδp2i� 1

2
sin 2θ�hδqδpi� hδpδqi�

� cos2 θR33� sin2 θR44�
1

2
sin 2θ�R34�R43�: (21)

Therefore the variance of the quadrature operator X �θ, t� for
the mechanical mode can be obtained by solving Eq. (20)
with the initial condition R�0� � Diag�1∕2, 1∕2, 1∕2, 1∕2�.
Here the initial fluctuation 1/2 means the cavity and mechani-
cal fields are both in vacuum states, which can be realized by
respectively precooling the cavity mode and mechanical reso-
nator to their ground states.
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4. GENERATION OF MECHANICAL SQUEEZING
WITH LYAPUNOV CONTROL

Now we employ the Lyapunov control method introduced in
Section 2 to generate the mechanical quadrature squeezing.
The index ΔX 2 is selected as the Lyapunov function V �t�,
i.e., V �t� � ΔX 2. Obviously, V �t� > 0. And the time deriva-
tive of V �t� by using Eq. (21) is calculated as

_V �t� � cos2 θ _R33 � sin2 θ _R44 �
1

2
sin 2θ� _R34 � _R43�,

(22)

where

_R33 � ωm�R34 � R43�,

_R44 � −2γR44 −
ωr�t�2
ωm

�R34 � R43�

�
ffiffiffi
2

p
G�R14 � R41� � γ�2n̄Tm � 1�,

_R34 � ωmR44 −
ωr�t�2
ωm

R33 − γR34 �
ffiffiffi
2

p
GR31,

_R43 � ωmR44 −
ωr�t�2
ωm

R33 − γR43 �
ffiffiffi
2

p
GR13: (23)

In our model, ωr�t� is adjustable, and therefore we can se-
lect ωr�t� as a control field. However, only the static frequency
ωm appears in the first equation of Eq. (23), thus the first term
of Eq. (22) is not controllable. Therefore, we can set θ � π∕2
to cancel the first term of Eq. (22) for simplicity. In this case,
the Lyapunov function V �t� � Δp2 is the variance of momen-
tum operator. Then the time derivative of V �t� becomes

_V �t� � −2γR44 −
ω2
r �t�
ωm

�R34 � R43� �
ffiffiffi
2

p
G�R14 � R41�

� γ�2n̄Tm � 1�: (24)

In the right-hand side of the above equation, the first term
−γR44 < 0 is always satisfied. And if we choose the control
field ω2

r �t� � cωm�R34 � R43� with c > 0, the second term
− ω2

r �t�
ωm

�R34 � R43� � −cjR34 � R43j2 ≤ 0. In principle, we
can choose G � −c2�R14 � R41� with c2 > 0 to guarantee
the third term

ffiffiffi
2

p
G�R14 � R41� ≤ 0. However this setting

is not necessary, because the correlation between the cavity field
and mechanical oscillator R14 and R41 is small. At the weak
coupling case, the effect of the third term can be neglected.
For high quality factor mechanical oscillator and low bath tem-
perature, the last term γ�2n̄Tm � 1� contributes small to the
equation of derivative of V . For the convenience of analysis,
we ignore the influence of the last two terms. And in the
numerical simulations, we do not use this approximation. If
ignoring the last two terms,

_V �t� ≈ −2γR44 − cjR34 � R43j2, (25)

with

ω2
r �t� � cωm�R34 � R43�: (26)

It is obvious that _V �t� is always less than or equal to zero,
which means the index function V �t� � Δp2 will decrease
monotonically during evolution, and may approach 0 with

ω2
r �t� � cωm�R34 � R43�. Therefore, the momentum variance

of mechanical oscillator Δp2 can be reduced to below the
zero-point level, as a result the squeezed mechanical oscillator
is obtained. We should note that although ω2

r �t� �
cωm�R34 � R43� is dependent of R34 � R43, the experimental
detection of R34 � R43 is not necessary, and the control field
ω2
r �t� is obtained by simulation. This is an open-loop control

scheme, which uses the closed-loop idea to solve the problem of
open-loop control.

