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We report dual-view band-limited illumination profilometry (BLIP) with temporally interlaced acquisition (TIA)
for high-speed, three-dimensional (3D) imaging. Band-limited illumination based on a digital micromirror device
enables sinusoidal fringe projection at up to 4.8 kHz. The fringe patterns are captured alternately by two high-
speed cameras. A new algorithm, which robustly matches pixels in acquired images, recovers the object’s 3D
shape. The resultant TIA–BLIP system enables 3D imaging over 1000 frames per second on a field of view
(FOV) of up to 180 mm × 130 mm (corresponding to 1180 × 860 pixels) in captured images. We demonstrated
TIA–BLIP’s performance by imaging various static and fast-moving 3D objects. TIA–BLIP was applied to im-
aging glass vibration induced by sound and glass breakage by a hammer. Compared to existing methods in multi-
view phase-shifting fringe projection profilometry, TIA–BLIP eliminates information redundancy in data
acquisition, which improves the 3D imaging speed and the FOV. We envision TIA–BLIP to be broadly imple-
mented in diverse scientific studies and industrial applications. © 2020 Chinese Laser Press

https://doi.org/10.1364/PRJ.399492

1. INTRODUCTION

Three-dimensional (3D) surface imaging has been extensively
applied in numerous fields in industry, entertainment, and bio-
medicine [1,2]. Among existing methods, structured-light pro-
filometry has gained increasing popularity in measuring
dynamic 3D objects because of its high measurement accuracy
and high imaging speeds [3–6]. As the most widely used
method in structured-light profilometry, phase-shifting fringe
projection profilometry (PSFPP) uses a set of sinusoidal fringe
patterns as the basis for coordinate encoding. In contrast to
other approaches of structured light, such as binary pattern pro-
jection [7], the pixel-level information carried by the phase of
the fringe patterns is insensitive to variations in reflectivity
across an object’s surface, which enables high accuracy in
3D measurements [8]. The sinusoidal fringes employed in
PSFPP are commonly generated using digital micromirror de-
vices (DMDs). Each micromirror on the DMD can be inde-
pendently tilted to either�12° or −12° from its surface normal
to generate binary patterns at up to tens of kilohertz. Despite
being a binary amplitude spatial light modulator [9], the DMD
can be used to generate grayscale fringe patterns at high speeds
[10–14]. The conventional dithering method controls the
average reflectance rate of each micromirror to form a grayscale

image. However, the projection rate of fringe patterns is
clamped at hundreds of hertz. To improve the projection speed,
binary defocusing techniques [13] have been developed to pro-
duce a quasi-sinusoidal pattern by slightly defocusing a single
binary DMD pattern. Nonetheless, the image is generated at a
plane unconjugate to the DMD, which compromises the
depth-sensing range and is less convenient to operate with
fringe patterns of different frequencies. Recently, these limita-
tions are lifted by the development of band-limited illumina-
tion [14], which controls the system bandwidth by placing a
pinhole low-pass filter at the Fourier plane of a 4f imaging
system. Both the binary defocusing method and the band-lim-
ited illumination scheme allow the generation of one grayscale
sinusoidal fringe pattern from a single binary DMD pattern.
Thus, the fringe projection speed matches the DMD’s refresh
rate.

High-speed image acquisition is also indispensable to
DMD-based PSFPP. In the standard phase-shifting methods,
extra calibration patterns must be used to avoid phase ambigu-
ity [15], which reduces the overall 3D imaging speed [16].
A solution to this problem is to place multiple cameras at both
sides of the projector to simultaneously capture the full se-
quence of fringe patterns [17–20]. These multiview approaches
bring in enriched observation of 3D objects in data acquisition.
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Pixel matching between different views is achieved with various
assistance, including epipolar line rectification [17], measure-
ment-volume-dependent geometry [18], and wrapped phase
monotonicity [19]. Using these methods, the object’s 3D sur-
face information can be directly retrieved from the wrapped
phase maps [5]. Consequently, the necessity of calibration pat-
terns is eliminated in data acquisition and phase unwrapping.
This advancement, along with the incessantly increasing imag-
ing speeds of cameras [21–24], has endowed multiview PSFPP
systems with image acquisition rates that keep up with the
DMD’s refresh rates.

