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In this work, we analyze and model the effect of a constant current stress on an ultraviolet light-emitting diode
with a nominal wavelength of 285 nm. By carrying out electrical, optical, spectral, and steady-state photocapa-
citance (SSPC) analysis during stress, we demonstrate the presence of two different degradation mechanisms. The
first one occurs in the first 1000 min of stress, is ascribed to the decrease in the injection efficiency, and is modeled
by considering the defect generation dynamics related to the de-hydrogenation of gallium vacancies, according to
a system of three differential equations; the second one occurs after 1000 min of stress and is correlated with the
generation of mid-gap defects, for which we have found evidence in the SSPC measurements. Specifically, we
detected the presence of deep-level states (at 1.6 eV) and mid-gap states (at 2.15 eV), indicating that stress induces
the generation of non-radiative recombination centers. © 2020 Chinese Laser Press

https://doi.org/10.1364/PRJ.401785

1. INTRODUCTION

Over the last years, AlGaN-based UV-C LEDs have shown
impressive advancements, thanks to the high volume of re-
search done by several research and industrial laboratories
and to the broad range of expected applications. UV-C
LEDs can be used in different fields, including medical devices,
disinfection, sterilization, water purification and UV curing
[1–3], plant lighting [4], as insect trap [5], and in phototherapy
and for bioagent detection and identification [6,7]. Moreover,
UV-C LEDs present many advantages with respect to conven-
tional UV lamps, such as higher spectral purity, smaller size,
smaller drive voltage and operating current, and environmental
friendliness.

The interest in UV-C technology is now further pushed by
the COVID-19 emergency: specific antiviral treatments are
being developed [8] (often with mercury or excimer lamps),
and the development of high-efficiency UV-C light sources
could ease the spread of compact disinfection systems.

The reliability and the efficiency of AlGaN-based LEDs
were significantly improved thanks to recent studies, resulting
in higher injection efficiency, internal quantum efficiency, and
light extraction efficiency. Nevertheless, several topics are still
the subject of investigation, including the increase in drive

voltage during aging, the generation of mid-gap states in the
active region [9], the incomplete activation of p-dopant
[10,11], the migration of hydrogen [12] and, in some cases,
catastrophic failures [13].

The aim of this paper is to analyze the different degradation
mechanisms of 285 nm UV-C LEDs, through electrical, opti-
cal, spectral, and steady-state photocapacitance (SSPC) mea-
surements. Through our investigation we demonstrate that
degradation is due to two different mechanisms: the decrease
in the injection efficiency and the generation of mid-gap
Shockley–Read–Hall (SRH) recombination centers. The
underlying mechanisms are discussed in detail in the paper.

2. EXPERIMENTAL RESULTS

The samples under investigation are AlGaN-based UV-C LEDs
with a nominal wavelength of 285 nm at the current of
350 mA. We performed a constant current stress at room tem-
perature, at 250 mA; the stress test was repeatedly interrupted
to carry out electrical (I-V), optical (L-I), and power spectral
density (PSD) characterization at different temperatures, from
15°C to 75°C with a step of 10°C, in order to evaluate the
behavior of the main parameters of the devices. At each stage
of the stress test we also performed an SSPC scan at room
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temperature, to detect the presence of defects and to investigate
their evolution during the stress test. The current-voltage mea-
surements were carried out from −4 V to 7.5 V; the optical
power measurements were carried out from 10 μA to
250 mA, with a logarithmic step. The spectral characterization
was performed at four different current levels (100 μA, 1 mA,
10 mA, 100 mA), in a range of wavelength from 180 nm to
875 nm. SSPC measurements were carried out by using a
monochromatic light in a range from 1.1 eV to 3.65 eV, while
keeping the LEDs biased at 0 V.

Figure 1 reports the I-V measurements carried out during
the constant current stress experiment. Two regions can be
identified: in the first one, below the turn-on voltage
(V < 4.5 V), conduction is mediated dominantly by defects.
Before stress, the current is smaller than 2 nA. This is the sen-
sitivity limit of the experimental setup used for the investiga-
tion, that employs a specific circuitry to switch between
electrical, optical, and capacitive measurements. For longer
stress time (>1000 min), a significant increase in current con-
duction is observed for 1 V < V < 3V, i.e., below the turn-on
voltage of the pn junction. This effect is ascribed to the increase
in the density of defects in the active region of the devices.

These results are confirmed also by the data reported in
Fig. 2, which show a significant increase in the sub-turn-on
current after 1000 min of stress [Fig. 2(a)] and a small decrease
in the series resistance of the device [Fig. 2(b)].

We ascribed the increase in the sub-turn-on current at the gen-
eration of mid-gap states during the stress, confirmed also by the
calculation of the ideality factor (Fig. 3), which is an indicator of
the increase in the defectiveness of the material from the I-V result
[14,15]. This generation of mid-gap states leads to an increase in
non-radiative recombination events through trap-assisted mecha-
nisms [16], which cause the reported increment in current.

With regard to the optical degradation, Fig. 4 reports the
optical power versus current characteristics measured during
stress, and the relative variation in optical power at three differ-
ent current levels. Different behaviors are observed, depending
on the conduction regime.