To examine the above analysis, we need to simulate the dy-
namics of the system. In Fig. 2(a), the momentum variance of
mechanical oscillator Δp2 depending on time at G � 0.1ωm is
plotted, in which case the time-varying frequency of the
mechanical oscillator is shown in Fig. 2(c). It is obvious that
Δp2 decreases monotonically with time evolution as shown
by the solid blue line, which agrees with the above discussions.
Without control, we see that Δp2 oscillates near the zero-
point level 0.5. However, with the Lyapunov control, Δp2 will
be lower than 0.1, and thus we realize strong squeezing of the
mechanical oscillator. The evolution of momentum variance
Δp2 at G � 0.5ωm is shown in Fig. 2(b). Correspondingly,
in Fig. 2(d), we give the time-dependent mechanical frequency
for the control case. With this higher coupling strength, we see
that Δp2 is still oscillating around 0.5 without control.
Although Δp2 does not always decrease with respect to time
t with the Lyapunov control, the stable Δp2 is about 0.355,
which means we can still realize squeezing at G � 0.5ωm.

In Figs. 3(a) and 3(b), we further study the control effect of
the control field described by Eq. (26) under different G and
Δ0

c , while Figs. 3(c) and 3(d) are the control fields. It is seen that
the larger G is, the less monotonic Δp2 is. This is resonant be-
cause Eq. (25) is obtained in the approximation by neglecting
the effect of

ffiffiffi
2

p
G�R14 � R41� as described in Eq. (24), and

this approximation is only valid for the weak coupling case. For
ultrastrong coupling G, Δp2 will oscillate with time evolution
and the squeezing will disappear; therefore, the above Lyapunov
control scheme is valid for the weak coupling case. In principle,
the squeezing is best with G � 0, while squeezing in the cavity
optomechanical system is of significance, so we discuss the

Fig. 2. (a) and (b) show time evolution of Δp2 with the time-
varying frequency ωr�t� at the control case presented in (c) and (d),
respectively, where Δ 0

c � ωm, κ � 0.1ωm, γ � 10−6ωm, n̄Tm � 0, and
c � 0.2.
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squeezing with G ≠ 0. In Fig. 3(b), it is obvious that the above
Lyapunov control scheme works well for the sideband regime,
especially for the red sideband case. Generally speaking, the red
sideband condition Δ0

c � ωm is used for the ultrasensitive
detection; therefore, the squeezing generated by our scheme
may be useful for enhancing ultrasensitive detection.

In order to clearly see the squeezing intuitively, we present
the Wigner function of mechanical oscillatorWm in Fig. 4. It is
obvious that Wm has the same distribution on q and p at
ωmt � 0; hence, there exists no squeezing at the initial time.
With the time evolution, when ωmt � 30, the mechanical
quadrature p is obviously squeezed, and the maximum
squeezed direction is along the position p.

To further study the robustness of our scheme, we now sim-
ulate the squeezing level S as a function of time t with different
cavity decay κ and thermal phonon number n̄Tm, where the
squeezing level S in the decibel unit is defined by

S � −10 log10�Δp2∕Δp2zp�: (27)

Here Δp2zp � 0.5 is the standard fluctuation in the zero-
point level.

Figure 5(a) shows that the proposed scheme is affected little
by the cavity decay κ. When the system changes from the re-
solved sideband regime to the unresolved sideband regime, the
squeezing level S decreases a little. This is reasonable since the
cavity field has little effect on the proposal in the weak coupling

regime as discussed above. Hence our scheme is robust to cavity
decay. Moreover, the squeezing level can surpass 3 dB limit at
a fast time, which suggests that the strong squeezing of the
mechanical oscillator can be attained quickly even at large cav-
ity decay. From Fig. 5(b), we see that the squeezing level S de-
creases a lot when the thermal phonon number n̄Tm increases
from 10 to 104. This can be understood by Eq. (24). With
large n̄Tm , the term γ�2n̄Tm � 1� contributes to the derivative
of V , and the approximation equation shown by Eq. (25) is
not valid. Therefore, Δp2 will not decrease monotonically with
time evolution, which leads to the squeezing level S decreasing
with large n̄Tm . Nevertheless, we can get relatively large squeez-
ing over a long period of time when the thermal phonon num-
ber n̄Tm is not very large. For the thermal phonon number larger
than 103, one should employ other methods to reduce the tem-
perature of the bath before using Lyapunov control.

