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The flexibile nature of optical fiber enables it to offer remote-access capabilities, which could be used in many
biomedical applications. This review focuses on different micro- and nano-structured fiber probes for applications
in biosensing, imaging, and stimulations. The modifications to fiber could extend design freedom from waveguide
optimization to functional material integration. Fiber probes with optimized waveguide structures or integrated
functional materials could achieve enhanced optical mode interaction with biosamples, and hence obtain ultra-
sensitive biosensors with a remarkably low limit of detection. Furthermore, bioimaging with a high spatial res-
olution can be obtained by engineering dispersion and nonlinearity of light propagation in the fiber core or
designing a metal-coated tapered fiber tip with a sub-wavelength aperture. Flat metasurfaces can be assembled
on a fiber tip to achieve a large depth of focus and remove aberrations. Fiber is also a compact solution to realize
the precise delivery of light for in vivo applications, such as deep brain stimulation. The optical beam size, shape,
and direction could be steered by the probe parameters. Micro- and nano-technologies integrated with fiber con-
tribute to various approaches to further improve detection limit, sensitivity, optical resolution, imaging depth,
and stimulation precision. © 2020 Chinese Laser Press

https://doi.org/10.1364/PRJ.387076

1. INTRODUCTION

Optical fiber is a type of attractive waveguide offering advan-
tages including low propagation loss, high flexibility, light-
weight, and electromagnetic interference immunity. They
also have special optical properties, which make them a suitable
platform for lasers, amplifiers, and nonlinear optical generation
[1–8]. In addition, optical fibers are also compatible with bio-
logical substances since they are mostly made of silica or poly-
mer materials [9,10].

There are several typical groups of biomedical applications
that take advantage of the flexibility and compactness of op-
tical fibers to achieve remote delivery of light, such as optical
biosensing, optical imaging, and optical stimulation. Aiming
for single-molecule detection, optical biosensing technologies
challenge the limit of detection (LOD). Making the fiber
outer diameter down to a few micrometers or even sub-
micrometer dimensions enhances the light–matter interaction
[11,12]. The selection of new materials at the interface be-
tween fiber and bioanalyte helps to improve sensing perfor-
mance [13,14]. The water dispersibility and biomolecule
affinity are crucial factors while maintaining high-sensitivity
performance.

Visualization of bio-organisms requires improved imaging
resolution, especially for the in vivo modality. Fiber-based im-
aging with a high spatial resolution is controlled by the light
field in the fiber core which is closely related to the microfiber
or nanofiber probe parameters. The challenges remain in re-
moving various aberrations, achieving a larger field of view and
deeper imaging depth when designing the fiber-based catheter
for 3D imaging [15]. Moreover, engineering the optical wave-
guide dispersion, nonlinearity, and polarization-maintaining
properties are other important perspectives when moving to
ultrafast laser-based nonlinear optical imaging [16].

Optical stimulation is a process of targeting a light beam to a
specific nucleus. The combination of optical stimulation with
genetic engineering paves the way for optogenetics [17].
Bioengineering of light-sensitive ion channels from the bacteria
has made it possible to utilize light to modulate neuronal ac-
tivity artificially. The precise manipulation of the beam is es-
sential for selective control of the activity of neurons. Fiber
optics probe becomes a preferred choice of implantable optrode
[18] to regulate behavior and physiological functions.

References [19–22] review fiber-based biosensors from the
perspectives including grating structures, plasmonic resonance
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schemes, and lab-on-fiber technology. References [23–25] re-
view fiber-based bioimaging techniques such as fluorescent im-
aging systems. Based on these reviews, we aim to provide a
different perspective focusing on advanced fiber probe designs,
i.e., microstructured and nanostructured fibers, for biophoton-
ics applications. The modifications on the fiber or in the fiber
could extend the device design freedom from waveguide modi-
fication to functional material integration. Also, this review
covers special fiber probes for optical stimulation which is
an emerging field in the biomedical community.