Despite these advantages, existing multiview PSFPP systems
have two main limitations. First, each camera captures the full
sequence of fringe patterns. This requirement imposes redun-
dancy in data acquisition, which ultimately clamps the systems’
imaging speeds. Given the finite readout rates of camera sen-
sors, a sacrifice of the field of view (FOV) is inevitable for
higher imaging speeds. Although advanced signal processing
approaches such as image interpolation [25] and compressed
sensing [26] have been applied to mitigate this trade-off, they
usually are accompanied by high computational complexity
and reduced image quality [27]. Second, the cameras are mostly
placed on different sides of the projector. This arrangement
could induce a large intensity difference from the directional
scattering light and the shadow effect from the occlusion by
local surface features, both of which reduce the reconstruction
accuracy and pose challenges in imaging non-Lambertian sur-
faces [20].

To overcome these limitations, we have developed dual-view
band-limited illumination profilometry (BLIP) with temporally
interlaced acquisition (TIA). A new algorithm is developed for
coordinate-based 3D point matching from different views.
Implemented with two cameras, TIA allows each to capture
half of the sequence of the phase-shifted patterns, reducing
the data transfer load of each camera by 50%. This freed capac-
ity is used either to transfer data from more pixels on each cam-
era’s sensor or to support using higher frame rates of both
cameras. In addition, the two cameras are placed as close as
possible on the same side of the projector, which largely mit-
igates the intensity difference and shadow effects. Leveraging
these advantages, TIA–BLIP has enabled high-speed 3D imag-
ing of glass vibration induced by sound and glass breakage by a
hammer.

2. METHOD

A. Setup
The schematic of the TIA–BLIP system is shown in Fig. 1(a). A
200 mW continuous-wave laser (wavelength λ � 671 nm,
MRL-III-671, CNI Lasers) is used as the light source. After
expansion and collimation, the laser beam is directed to a
0.45” DMD (AJD-4500, Ajile Light Industries) at an incident
angle of ∼24° to its surface normal. Four phase-shifting binary
patterns, generated by an error diffusion algorithm [28] from
their corresponding grayscale sinusoidal patterns, are loaded
onto the DMD. A band-limited 4f imaging system that con-
sists of two lenses [Lens 1 and Lens 2 in Fig. 1(a)] and one
pinhole converts these binary patterns to grayscale fringes at
the intermediate image plane. The two lenses have focal lengths

of f 1 � 120 mm and f 2 � 175 mm. The pinhole works as a
low-pass filter. Its diameter, determined by the system band-
width, is calculated as

D � λf 1

pf
, (1)

where pf � 324 μm denotes the fringe period composed of 30
DMD pixels. Thus, the required pinhole diameter is
D � 248.52 μm. In the experiment, a 300 μm diameter pin-
hole is used to ensure all spatial frequency content of the sinus-
oidal fringe pattern passing through the system. Then, a camera
lens (AF-P DX NIKKOR, Nikon, 18–55 mm focal length)
projects these fringe patterns onto a 3D object. The deformed
structure images are captured alternately by two high-speed
CMOS cameras (CP70-1HS-M-1900, Optronis) with camera
lenses (AZURE-3520MX5M, AZURE Photonics, 35 mm fo-
cal length) placed side by side. The distance between these two
cameras is ∼12 cm. The difference in their viewing angles to
the 3D object is ∼10°. Depending on their roles in image
reconstruction, they are denoted as the main camera and the
auxiliary camera. Synchronized by the DMD’s trigger signal,
each camera captures half of the sequence [Fig. 1(b)]. The ac-
quired images from each camera are transferred to a computer
via a CoaXPress cable connected to a frame grabber (Cyton-
CXP, Bitflow).

B. System Calibration
To recover 3D information from the mutually incomplete im-
ages provided by the interlaced acquisition, TIA–BLIP relies on
a coordinate-based understanding of the spatial relationship of
the projector and both cameras in image formation. In particu-
lar, a “pinhole” model [29],

Fig. 1. Operating principle of TIA–BLIP. (a) System schematic.
(b) Timing diagram and acquisition sequence. te, camera’s exposure
time.
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describes the projection of 3D coordinates �x, y, z� onto camera
coordinates �u, v�. The extrinsic parameters R and T describe
the rotation and translation of coordinates, respectively. The
intrinsic parameters, which link to the camera’s properties in
image formation, consist of fu and fv (representing effective
focal lengths along each axis of the camera’s sensor), upp and
vpp (describing the coordinates of the camera’s principal point),
and α (accounting for pixel skewness). The column vectors
�u, v, 1�T and �x, y, z, 1�T represent �u, v� and �x, y, z� in the
homogeneous coordinates, which through the scalar factor s
allow for the numerical extraction of �u, v� from Eq. (2).