5. DETECTION OF MECHANICAL SQUEEZING

Finally, we discuss the detection of the generated mechanical
squeezing in our scheme. As depicted in Fig. 1, an ancillary
cavity mode as with frequency ωs is introduced to the system
for detection. Meanwhile, the ancillary mode as is driven by a
weak pump field with amplitude Ep and frequency ωp. The
total Hamiltonian with the ancillary mode included is

Ht � H � ℏωsa†s as − ℏg sa
†
s asq � iℏEp�e−iωpt a†s − h:c:�,

(28)

where H is given by Eq. (7), and g s is the coupling strength
between the ancillary mode as and the mechanical oscillator.
The pump field of as is selected to be very weak so that the
ancillary mode reaches a small steady-state amplitude αs,
i.e., αs ≪ α, thus Gs ≪ G. Therefore, we can safely neglect
the backaction of as on the mechanical oscillator, and the dy-
namics of mechanical mode δq (δp) and cavity mode δX (δY )
can still be well described by Eq. (12). We will discuss the cor-
rection later. Now we describe the detection of the squeezing.
With the dissipation κs and noise as,in taken into consideration,
the linearized equation for the ancillary mode as is

Fig. 3. Time evolution of Δp2 at different G and Δ 0
c in (a) and (b),

respectively, where (c) and (d) are the corresponding time-varying
control fields. The other parameters are the same as in Fig. 2.

Fig. 4. Wigner function in units of 1/100 for ωmt � 0 and
ωmt � 30 in (a) and (b), respectively. The parameters are the same
as in Fig. 2(a).

Fig. 5. Plot of squeezing level with different cavity decay κ in
(a) and thermal phonon number n̄Tm in (b). (c) and (d) are the corre-
sponding control fields. The other parameters are the same as in
Fig. 2(a).
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_δas � −�κs � iΔ0
s�δas � iGsδq �

ffiffiffiffiffiffi
2κs

p
as,in, (29)

where Δ0
s is the effective detuning. If we choose parameters so

that Δ0
s � ωm ≫ Gs∕

ffiffiffi
2

p
, κs, by neglecting the terms rapidly

oscillating at the frequency 2ωm, the above equation can be
rewritten as

_δas � −�κs � iΔ0
s�δas � i

Gsffiffiffi
2

p δb�
ffiffiffiffiffiffi
2κs

p
as,in, (30)

where δb � �iδp� δq�∕ ffiffiffi
2

p
. Under κs ≫ Gs∕

ffiffiffi
2

p
, the ancil-

lary mode δas will adiabatically follow the dynamics of δb
[57], and is given by

δas �
iGsffiffiffi

2
p �κs � iΔ0

s�
δb�

ffiffiffiffiffiffi
2κs

p
κs � iΔ0

s
as,in: (31)

Using the input–output relation δas,out �
ffiffiffiffiffiffi
2κs

p
δas − δas,in, we

have

δas,out �
i

ffiffiffiffi
κs

p
Gs

κs � iΔ0
s
δb�

�
2κs

κs � iΔ0
s
− 1

�
as,in: (32)

The above equation shows that the output field of the
ancillary mode gives a direct measurement of the mechanical
oscillator. This method has been proposed to detect the entan-
glement between the cavity field and mechanical oscillator [58].
Here we use it to measure the momentum variance of the
mechanical oscillator. By defining the quadrature operator
δX s,out�ϕ� � �δas,oute−iϕ � δa†s,outeiϕ�∕

ffiffiffi
2

p
, one can obtain

δX s,out�ϕ� �
Gs

ffiffiffiffi
κs

p �Δ0
s cosϕ� κs sinϕ�
Δ02

s � κ2s
δq

� Gs
ffiffiffiffi
κs

p �Δ0
s sinϕ − κs cosϕ�
Δ02

s � κ2s
δp� Fad , (33)

where Fad is the noise term. By choosing appropriate ϕ such
that tan ϕ � −Δ0

s∕κs, the term that contains δq is removed,
and we can obtain

δX s,out�ϕ� �
Gs

ffiffiffiffi
κs

p �Δ0
s sinϕ − κs cosϕ�
Δ02

s � κ2s
δp� Fad : (34)