2. FIBER PROBES FOR BIOSENSING

Fiber-based biosensors have gained a lot of interest from re-
search and development contributed by the advantages of fiber
waveguides mentioned above. In this section, a summary of the
optical fiber-based biosensors is presented, which is categorized
based on their working principles. The focus is how the probe
designs can help to improve the sensing performance. Driven
by the motivation of high sensitivity and low detection limit of
the biological samples, we will start with a surface resonance-
based biosensor, followed by an interference-based biosensor,
considering both are able to enhance the sensing signal. For
each type of the above two fiber-based biosensors, the sensing
principle is included, and the selected recent works within the
past 5 years are summarized in a table. Typical schematics from
each category of the fiber-based sensor are selected, with sens-
ing performance results presented as well.

A. Resonance-Based Optical Fiber Sensors

1. Plasmon Resonance-Based Fiber Sensors
The traditional approach to excite the surface plasmon reso-
nance (SPR) on a metallic–dielectric interface is by using a
prism to inject light onto the interface. In comparison, the op-
tical fiber-based plasmonic biosensors utilize the microscale/
nanoscale fiber structure to excite the SPR, contributed by
the compactness of the optical fiber. The optical fiber was origi-
nally designed to guide waves through total internal reflection
at the interface between the core and the cladding. To make the
core-guided light interact with the metal coatings or nanopar-
ticles (NPs) attached to the fiber, modifications need to be done
on the optical fiber structure, as summarized in the follow-
ing three approaches. The first approach is to remove the clad-
ding of the fiber via chemical etching or side-polishing to form
D-shaped fibers, including standard step-index fibers [26–33]
and microstructure fibers [34]. The refractometric sensitivity
can reach 22,779 nm/refractive index unit (RIU) [32]. The
schematic of the experiment is shown in Fig. 1(a) left panel,
with the fiber cross section illustrated in the inset. The exper-
imental result is shown in Fig. 1(a) right panel, illustrating the
normalized transmission spectra under different glucose solu-
tion concentrations. The redshift of the SPR resonant wave-
length can be observed as glucose concentration increases.
After doing the fitting of the resonance wavelength versus glu-
cose solution mass concentration, an averaged sensitivity of
24.50 nm/wt.%, which corresponds to an RI sensitivity of
17,560 nm/RIU, can be obtained. Figure 1(b) inset shows
the cross section of a typical D-shaped microstructure fiber
for an SPR-based sensor. The polished fiber is used for the dem-

onstration of plasmonic-enhanced fluorescence emission from
rhodamine (Rh) B. The fluorescence emission spectra of Rh B
are shown in Fig. 1(b). The distinction between the excitation
and emission is achieved through the energy coupling from the
surface plasmon wave of thin gold film to Rh B molecules. The
second approach is to make tapered fibers with a thinner core so
that the evanescent wave can interact with the metal coating on
the tapered facet [35–38]. Its refractometric sensitivity can
reach 20,300 nm/RIU [37]. In addition to that, electron-rich
two-dimensional material can also be coated on the tapered
fiber to provide strong SPR at a visible wavelength for bio-
sensing with an ultralow LOD of 1 pg/mL [39]. The third
approach is to coat the metal on the inner wall of the air
holes containing analyte solutions in a microstructured fiber.
Different fiber structure designs have been proposed for this
approach [40–43]. A typical cross section of the microstruc-
tured fiber is illustrated in Fig. 1(c).