Based on the pinhole model, both cameras and the projector
can be calibrated to determine the values of these parameters.
Using a checkerboard as the calibration object, we adopted the
established calibration procedure and software toolbox [30].
Since the direct image acquisition is not possible for a projector,
the phase-based mapping method [29] was used to synthesize
projector-centered images of the calibration object. These im-
ages were subsequently sent to the toolbox with calibration pro-
ceeding in the same manner as for the cameras.

C. Coordinate-Based 3D Point Determination
In the context of the pinhole model of Eq. (2), a coordinate-
based method is used to recover 3D information from a cali-
brated imaging system. Two independent coordinates corre-
spond to a point on a 3D object with the coordinates
�x, y, z�: �u, v� for the camera and �u 0 0, v 0 0� for the projector.
In a calibrated PSFPP system, any three of these coordinates
[i.e., �u, v, u 0 0, v 0 0�] can be determined. Then a linear system
of the form E � M �x, y, z�T is derived. The elements of E
and M are found by using each device’s calibration parameters
as well as by using the scalar factors and the three determined
coordinates [31]. In this way, the 3D information of an object
point can be extracted via matrix inversion.

This analysis can be adapted to dual-view TIA–BLIP. First,
images from a selected calibrated camera are used to provide the
coordinates �u, v� of a point on a 3D object. Along with the
system’s calibration parameters, an epipolar line is determined
on the other camera. The horizontal coordinate in the images of
this camera is recovered using search-based algorithms along
this epipolar line—a procedure commonly referred to as stereo
vision. Second, by substituting a calibrated projector for the
secondary camera, structured light methods use the intensity
values of the pixel �u, v� across a sequence of images to recover
information about a coordinate of the projector. By incorporat-
ing both aspects, 3D information can be extracted pixel by pixel
based on interlaced image acquisition.

1. Data Acquisition
In data acquisition, four fringe patterns, whose phases are
equally shifted by π∕2, illuminate a 3D object. The intensity
value for the pixel �u, v� in the kth acquired image, I k�u, v�, is
expressed as

I k�u, v� � I b�u, v� � I va�u, v� cos
�
φ�u, v� − πk

2

�
, (3)

where k ∈ �0, 3�. Ib�u, v�, I va�u, v�, and φ�u, v� represent back-
ground intensity, the variation of intensity, and depth-depen-
dent phase, respectively.

Equation (3) allows the analysis of two types of intensity-
matching conditions for the order of pattern projection shown
in Fig. 1(b). The coordinates of a selected pixel in the images of
the main camera are denoted by �um, vm�. For a pixel �u 0a, v 0a� in
the images of the auxiliary camera that perfectly corresponds
with �um, vm�, Eq. (3) allows us to write

I 0�um, vm� � I2�u 0
a, v 0a� � I1�um, vm� � I 3�u 0

a, v 0a�: (4)

Alternatively, rearrangement of Eq. (4) leads to the equivalent
expression,

I 0�um, vm� − I 1�um, vm� � I 3�u 0a, v 0a� − I 2�u 0
a, v 0a�: (5)

In contrast to Eq. (4), each side of Eq. (5), containing images
captured by the same camera, computes images with a residual
fringe component. Retaining sinusoidal characteristics, this
residual has the effect of improving the efficiency of line-con-
strained searches by regularizing encountered patterns of local
maxima and minima and by including additional phase infor-
mation. Moreover, by interpreting its right-hand side as a con-
tinuously varying function along the epipolar line, Eq. (5)
together with bilinear interpolation allows for the selection
of discrete candidates with subpixel accuracy. Thus, Eq. (5)
is selected as the intensity-matching condition.

2. Image Reconstruction
We developed a four-step algorithm to recover the 3D image of
the object pixel by pixel. In brief, for a selected pixel �um, vm� of
the main camera, the algorithm locates a matching point
�u 0

a, v 0a� in the images of the auxiliary camera. From knowledge
of the camera calibration, this point then enables the determi-
nation of estimated 3D coordinates as well as the ability to re-
cover a wrapped phase. Using knowledge of the projector
calibration, this phase value is used to calculate a horizontal
coordinate on the projector’s plane. A final 3D point is then
recovered using the coordinate-based method. A flowchart of
this algorithm is provided in Fig. 2(a).