It is obvious that δp can be directly reflected in δX s,out�ϕ�.
Therefore, we can detect the generated squeezing of the
mechanical mode by measuring the variance of the output an-
cillary mode δX s,out�ϕ�. However, it should be recognized from
Eq. (34) that δX s,out�ϕ� is a weak signal. In order to amplify the
signal, the balanced homodyne detection method is used here,
where the local oscillator (LO) noise is simultaneously elimi-
nated. As illustrated in Fig. 1, the signal field δas,out first passes
through a phase shifter to rotate a phase π∕2� ϕ, where π∕2 is
used to compensate for the phase shift between the reflected
and incident field in the polarizing beam splitter (PBS), and
ϕ is used to rotate the field δas,out by a phase ϕ so as to detect
the momentum variance of the mechanical oscillator. Then the
rotated field δas,out is superimposed with a strong LO through
a 50/50 beam splitter, in which the output signal is

ncd � −i�jβl je−iϕl δa†s,out − jβl jeiϕl δas,out�, (35)

where jβl j and ϕl are respectively the amplitude and phase of
LO. Therefore, the variance of the output signal is

�Δncd �2 � 4jβl j2ΔX 2
s,out�ϕl � π∕2�, (36)

where ΔX 2
s,out�ϕ� � hδX 2

s,out�ϕ�i − hδX s,out�ϕ�i2. From the
above equation, we see that the weak signal ΔX 2

s,out�ϕl � π∕2�
is amplified in the detection by an amplification factor 4jβl j2.
By substituting Eq. (34) into Eq. (36), and setting the phase
of the LO ϕl � π∕2 − ϕ, we can get the relationship between
the oscillator variance Δp2 and �Δncd �2; therefore, the generated
mechanical squeezing can be detected by the proposal dis-
cussed above.

It should be noted that the backaction of as on the mechani-
cal oscillator is neglected in the detection proposal. Whether
the added ancillary mode as can affect the dynamics of the
mechanical oscillator or not should be verified. Therefore, it
is necessary to compare the dynamics of the mechanical oscil-
lator with and without the ancillary mode. By taking the system
with the ancillary detection mode as into consideration, the
dynamics equation of the 6 × 6 covariance matrix R 0 satisfies

_R 0�t� � A 0�t�R 0�t� � R 0�t�A 0T �t� � D 0, (37)

where D 0 � Diag�κ, κ, 0, γ�2n̄Tm � 1�, κs, κs �, and

A 0�t� �

0
BBBBBBBBBB@

−k Δ0
c 0 0 0 0

−Δ0
c −κ

ffiffiffi
2

p
G 0 0 0

0 0 0 ωm 0 0ffiffiffi
2

p
G 0 − ω2

r �t�
ωm

−γ
ffiffiffi
2

p
Gs 0

0 0 0 0 −κs Δ0
s

0 0
ffiffiffi
2

p
Gs 0 −Δ0

s −κs

1
CCCCCCCCCCA
: (38)

To examine the influence on the system of the ancillary de-
tection mode, we present the time evolution of Δq2 with and
without the detection mode together in Fig. 6, where the con-
trol field designed in Fig. 2(c) is used for both of the two cases.
The result shows that the evolution of Δq2 agrees very well for
the two cases. Therefore, we can safely neglect the backaction
of as on the mechanical oscillator.

6. DISCUSSION AND CONCLUSIONS

We now discuss the experimental feasibility of our scheme.
For the cavity optomechanical system, κ∕ωm � 10−2–10 and
γ∕ωm � 10−9–10 have been reported in experiments (see
Table II in Ref. [59]). Obviously the parameters κ∕ωm � 0.1,
γ∕ωm � 10−6 used in our simulations are within the current

Fig. 6. Time evolution of Δq2 with detection and without detec-
tion, where Gs∕ωm � 0.01 and κs∕ωm � 0.1. The other parameters
are the same as in Fig. 2(a).
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experiments. From Fig. 2, we know that the squeezing process
is fast, and hence we can assume that n̄Tm is not affected by the
tuning frequency ν�t� but only determined by the static fre-
quency ωm; therefore, the thermal phonon number is evaluated
by n̄Tm � �exp�ℏωm∕kBT � − 1�−1. Moreover, if the frequency of
the mechanical oscillator is tuned by the method described in
Appendix A, the thermal phonon number of the mechanical
oscillator n̄m is just determined by the frequency of the
mechanical oscillator ωm after ignoring the vacuum noise from
the ancillary cavity. In Fig. 5(b), the thermal phonon numbers
n̄Tm � 10, 103, and 104 are corresponding to the temperature of
the bath T � 0.01 K, 0.9 K, and 9.6 K, respectively, when
frequency of the mechanical oscillator is ωm∕2π � 20 MHz.
Currently, the temperature of thermal bath T � 10 mK has
been reported experimentally, and thus the proposed scheme
is achievable within the current experiments.