In comparison with the SPR, which is a lossy propagation
wave along the metal surface [20], the localized surface plasmon
resonance (LSPR) is an enhanced physical phenomenon. It is
the localized electromagnetic wave trapped within metallic
NPs with a sub-wavelength scale. A typical schematic of an
LSPR-based fiber biosensor is shown in Fig. 1(d) left panel,
making use of gold nanorods coated on the fiber core. The ad-
vantage of using NPs is contributed by the increase of the sur-
face area and roughness [20]. Therefore, the biosensor based on
the LSPR can achieve low analytes concentration detection
[44–49]. Figure 1(d) right panel shows the sensing result of
ochratoxin A (OTA) with concentrations varying from
0 μM to 1 μM (1 M � 1 mol/L). A redshift of the LSPR peak
in spectra can be observed as the OTA concentration increases.
An LOD of 12 pM was obtained by taking 3 times of the stan-
dard deviation of the measured signal with blank samples.
Furthermore, in a recent work, a low LOD of 5 aM has been
demonstrated using the LSPR from Au NPs coated on a ta-
pered fiber [50], with the fiber schematic and measurement
result shown in Fig. 1(e) left and right panels, respectively.
The black curve in the measurement result illustrates the sta-
bilized LSPR peak due to the Au NPs on the microfiber surface.
The coated microfiber is immersed in cholesterol solutions with
concentrations from 5 aM to 0.5 μM, and the transmissions
under different concentrations have been plotted. The distin-
guishable deepening of the attenuation band can be observed.
Low LOD of 5 aM is contributed by the efficient interaction
between β-cyclodextrin-capped Au NPs and the cholesterol
molecules.

Another type of resonance-based fiber sensor is making use
of the lossy mode resonance (LMR) created by depositing thin
film as lossy cladding for the waveguide [51]. As the original
optical mode from fiber interacts with the deposited thin film,
it will experience a transition to be guided within the film [22].
Such transition creates wavelength-dependent loss in the opti-
cal fiber. Figure 1(f ) left panel shows the schematic of a recently
reported LMR-based fiber biosensor. By using the LMR on
a SnO2-coated D-shaped fiber, a record low LOD of 1 fM
and high sensitivity are achieved [52]. The experimental re-
sult is shown in Fig. 1(f ) right panel. It illustrates the LMR
wavelength with respect to different antigen concentrations
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Fig. 1. Plasmon resonance-based fiber sensors. (a) Left: schematic of the fiber biosensor based on SPR with cladding partially polished for mode overlap
with the metal layer. Right: normalized transmission spectra of the SPR-based sensor under different concentrations of glucose solution. (Adapted with
permission from [32]. Copyright Optical Society of America.) (b) Fluorescence emission spectrum of Rh B under different concentrations in side-polished
microstructured fiber with gold coating. Inset: cross section of D-shaped microstructured fiber with gold coated on top surface. (Adapted with permission
from [34]. Copyright 2011 Elsevier.) (c) Microstructured fiber with Au coated on the inner wall of the air hole filled with analyte solution. (Adapted with
permission from [40]. Copyright IOP Publishing.) (d) Left: schematic of fiber biosensor based on LSPR with Au nanorods coated on the fiber core. Right:
normalized excitation spectrum showing LSPR redshift as OTA concentration increases. (Adapted with permission from [44]. Copyright 2018 Elsevier.)
(e) Left: LSPR with Au NPs coated on tapered fiber, demonstrating an ultralow LOD of 5 aM. Right: sensing result showing the variation of transmission
spectrum as the cholesterol concentration increases. (Reprinted with permission from [50]. Copyright 2019 Elsevier.) (f) Left: LMR with either SnO2 or
indium tin oxide (ITO) coated on D-shaped single-mode fiber (SMF) or unclad multimode fiber (MMF). Right: LMR shift with respect to antigen
concentration for three kinds of LMR sensors. (Adapted with permission from [52]. Copyright 2018 American Chemical Society.)
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for three kinds of sensors: indium tin oxide (ITO)- and SnO2-
coated unclad multimode fiber (MMF) biosensors, and SnO2-
coated D-shaped single-mode fiber (SMF) biosensors. The
LOD of 1 fM is obtained using the D-shaped SMF biosensor
with repeatability and reproducibility. The record low LOD
and high sensitivity are contributed by the enhanced light–mat-
ter interaction within the fiber sensor structure. The selected
recent works within the past 5 years on plasmon resonance-
based fiber sensors, including SPR, LSPR, and LMR, are sum-
marized in Table 1.