In the first step, �I 0 � I1�∕2 and �I 2 � I 3�∕2 are calcu-
lated. Then, a threshold intensity, calculated from a selected
background region, is used to eliminate pixels with low inten-
sities. The thresholding results in a binary quality map [see Step
I in Fig. 2(a)]. Subsequently, only pixels that fall within the
quality map of the main camera are considered for 3D infor-
mation recovery.

In the second step, the selected pixel �um, vm� determines an
epipolar line containing the matching point within the auxiliary
camera’s images. Then, the algorithm extracts the candidates
�u 0

ai, v 0ai� that satisfy the intensity-matching condition [i.e.,
Eq. (5); illustrative data shown in Fig. 2(b)] in addition to three
constraints [see Step II in Fig. 2(a)]. The subscript “i” denotes
the ith candidate. As displayed in the illustrative data in
Fig. 2(c), the first constraint requires candidates to fall within
the quality map of the auxiliary camera. The second constraint
requires that candidates occur within a segment of the epipolar
line determined by a fixed transformation that approximates
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the location of the matching point. This approximation is pro-
vided by a 2D projective transformation (or homography) that
determines the estimated corresponding point �u 0e, v 0e� by [32]

s 0�u 0
e, v 0e, 1�T � H �um, vm, 1�T , (6)

where s 0 is a scalar factor representing extraction of the pair
�u 0e, v 0e� from its homogeneous coordinates. H is determined
by applying Eq. (6) to four points chosen as the corners of
a flat rectangular plane when imaged by both cameras at the
approximate center of the measurement volume. Once
�u 0e, v 0e� are determined, the search along the epipolar line is
confined to the segment occurring over the horizontal interval
�u 0e − r0, u 0

e � r0�, where r0 is an experiment-dependent con-
stant. In general, r0 should be as small as possible while still
covering the targeted depth range. For our experiments, the
value of r0 was set to 40 pixels.

The third constraint requires the selected point and candi-
dates to have the same sign of their wrapped phases [Fig. 2(d)].
Estimates of the wrapped phases are obtained using the tech-
nique of Fourier transform profilometry [5]. In particular, by
bandpass filtering the left side of Eq. (5), i.e., I 0 − I 1, the in-
tensity of pixel �um, vm� in the filtered image is

I f �um, vm� �
ffiffiffi
2

p

2
I va�um, vm� exp

�
j
�
φ�um, vm� �

π

4

��
: (7)

The wrapped phase estimation ωm of �um, vm� is recovered by

ωm � arctan

�
I�I f �um, vm��
R�I f �um, vm��

�
, (8)

where I�·� and R�·�, respectively, denote the imaginary part
and the real part of a complex variable. The same treatment
is applied to the right side of Eq. (5), i.e., I 3 − I 2. For the
candidate �u 0

ai, v 0ai�, the estimate of its wrapped phase is calcu-
lated as

ω 0
ai � arctan

�
I�I 0f �u 0ai, v 0ai��
R�I 0f �u 0

ai, v 0ai��

�
: (9)

The constraint requires ωm and ω 0
ai to have the same sign in the

interval �−π, π�. The output of the second step is a pool of can-
didates for further evaluation. If no candidate is found, the al-
gorithm abandons the following process, and this step is
reinitiated for the next pixel in the main camera.

In the third step, three criteria are used to calculate penalty
scores for each candidate, as shown in Step III in Fig. 2(a). The
scheme is shown in Fig. 2(e). The first and primary criterion
compares the phase values of the candidates using two methods.

Fig. 2. Coordinate-based 3D point determination algorithm. (a) Flowchart of the algorithm. �um, vm�, coordinates of the point to be matched for
the main camera; �x, y, z�, recovered 3D coordinates. (b) Illustrative data of the intensity matching condition. ΔIm � I0�um, vm� − I 1�um, vm�;
ΔI ep, intensity profile of I3 − I 2 along the epipolar line. (c) Illustrative data of the quality map constraint and the transformation constraint. �u 0

e, v 0e�,
coordinates of the estimated corresponding point for the auxiliary camera. (d) Illustrative data of the phase sign constraint. (e) Scheme for penalty
score calculation and phase unwrapping. ri , horizontal distance between the candidates and the estimated corresponding point; ωm, phase value of
the selected point in the main camera calculated by the Fourier transform profilometry method; ω 0

ai , phase value of the candidate points in the
auxiliary camera calculated by the Fourier transform profilometry method; φ 0

ai , phase value calculated by the phase-shifting method; φ 0 0
pi , phase value

determined on the projector’s plane; Pi , 3D points determined by candidates; Pm, principal point of the main camera; and Pa , principal point of the
auxiliary camera.
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First, the phase inferred from the intensities of candidates and
the pixel �um, vm� is calculated by