In addition, the frequency-tunable mechanical oscillator
has been realized experimentally [52–54], and we also give
an alternative method to tune the mechanical frequency in
Appendix A, which is experimentally feasible. For many pro-
posals realizing mechanical squeezing, the squeezing level is
limited by the 3 dB limit due to the unsteadiness of the system
caused by the parametric amplification process. However, in
our scheme, the frequency of the mechanical oscillator is time-
dependent and is designed by the Lyapunov control method,
which can guarantee that the fluctuation of the mechanical
mode always decreases with time evolution without divergence
[see the evolution of Δq2 in Figs. 2(a) and 2(b)]. Therefore, the
system can be stable with the squeezing level beyond 3 dB.

To conclude, in this paper, by using the Lyapunov control
method, we have presented a scheme for generating mechani-
cal squeezing. By designing the time-varying mechanical fre-
quency, the momentum variance of the mechanical mode can
decrease with the time evolution under the weak coupling case.
As a consequence, the squeezing exceeding the 3 dB limit
is obtained quickly, and the largest squeezing can be larger
than 10 dB. In addition, the squeezing is robust against cavity
decay for the weak coupling regime. In the strong coupling
case, the obtained squeezing is not as good as the weak coupling
case due to the backaction. Although the mechanical thermal
phonon number can destroy the preparation of mechanical
squeezing, we can obtain strong squeezing at the temperature
within the current experiment technology. In addition, we
discuss the detection of the momentum variance Δp2 by intro-
ducing an ancillary mode. Via homodyne detection, we simu-
late Δp2 with and without an ancillary mode. The results show
that the backaction of the ancillary mode can be ignored, which
ensures the validity of the detection protocol. Our scheme pro-
vides a potential way for realizing squeezing of the mechanical
motion beyond 3 dB.

APPENDIX A: AN ALTERNATIVE METHOD OF
REALIZING TIME-DEPENDENT MECHANICAL
FREQUENCY

In this appendix, by using a low-Qmode, we give an alternative
method to realize the time-dependent mechanical frequency.
The linearized Hamiltonian with the low-Q mode d coupled
to the system reads

H � ℏΔ0
cδa†δa� ℏΔ0

dδd
†δd � ωm

2
�δp2 � δq2�

− G�δa� δa†�δq − Gd �δd � δd †�δq, (A1)

where Δ0
d is the effective detuning between the mode δd and

its driving. Gd is the effective coupling between the mode δd
and the mechanical oscillator. Different from the case discussed
in Section 5 that weak effective coupling Gs is needed, here Gd
should not be weak. The Langevin equations are

_δq � ωmδp,

_δp � −ωmδq − γδp� G�δa† � δa� � Gd �δd † � δd � � ξ,

_δd � −�κd � iΔd �δd � iGdδq �
ffiffiffiffiffi
2κ

p
d in: (A2)

At low-Q condition of mode d , i.e., κd ≫ ωm, we can
eliminate the mode δd by an adiabatical method [60]. Then
the equations for δq and δp become

_δq � ωmδp,

_δp � −

�
ωm −

2G2
dΔd

Δ2
d � κ2d

�
δq − γδp� G�δa† � δa� � ξ 0: (A3)

Therefore, the effective Hamiltonian after eliminating the low-
Q mode d is

H � ℏΔδ 0a†δa� ℏωm

2
δp2 � ℏω2

r �t�
2ωm

δq2 − ℏG�δa† � δa�δq,

(A4)

where ω2
r �t�∕ωm � ωm −

2G2
dΔd

Δ2
d�κ2d

has been set. Therefore, we can

modulate Δd with time evolution to realize the time-dependent
mechanical frequency ωr�t�. In this method, ξ 0 contains the
noise from mode δd as shown in Eq. (A3), and thus it may
be not as good as the method by applying a voltage between
the mechanical oscillator and the underlying electrode. Hence
in the main text, we employ the latter one as an example to
illustrate the proposal. Nevertheless, this is an alternative
method of realizing time-dependent mechanical frequency.
And effective Hamiltonian described by Eq. (A4) can also give
the same quantum Langevin equations used in Eq. (11).
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