2. Surface-Enhanced Raman-Scattering-Based Fiber
Biosensor
Raman spectroscopy has been widely applied in the detection of
bioanalyte since it can identify the spectral characteristics or
fingerprint of the biomolecules, while the detection is limited
by the intrinsic low efficiency of the Raman effect. To enhance
the Raman signal, the surface-enhanced Raman scattering
(SERS) technique is commonly used [55–64]. The additional
coating on the surface increases the roughness and enhances the
optical mode through the localization of the signal generated
from the Raman scattering. For most of the SERS-based fiber
sensors, the backscattered signal, which is the combination of
Raman gain and the metallic loss, is collected from the same
side of the launching probe signal [65–72], as shown in
Figs. 2(a) and 2(b); while a few are based on the detected signal
from the forward propagating direction [73,74]. Both back-
ward and forward signal detection approaches have been in-
cluded in Table 2, which presents the selected recent works
on SERS-based fiber sensors within the past 5 years.

There are two common methodologies to implement SERS
functionality on optical fiber [21]: (1) to coat the metallic
nanoparticle or nanowire directly on the inner wall of the pho-
tonic crystal fiber (PCF) [63,75–79], with a typical schematic
shown in Fig. 2(a) left panel; (2) to mix the metallic nanopar-
ticle with bioanalyte in a liquid solution for PCF interaction
[65–67,80], with a typical schematic shown in Fig. 2(b).
The measurement results are shown in the right panel of
Figs. 2(a) and 2(b), respectively. The SERS spectra of the
R6G molecules with a concentration of 10−6 M using a
liquid-core PCF (LCPCF) with sealed and unsealed ends are

illustrated in Fig. 2(a) right panel. They are in comparison with
the direct sampling, whose enlarged SERS spectrum is included
in the inset of the plot. The SERS signal from the sealed fiber
structure is around 100 times stronger than that from the direct
sampling, which is contributed by the surface enhancement
from the silver NP and the LCPCF design. Figure 2(b) right
panel shows the SERS spectra of the protein cytochromec de-
tected by bulk solution and a tip-coated multimode fiber
(TCMMF) probe at a concentration of 0.2 μg/mL. It shows that
the TCMMF probe can achieve an LOD of 0.2 μg/mL, which is
an order of magnitude lower than that of bulk detection. This
is due to the enhanced electromagnetic field from the SERS
substrate on the TCMMF probe.

For both approaches mentioned above, the PCF air cavity
can either be in the core of the hollow-core fiber (HCF) or the
cladding of the solid-core fiber (SCF). The LOD of the SERS-
based fiber sensor is determined by the spatial overlap between
the optical mode and the analyte solution. Therefore, the LOD
is found to be generally lower for the case where the mixed
solution is confined within the HCF core [21] due to higher
spatial overlap with the optical mode (e.g., 10−10 M of LOD in
Ref. [80]), compared with the SCF case where the mixed sol-
ution interacts with the evanescent wave of the optical mode
within the cladding area of the fiber (e.g., 10−7 M of LOD in
Ref. [79]). The cross section of the above-mentioned HCF
achieving 10−10 M LOD is shown in the inset of Fig. 2(c).
The measurement result presented in Fig. 2(c) shows the
SERS spectrum from the detection of 10−10 M R6G using
liquid solution to fill the core of the HCF. The liquid solution
is a mixing of R6G and silver NPs. The spectrum peaks are
marked from (a) to (l) as shown in the figure. The peaks (a)
and (c) are contributed by the silver NPs, and the rest peaks
are R6G peaks. One more point worth mentioning is that
the LOD on the level of 50 fM is achieved by using the
side-channel PCF through the significant increase of the inter-
action area between liquid samples and the guided light wave
within the fiber core [68]. The SERS spectra of different R6G
concentration solutions are illustrated in Fig. 2(d). The fiber
cross section is shown in the inset of Fig. 2(d). The detection
limit of 50 fM R6G concentration solution can be confirmed by

Table 1. Summary of Recent Plasmon-Resonance-Based Optical Fiber Biosensors

Sensing Mechanism
Functional
Material Wavelength Analyte Sensitivity LODa Ref.