φ 0
ai � arctan

�
I 1�um, vm� − I 3�u 0ai, v 0ai�
I 0�um, vm� − I 2�u 0ai, v 0ai�

�
: (10)

Meanwhile, for each candidate �u 0
ai, v 0ai�, the coordinate triple

�um, vm, u 0ai� and knowledge of camera calibration allow the de-
termination of an estimated 3D point Pi by using the stereo
vision method. In addition, with the knowledge of the projector
calibration, a point with coordinates �u 0 0

pi, v 0 0pi� on the projector’s
plane is determined for each candidate. Then, an unwrapped
phase value φ 0 0

pi is calculated by

φ 0 0
pi �

2π

p
�u 0 0pi − u 0 0d �, (11)

where u 0 0
d is a horizontal datum coordinate on the projector’s

plane associated with the zero phase, and p is the fringe period
in units of projector pixels. Since these independently inferred
phase values must agree if the candidate correctly matches
�um, vm�, a penalty score Ai, as a normalized difference of these
two phase values, is calculated by

Ai �
jR�φ 0

ai − φ
0 0
pi�j

π
, (12)

where the rewrapping function R�·� computes the subtracted dif-
ference between the wrapped and unwrapped phase values.

To improve the robustness of the algorithm, two additional
criteria are implemented using data available from the second
step. Bi is a normalized distance score favoring candidates lo-
cated closer to the estimated matching point �u 0

e, v 0e�, which is
calculated by

Bi �
ju 0

e − u 0
aij

r0
: (13)

Moreover, Ci is a normalized difference of the wrapped phase
values using the wrapped phases ωm and ω 0

ai, which is calcu-
lated by

Ci �
jR�ωm − ω 0

ai�j
π

: (14)

A total penalty score Si for each candidate is then computed as a
weighted linear combination of three individual scores,

Si � η1Ai � η2Bi � η3Ci, (15)

where the normalized weights �η1, η2, η3� � �0.73, 0.09, 0.18�
are empirically chosen to lead to the results that are most con-
sistent with the physical reality. Finally, the candidate with the
minimum Si is chosen as the matching point �u 0

a, v 0a�. Its phase
values, calculated by using Eqs. (10) and (11), are denoted as φ 0

a

and φ 0 0
p , respectively.

In the final step, the algorithm determines the final 3D co-
ordinates [see Step IV in Fig. 2(a) and the scheme in Fig. 2(e)].
First, φ 0

a is unwrapped as φ 0
a � 2πq, where q is an integer mak-

ing φ 0 0
p − �φ 0

a � 2πq� ∈ �−π, π�. Then, the coordinate on the
projector’s plane, u 0 0p , is recovered with subpixel resolution as

u 0 0p � u 0 0d � P�φ 0
a∕2π � q�, (16)

from which the final 3D coordinates (x, y, z) are computed us-
ing the calibration information associated with the coordinate
triple �um, vm, u 0 0

p �.

3. RESULTS

A. Quantification of Depth Resolution
To quantify the depth resolution of TIA–BLIP with different
exposure times, we imaged two stacked planar surfaces offset by
∼9° (Fig. 3). Reconstructed results at four representative expo-
sure times (denoted as te) are shown in Fig. 3(a). One area on
each surface [marked as white solid boxes in Fig. 3(a)] was se-
lected in the reconstructed image. The depth information on
the x axis was calculated by averaging the depth values along the
y axis. The difference in depths between these two surfaces is
denoted by zd. In addition, the noise is defined as the averaged
value of the standard deviations in depth from both surfaces.
The depth resolution is defined as when zd equals twice the
system’s noise level. As shown in the four plots in Fig. 3(a),
the reconstruction results deteriorate with shorter exposure
time, manifested by increased noise levels and more points
incapable of retrieving 3D information. As a result, the depth
resolution degrades from 0.06 mm at te � 950 μs to 0.45 mm
at te � 150 μs [Fig. 3(b)]. At te � 100 μs, TIA–BLIP fails in
3D measurements. The region of unsuccessful reconstruction
prevails across most of the planar surfaces. The noise dominates
the calculated depth difference, which is attributed to the low
signal-to-noise ratio in the captured images.