We start considering the behavior of the devices as observed
for high current levels (100 mA), i.e., in the regime where
the behavior of the devices is not significantly influenced by
SRH recombination. We suggest that the optical degradation

detected at high current levels is due to a worsening of the in-
jection efficiency. This is consistent with the fact that up to
1000 min of stress the degradation rate is almost independent
on the measuring current level [see Fig. 4(b) and Ref. [17]].

Several mechanisms can contribute to this variation in in-
jection efficiency. A first process is the decrease in hole concen-
tration at the p-side, due to a partial compensation of the
acceptor dopant through the formation of Mg-H bonds
[18,19]. This process is not supposed to play a major role, since
it would result in a significant increase in the series resistance,
which is not observed here [as shown in Fig. 2(b), series resis-
tance decreases with stress time].

A second mechanism that impacts on the injection effi-
ciency is carrier escape [20]. However, escape is a thermionic
process, following an equation like Jn � −q Dn

Ln
· NC ·

exp
�
−
EB−EFn

kT

�
, where Dn is the diffusion constant, Ln is the

diffusion length, NC is the effective density of states in the ac-
tive region, EB is the height of the barrier, and EFn is the Fermi
level [20]. The rate of escape mainly depends on the height of
the confinement barrier at the p-side of the quantum wells,
which is not supposed to change as a consequence of stress.

A third mechanism that can lower the injection efficiency is
the generation of charged defects in the active region [21]. Such
charged defects may modify the band bending near the quan-
tum wells (QWs), thus making carrier injection more diffi-
cult (Fig. 5).
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Fig. 1. Electrical characterization during the stress, in semi-logarithmic
scale, carried out before and during the stress experiment at 250 mA.
All measurements were taken at 25°C.
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Fig. 2. (a) Normalized current at the voltage of 3 V, and (b) nor-
malized series resistance (Rs) at the temperatures of 25°C and 75°C
during the stress.
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Fig. 3. Ideality factor at the temperature of 25°C during the stress.
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As a plausible model, we consider that stress induces the
generation of negatively charged defects near/within the active
region. A possible process can be the de-hydrogenation of
(previously) hydrogenated gallium vacancies, which are natu-
rally present in MOCVD-grown (metal organic chemical vapor
deposition) gallium nitride.

As discussed in Ref. [22], de-hydrogenation of Ga vacancies,

VGaHn ⇌ �VGaHn−1�− �H�,

leads to an increase of acceptor concentration. This reaction
may be promoted by the flow of carriers through the active
region of the devices, and/or by the energy released by non-
radiative recombination events (for instance, Auger
recombination [23]). Since H� ions have a high mobility, they
may then re-bond with a gallium vacancy or find another hy-
drogen atom to form molecular hydrogen (with the contribu-
tion of two electrons). The processes could be described like
in Fig. 6.

The Ga vacancies VGaHn (state A) could de-hydrogenate
into �VGaHn−1�− �H� (state B, rate coefficient kAB). State B
is metastable: this means that the hydrogen ion is free, and
could either re-bond with a de-hydrogenated vacancy (going
back to state A, with rate coefficient kBA), or find a second hy-
drogen atom to form molecular hydrogenH2 (going to state C,
with rate coefficient kBC ). In this second case, the hydrogen
finds a stable form, and leaves behind a de-hydrogenated
vacancy �VGaHn−1�−, that modifies the injection efficiency, as
described above. These processes could be described by the
following system of ordinary differential equations (ODEs):8>><

>>:

dA�t�
dt � −kAB · A�t� � kBA · B�t�

dB�t�
dt � �kAB · A�t� − kBA · B�t� � kBC · B2�t�

dC�t�
dt � �kBC · B2�t�

:

Here A represents the number of hydrogenated vacancies, B is
the number of de-hydrogenated vacancies with neighboring
H-atom (�VGaHn−1�− �H��, and C is the number of de-
hydrogenated vacancies without H-atom (acting as acceptors).

After defining this system of equations, we solved them nu-
merically, after imposing as a boundary condition that the ini-
tial value of A is equal to 1. The coefficients kij were obtained
numerically, as fitting parameters. As shown in Fig. 7, we could
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Fig. 4. (a) Optical power (OP) during the stress at the temperature of 25°C. (b) Normalized optical power at three different current levels: 10 μA,
1 mA, and 100 mA.

Fig. 5. Simplified representation of the increase in the injection
barrier due to the presence of a distributed negative charge near/within
the active region.

Fig. 6. Schematic representation of the reactions.

Fig. 7. Optical degradation measured at 25°C and 75°C during
stress at 250 mA. Solid lines represent the solution of the system
of ODEs reported above, showing a good agreement with the exper-
imental data.
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obtain a very good correspondence between the estimated
variation in de-hydrogenated vacancies (�VGaHn−1�−, described
by the variation of term �C�t�� and the overall variation in
optical power.

Thus, we conclude that the proposed model is able to pre-
dict the variation in optical power during stress time for high
measuring current levels, i.e., in the regime where the variation
in injection efficiency is the dominant degradation process.