SPR (on D-shaped fiber) Au 750–1200 nm Glucose 0.46 nm/mM – [32] (2018)
SPR (on unclad fiber) Graphene oxide

and Ag
500–650 nm Immunoglobulin

G (IgG)
0.4985 nm/(μg/mL) 0.04 μg/mL [53] (2018)

LSPR (on tapered fiber) Au NPs 400–700 nm Cholesterol – 5 aM [50] (2019)
LSPR (on tapered fiber) Au NPs ∼607 nm Cholesterol 0.125%/mM (resonance

intensity change/
concentration change)

53.1 nM [49] (2019)

LSPR (on unclad fiber) Au nanorods ∼790 nm Ochratoxin A 601.05 nm/RIU 12 pM [44] (2018)
LMR (on unclad or
D-shaped fiber)

ITO or SnO2 ∼570 nm (ITO)
∼1460 nm (SnO2)

IgG – 23 pM (ITO
on MMF)

1 fM (SnO2 on
D-shaped SMF)

[52] (2018)

LMR (on D-shaped fiber) ITO 1380–1480 nm C-reactive protein 10–169 nm/(mg/L) 0.0625 mg/L [54] (2017)
aLimit of detection (LOD): the unit of molarity (M), concentration (mg/L or ppm) can be converted using the equation: molarity � concentration∕molar mass.
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Fig. 2. SERS-based fiber biosensors. (a) Left: schematic of the SERS-based fiber optic biosensor with metallic nanoparticle coated on the inner
wall of PCF. Right: SERS spectra of R6G molecules with concentration of 10−6 M, comparing the cases among the direct sampling and coated
LCPCFs. (Adapted from [75] with the permission of AIP Publishing.) (b) Left: schematic of the SERS-based fiber optic biosensor utilizing bio-
analyte and the metallic nanoparticle solution. Right: measured SERS spectra of 0.2 μg/mL cytochrome C solution by using bulk solution and
TCMMF. (Adapted with permission from [65]. Copyright 2011 American Chemical Society.) SNP is short for silver nanoparticles. CTAB is short
for cetyltrimethylammonium bromide. (c) SERS spectrum of 10−10 M R6G using liquid solution to fill the core of the HCF. Inset: cross section
of HCF, demonstrating LOD of 10−10 M. (Adapted with permission from [80]. Copyright Optical Society of America.) (d) SERS spectra under
R6G solution with different concentrations. Inset: cross section of channel PCF achieving LOD of 50 fM. (Adapted with permission from [68].
Copyright 2016 Elsevier.) (e) Simulation results investigating how fiber length affects the Raman intensity under different NP concentrations for
SERS-based fiber sensor. (Reprinted from [76] with the permission of AIP Publishing.)

Table 2. Summary of Recent SERS-Based Optical Fiber Biosensors

Sensing
Mechanism Functional Material Excitation Wavelength Analyte Detection Type LOD Ref.

SERS (fiber facet) Ag nanodendrites 532 nm Permethrin
pesticide

Backward scattering 0.0035 ppm [70] (2019)

SERS (hollow
fiber tip)

Au@Ag core-shell
nanorods and
Ag nanospheres

assembled layer-by-layer

632.8 nm Methylene blue;
cytochrome C;

melamine

Backward scattering 1 fM (methylene
blue); 1 μg/mL
(cytochrome C);

100 nM (melamine)

[72] (2019)

SERS (soft
polymer optical
fiber)

Ag NPs 785 nm R6G and
4-mercaptopyridine

Forward scattering 10−7 M (R6G) and
10−8 M

(4-mercaptopyridine)

[73] (2018)

SERS (two fibers) Au NPs 785 nm Rh B Forward scattering
(one fiber for Raman
excitation, the other
fiber for collection)

<10 ppm [74] (2018)