B. Imaging of Static 3D Objects
To examine the feasibility of TIA–BLIP, we imaged various
static 3D objects. First, two sets of 3D distributed letter toys
that composed the words “LACI” and “INRS” were imaged.
Shown in Fig. 4(a), the two perspective views of the recon-
structed results reveal the 3D position of each letter toy.
The detailed surface structures are illustrated by the selected
depth profiles [see the white dashed lines and the magenta

Fig. 3. Quantification of TIA–BLIP’s depth resolution. (a) 3D im-
ages of the planar surfaces (top image) and measured depth difference
(bottom plot) at four exposure times. The white boxes represent the
selected regions for analysis. (b) Relation between measured depth
differences and their corresponding exposure times.
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dashed boxes in Fig. 4(a)]. We also conducted a proof-of-
concept experiment on three cube toys with fine structures
(with a depth of ∼4 mm ) on the surfaces. Depicted in
Fig. 4(b), the detailed structural information of these cube toys
is recovered by TIA–BLIP.

C. Imaging of Dynamic 3D Objects
To verify high-speed 3D surface profilometry, we used TIA–
BLIP to image two dynamic scenes: a moving hand and three
bouncing balls. The fringe patterns were projected at 4 kHz.
The exposure times of both cameras were te � 250 μs.
Under these experimental conditions, TIA–BLIP had a 3D im-
aging speed of 1 thousand frames per second (kfps), an FOV of
180 mm × 130 mm (corresponding to 1180 × 860 pixels) in
captured images, and a depth resolution of 0.24 mm.
Figure 5(a) shows the reconstructed 3D images of the moving
hand at five time points from 0 ms to 60 ms with a time interval
of 15 ms (see the full evolution in Visualization 1). TIA–BLIP’s
high-speed 3D imaging allowed tracking the movements of
four fingertips. Shown in Fig. 5(b), all the four fingers have
apparent movement in both the x axis and the z axis, but stay
relatively stationary in the y axis, which agrees with the exper-
imental condition.

In the second experiment, three white balls, each of which
was marked by a different letter on its surface, bounced in an
inclined transparent container. Figure 5(c) shows five represen-
tative reconstructed images from 8 ms to 28 ms with a time
interval of 5 ms. The changes of the letter “C” on B1 and
the letter “L” on B2 [marked in the third panel of Fig. 5(c)]
clearly show the rotation of the two balls (see the full evolution
in Visualization 2). TIA–BLIP enabled tracking the 3D cent-
roids of each ball over time. Shown in Fig. 5(d), B1 collides
with B2 at 16 ms, resulting in a sudden change in the moving
directions. This collision temporarily interrupted the free fall of

B1, represented by the two turning points in the curve of evo-
lution along the y axis [see the second panel of Fig. 5(d)]. The
collision also changed the moving direction of B2, making it
touch the base at 27 ms and then bounce up. In this scene,
B3 maintained its movement in a single direction in both
the x axis and the z axis. It fell onto the base and bounced back
at 16 ms, resulting in a turning point in its y-t curve. Because of
the inclined bottom plane, the y value of B3 at 16 ms was
smaller than that of B2 at 27 ms.

Under the same experimental settings and pattern sequence
choice, TIA–BLIP surpasses the existing PSFPP techniques in
pixel counts and hence the imaging FOV. At the 1 kfps 3D
imaging speed, the systems of standard single-camera PSFPP
[14] and multiview PSFPP [19] would restrict their imaging
FOV to 512 × 512 pixels and 768 × 640 pixels, respectively
[33]. In contrast, TIA, with a frame size of 1180 × 860 pixels,
increases the FOV by 3.87 and 2.07 times, respectively.

D. Imaging of Sound-Induced Vibration on Glass
To highlight the broad utility of TIA–BLIP, we imaged sound-
induced vibration on glass. In this experiment [Fig. 6(a)], a glass
cup was fixed on a table. The glass’s surface was painted white. A
function generator drove a speaker to produce single-frequency
sound signals (from 450 Hz to 550 Hz with a step of 10 Hz)
through a sound channel placed close to the cup’s wall. To image
the vibration dynamics, fringe patterns were projected at
4.8 kHz. The cameras had an exposure time of te � 205 μs.
This configuration enabled a 3D imaging speed of 1.2 kfps,
an FOV of 146 mm × 130 mm (corresponding to 960 ×
860 pixels) in captured images, and a depth resolution of
0.31 mm. Figure 6(b) shows four representative 3D images
of the instantaneous shapes of the glass cup driven by the
500 Hz sound signal (the full sequence is shown in
Visualization 3), showing the dynamic of structural deformation

Fig. 4. TIA–BLIP of static 3D objects. (a) Reconstructed results of letter toys. Two perspective views are shown in the top row. Selected depth
profiles (marked by the white dashed lines in the top images) and close-up views are shown in the bottom row. (b) Two perspective views of the
reconstruction results of three toy cubes.