For low current levels, a different trend is observed.
Specifically, after the first phase (t < 1000 min) has ended,
a second mechanism is observed, for t > 1000 min. This
second process has a stronger effect at low measuring current
levels, and it is ascribed to an increase in the non-radiative
recombination rate, due to the generation of defects.

We can explain the behavior at low current density, with the
hypothesis formulated by Ruschel et al. [24], where the authors
indicated that the optical power has the following behavior for
long operation time:

OP�t� � −β · ln
�
α · J3 · t � e−

1
β

�
,

where J is the current density, t is the stress time, and α and β
are two fitting parameters. This is in agreement with the results
in Fig. 8 that report the optical degradation and the related fit
for long time. Ruschel et al. [24] also indicated that the deg-
radation rate scales with the cube of the current density, sug-
gesting a possible contribution of Auger recombination in the
degradation.

A possible scenario for long stress time considers the gener-
ation of non-radiative recombination centers due to the energy
released by Auger recombination events. The consequent in-
crease in SRH recombination coefficient has an impact, which
is stronger for low measuring current levels, as predicted by the
well known ABC rate equations. The contribution of this
mechanism is negligible in the first phase of the stress, com-
pared to the effect given by the drop in injection efficiency
described above.

So, the long-term degradation measured at low current levels
can be ascribed to the generation of non-radiative centers, possibly
caused by the energy released by Auger recombination events.

In Fig. 9 we report the PSD of the device during the aging.
We can see the presence of a parasitic shoulder peak in the
range from 320 nm to 350 nm, probably due to recombination

in the proximity of the electron blocking layer, caused by the
carrier escape from the QWs and the carrier overflow [25].
No major change in the electroluminescence spectrum is ob-
served after stress, apart from a decrease in the emitted signal.
In particular, no additional parasitic emission was noticed after
aging. This is a further confirmation of the non-radiative nature
of the process responsible for degradation.

According to the SRH theory, the defects that have a
stronger effect on the optical characteristics of LEDs are those
located near the mid-gap [20]. Similarly, recent papers indi-
cated that the defects that have the stronger impact on the sub-
turn-on leakage components are located close to the mid-gap
[15,16]. For this reason, we carried out an extensive analysis
to identify the generation of traps near the active layer of
the devices, by capacitance spectroscopy. To this aim, normal
deep-level transient spectroscopy cannot be used, since the time
constant of the capacitance transients would be too long for
practical implementation of the technique.

In fact, the time constant for emission can be calculated as

1

τ
� en � σnvthNc exp

�
−
EC − ET

kT

�
:

With σn � 10−15 cm2, vth � 1.3 × 107 cm∕s and Nc �
4.8 × 1018 cm−3, time constants in excess of 1.2 × 1011 s would
be obtained even at high temperature (500 K), for mid-gap
defects.

For this reason, we decided to opt for SSPC measurements.
This method uses monochromatic light excitation to favor a
fast ionization of defects, thus particularly effective for the study
of very deep defects in wide bandgap semiconductors.

In Fig. 10 are reported the results of steady-state photoca-
pacitance measurements during the stress. The results show
two different slope increments, correlated to the presence
and the generation of two different defects. The first one, vis-
ible at 1.6 eV, is present at each step of stress. The second, at
2.15 eV, is more evident in the first steps of stress and corre-
sponds to defects placed at the mid-gap for the dominant QW
bandgap. This supports the hypothesis of a generation of mid-
gap states in the active region, which cause an increase in the
SRH recombination. In fact, as reported in Fig. 10(b), there is a
good correlation (red arrow) between the decrease in the optical
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power at low current levels and the increase in the concentra-
tion of mid-gap defect (proportional to the amplitude of the
SSPC signal) after 1000 min of stress, probably ascribed to
Auger processes.

3. CONCLUSIONS

In this work, we presented an extensive analysis of the behavior
of UV-C LEDs during the constant current stress test. We
found the presence of two different degradation mechanisms.

The first one is dominant in the first 1000 min of stress, and
it is ascribed to a decrease in the injection efficiency. It causes a
decrease in the optical power and in the amplitude of the main
peak of the emission spectra, which is independent of the
measuring current level. The related kinetics were modeled
by considering the defect-reaction dynamics responsible for
the de-hydrogenation of gallium vacancies, through a system
of three differential equations. The results show a good agree-
ment with the experimental data, supporting the validity of
the model.

The second mechanism is dominant after 1000 min of
stress, and it is correlated to the generation of mid-gap defects.
It leads to an increase in the sub-turn-on current, and a decrease
in the optical power and in the PSD main peak, especially at
low current levels. Moreover, we found evidence of this defect
generation from the slope of the optical power characteristics at
low current levels, from the ideality factor, and from the results
of SSPC measurement, which indicates the generation of
defects at EC of 2.15 eV.

In a future work, microscopy techniques (transmission elec-
tron microscopy, scanning electron microscopy, energy disper-
sive X-ray analysis, positron annihilation spectroscopy) could
be used to experimentally evaluate the impact of electrical stress
on the microscopic properties of the material. Also, positron
annihilation spectroscopy could be used to evaluate the role
of vacancies in the degradation process.
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