SERS (tapered fiber
tip)

Ag NPs 785 nm 4-Aminothiophenol
(4-ATP)

Backward scattering 10−9 M [71] (2017)

SERS (on
side-channel PCF)

Au NPs 632.8 nm Rhodamine 6G
(R6G)

Backward scattering 50 fM [68] (2016)
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the Raman spectrum with notable peaks at 1184 cm−1,
1310 cm−1, 1368 cm−1, and 1575 cm−1, which correspond
to the vibration modes of R6G molecules. Also, an even lower
LOD of 1 fM is recently reported by coating layer-by-layer
assembly of Ag nanospheres and nanorods on the tip of the
HCF [72].

In the SERS-based fiber sensor design, the optical mode
propagation length is an important parameter. To optimize
the Raman signal for sensing, the trade-off between the
Raman gain and metallic loss has been investigated [63,76].
It is found that for a metallic NP-based sensor, when the par-
ticle density is higher than a certain level, the scattering loss will
be dominating over the Raman gain. While for the case when
the particle density is lower than that level, the Raman signal
can build up along the propagation of the optical fiber. Such a
trade-off can be illustrated from the simulation result shown in
Fig. 2(e) [76]. In addition, different scattering enhancement
mechanisms, such as stimulated Raman scattering [81] and en-
hanced random scattering [82], can be explored on a fiber plat-
form to achieve better sensing performance in terms of higher
sensitivity and lower LOD.

B. Interference-Based Optical Fiber Sensors

1. Bragg Grating-Based Fiber Sensors
The Bragg grating-based fiber makes use of the periodic per-
turbation to create the phase matching either along the fiber
propagation direction or along the fiber radial direction. There-
fore, the currently demonstrated Bragg grating-based fiber bio-
sensors can be categorized into the following four types based
on grating structure: fiber Bragg gratings (FBGs), tilted fiber
Bragg gratings (TFBGs), long-period fiber gratings (LPFGs or
LPGs), and photonic bandgap fiber (PBGF). For the FBG type
sensor, the gratings create the coupling between the fundamen-
tal co-propagating mode and the counter-propagating mode
and act as a wavelength selective mirror, whose reflection wave-
length is determined by the Bragg condition [83]

λ � 2neffΛ, (1)

where λ is the reflection wavelength, neff is the effective refrac-
tive index of the core mode, and Λ is the grating period. This
grating period is typically less than 100 μm [22]. For the FBG,
the optical mode is not sensitive to the surrounding since it is
well confined within the fiber core with a typical diameter of
8 μm. The fiber cladding used to cover the core has a typical
diameter of 125 μm. To make the core mode interact with sur-
rounding, the cladding needs to be removed by polishing or
etching [84]. The reflected signal from the FBG will experience
wavelength shift contributed by the change of effective index
from the overlap between the evanescent field and the sensing
material outside the fiber core.

The second type of grating-based sensor is to create the cou-
pling between the core and the cladding mode by using the
TFBG. Since the cladding modes have lower effective index
compared with the core mode, the transmission spectrum of
the TFBG will have a few drops at the shorter wavelength com-
pared with the reflected wavelength within the core mode.
These shorter wavelengths can be determined by the following
modified Bragg condition:

λ � �ncoreeff � nclad−meff � Λ
cos θ

, (2)

where ncoreeff and nclad−meff are the effective index of the core and the
mth cladding mode, respectively. θ is the tilting angle of the
grating relative to the fiber central axis typically ranging from
4° to 10° [85].

The LPFG type fiber sensor also creates coupling between
the fundamental core mode and the cladding mode in the op-
tical fiber. In comparison with the FBG, the grating period
of the LPFG-based sensor typically has a range from 100 μm
to 700 μm [19,86–88]. The resonant wavelength can be
expressed in the following equation:

λ � �ncoreeff − nclad−meff �Λ: (3)

Since the resonance wavelength is dependent on the effective
refractive index of the m-order cladding mode, the evanescent
optical field is able to interact with the surrounding, in com-
parison with the case of the FBG. A recent review has done a
summary on the first three types of grating-based sensors [22].
In the following two paragraphs, the discussion will be focused
on the most recent work using graphene oxide (GO) coating on
the LPFG as well as the last PBGF type.