Research Article Vol. 8, No. 11 / November 2020 / Photonics Research 1813

https://doi.org/10.6084/m9.figshare.12425423
https://doi.org/10.6084/m9.figshare.12425426
https://doi.org/10.6084/m9.figshare.12425420


of the glass cup. The evolution of depth changes was analyzed
using five selected points [marked by PA to PE in the first panel
of Fig. 6(b)]. Shown in Fig. 6(c), the depth changes of five points
are in accordance, which is attributed to the rigidness of the glass.

We further analyzed time histories of averaged depth dis-
placements under different sound frequencies. Figure 6(d)

shows the results at the driving frequencies of 490 Hz,
500 Hz, and 510 Hz. Each result was fitted by a sinusoidal
function with a frequency of 490.0 Hz, 499.4 Hz, and
508.6 Hz, respectively. These results show that the rigid glass
cup vibrated in compliance with the driving frequency.
Moreover, the amplitudes of fitted results Δz fit were used to

Fig. 5. TIA–BLIP of dynamic objects. (a) Reconstructed 3D images of a moving hand at five time points. (b) Movement traces of four fingertips
[marked in the first panel in (a)]. (c) Front view of the reconstructed 3D image of the bouncing balls at five different time points. (d) Evolution of 3D
positions of the three balls [marked in the third panel in (c)].

Fig. 6. TIA–BLIP of sound-induced vibration on glass. (a) Schematic of the experimental setup. The field of view is marked by the red dashed
box. (b) Four reconstructed 3D images of the cup driven by a 500-Hz sound signal. (c) Evolution of the depth change of five points marked in the
first panel of (b) with the fitted result. (d) Evolution of the averaged depth change with the fitted results under the driving frequencies of 490 Hz,
500 Hz, and 510 Hz. Error bar: standard deviation of Δz calculated from the five selected pixels. (e) Response of the depth displacements to sound
frequencies. The cyan curve is a fitted result of a Lorentz function.
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determine the relationship between the depth displacement and
the sound frequency [Fig. 6(e)]. We fitted this result by the
Lorentz function, which determined the resonant frequency
of this glass cup to 499.0 Hz.

It is worth noting that this phenomenon would be difficult
to be captured by using previous methods given the same ex-
perimental settings and pattern sequence choice. With frame
size of 960 × 860 pixels, the maximum frame rate for the used
cameras is 2.4 kfps, which transfers to a 3D imaging speed of
480 fps for single-camera-based PSFPP and 600 fps for multi-
view PSFPP. Neither provides sufficient imaging speed to visu-
alize the glass vibration at the resonance frequency. In contrast,
TIA improves the 3D imaging speed to 1.2 kfps, which is fully
capable of sampling the glass vibration dynamics in the tested
frequency range of 450–550 Hz.

E. Imaging of Glass Breakage
To further apply TIA–BLIP to recording nonrepeatable 3D dy-
namics, we imaged the process of glass breaking by a hammer
(the full sequence is shown in Visualization 4). As displayed in
Fig. 7(a), the growth of cracks and the burst of fragments with
different shapes and sizes are clearly shown in the reconstructed
3D images. The time courses of velocities of four
fragments [marked by FA to FD in Fig. 7(a)] are plotted in
Fig. 7(b). The velocities in the y axis are considerably small
compared to the other two directions, which indicates the im-
pact of the hammer force was exerted on the x-z plane. The vy
of fragments FA and FC shows that they moved upward until
13 ms and fell afterward. The vy of fragments FB and FD re-
veals that they fell onto the remaining base of the cup at 15 ms
and kept sliding down on the surface. The data of vz illustrates
that FA and FC moved closer to the cameras, which was di-
rectly driven by the hammer’s force. However, FB and FD,
which collided with other pieces, maintained their positive

directions in vz to move away from the cameras. The corre-
sponding accelerations are displayed in Fig. 7(c), which indi-
cates the influence of both the main strike and the ensuing
collision among different fragments. At 14 ms, the collision
with other fragments, which applied an impact along the
�x direction, dominated the acceleration direction for all four
tracked fragments. In contrast, at 15 ms, another collision pro-
duced an impact in the −x direction, causing a sharp decrease in
the acceleration for FA and FC. In addition, the direction of
acceleration for FD along the y axis changed several times,
which is attributed in several collisions of FD with the base
of the glass cup while sliding down.

4. DISCUSSION AND CONCLUSIONS

We have developed TIA–BLIP with a kfps-level 3D imaging
speed over an FOV of up to 180 mm × 130 mm (corresponding
to 1180 × 860 pixels) in captured images. This technique im-
plements TIA in multiview 3D PSFPP systems, which allows
each camera to capture half of the sequence of the phase-shift-
ing fringes. Leveraging the characteristics indicated in the in-
tensity-matching condition [i.e., Eq. (5)], the newly developed
algorithm applies constraints in geometry and phase to find the
matching pair of points in the main and auxiliary cameras and
guides phase unwrapping to extract the depth information.
TIA–BLIP has empowered the 3D visualization of glass vibra-
tion induced by sound and the glass breakage by a hammer.

TIA–BLIP possesses many advantages. First, TIA eliminates
the redundant capture of fringe patterns in data acquisition.
The roles of the main camera and the auxiliary camera are in-
terchangeable. Despite being demonstrated only with high-
speed cameras, TIA–BLIP is a universal imaging paradigm
easily adaptable to other multiview PSFPP systems. Second,
TIA reduces the workload for each camera employed in the

Fig. 7. TIA–BLIP of glass breakage. (a) Six reconstructed 3D images showing a glass cup broken by a hammer. (b) Evolution of 3D velocities of
four selected fragments marked in the fourth and fifth panels in (a). (c) Evolution of the corresponding 3D accelerations of the four selected
fragments.
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multiview systems. The freed capacity is used to enhance the
technical specifications in PSFPP. In particular, at a certain
frame rate, more pixels on the sensors of the deployed cameras
can be used, which increases the imaging FOV. Alternatively, if
the FOV is fixed, TIA supports these cameras to have higher
frame rates, which thus increases the 3D imaging speed. Both
advantages shed light on implementing TIA–BLIP with an
array of cameras to simultaneously accomplish high accuracy
and high-speed 3D imaging over a larger FOV. Third, the two
cameras deployed in the current TIA–BLIP system are placed
side by side. Compared with the existing dual-view PSFPP sys-
tems that mostly place the cameras at different sides of the
projector, the arrangement in TIA–BLIP circumvents the in-
tensity difference induced by the directional scattering light
from the 3D object and reduces the shadow effect by occlusion.
Both merits support robust pixel matching in the image
reconstruction algorithm to recover 3D information on non-
Lambertian surfaces.

Future work will be carried out in the following aspects.
First, we plan to further improve TIA–BLIP’s imaging speed
and FOV in three ways: by separating the workload to an array
of cameras, by implementing a faster DMD, and by using a
more powerful laser. Moreover, we will implement depth-range
estimation and online feedback to reduce the time in candidate
discovery. Furthermore, parallel computing will be used to in-
crease the speed of image reconstruction toward real-time op-
eration [34]. Finally, to robustly image 3D objects with
different sizes and with incoherent light sources, we will gen-
erate fringe patterns with adaptive periods by using a slit or a
pinhole array as the spatial filter [35]. Automated size calcula-
tion [36] also will be integrated into the imaging processing
software to facilitate the determination of the proper fringe
period.

Besides technical improvements, we will continue to explore
new applications of TIA–BLIP. For example, it could be inte-
grated into structure illumination microscopy [37] and fre-
quency-resolved multidimensional imaging [38]. TIA–BLIP
could also be implemented in the study of the dynamic char-
acterization of glass in its interaction with the external forces in
nonrepeatable safety test analysis [39–41]. As another example,
TIA–BLIP could trace and recognize the hand gesture in 3D
space to provide information for human–computer interaction
[42]. Furthermore, in robotics, TIA–BLIP could provide a
dual-view 3D vision for object tracking and reaction guidance
[43]. Finally, TIA–BLIP can function as an imaging accelerom-
eter for vibration monitoring in rotating machinery [44] and
for behavior quantification in biological science [45].
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