An ultrasensitive biosensor with a remarkably low LOD of
0.2 aM was demonstrated recently by an LPFG coated with
GO, which has high water dispersibility and high biomolecule
affinity [13]. The fiber sensor schematic is shown in Fig. 3(a)
top panel. The sensing result is included in Fig. 3(a) bottom
panel, showing the sensorgrams. The y axis of the sensorgram
represents the ratio between the wavelength shift [unit: nano-
meter (nm)] and the surrounding refractive index (SRI) sensi-
tivity (unit: nm/RIU), and the x axis represents the analyte
concentration. From the figure, it can be observed that when
the concentration of the biotinylated bovine serum albumin
(bBSA) analyte varies from 0.1 aM to 1 fM, the responses for
sensors LPG1 and LPG2 are very close. Both of them have the
streptavidin (SA) layer for binding purpose but have different
polycarbonate layer thickness. In comparison, the sensor LPG3

has low response to bBSA due to the absence of the SA layer.
The selective binding between the SA and biotin can be ob-
served through the response difference between LPG1 (or
LPG2) and LPG3.

The PBGF type of sensor achieves the mode confinement by
using either the periodic multilayer or photonic crystal struc-
ture along the radial direction of the fiber, which differentiates
themselves from the previous three types. A polystyrene (PS)/
poly-methacrylate (PMMA) multilayered hollow-core structure
can be used to form the photonic bandgap [89,90]. This kind
of fiber provides a good platform for biosensing contributed by
the fact that the biomolecules can be easily bonded to the
PMMA surface [10]. A typical fiber cross section is illustrated
in Fig. 3(b) top panel. A thin layer of polyvinyl butyral (PVB)
film with a thickness of 500 nm is coated on the inner surface of
the fiber core. The dissolution dynamics of PVB has been
monitored to demonstrate the surface sensing modality. The
result is shown in Fig. 3(b) bottom panel. At first, the reference
spectrum was taken at the beginning when 16 wt.% NaCl sol-
ution in water was used. The solution has the same refractive
index as ethyl alcohol and is chemically inert. Then the ethyl
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alcohol was introduced into the fiber, and the PVB analyte
layer was dissolved. The transmission spectra were taken every
minute and plotted in the figure. As the PVB layer was
dissolved, the transmission spectrum shifted to the shorter
wavelength. A surface sensitivity of 0.052 nm/nm can be ob-
tained from the wavelength shift with respect to the layer thick-
ness change. In addition, the surface sensitivity has been
increased to 0.07 nm/nm by squeezing a section of the fiber,
due to the increase of the overlap between the core-guided
modes and the analyte layer.

An alternative PBGF structure is using a photonic crystal
SCF. The sensing functionality can be realized by side polishing
to form the D-shaped cross section [91], with a schematic illus-
trated in Fig. 3(c) top panel. The sensing result is shown in
Fig. 3(c) bottom panel, illustrating the blueshift of the
PBGF wavelength with respect to refractive index change under
three different polishing depths (PDs). Both PD1 and PD2
demonstrate a sensing resolution of 10−5 RIU. By comparing
the gradient of the fitted curve for PD1, PD2, and PD3, we can
see that the PD3 (with high polishing depth) has the lowest
sensitivity. This might be contributed by the damage of the
fiber microstructure, which introduces higher fiber transmis-
sion losses and results in the reduced sensitivity to index
change. In addition, the selected recent works within the past
5 years on grating-based optical fiber biosensors, including
FBG, TFBG, LPFG, and PBGF, are summarized in Table 3.

2. Interferometry-Based Optical Fiber Sensors
An interferometer works based on the superposition of multiple
optical modes. Depending on the phase relation among multi-
ple signals from different optical paths, the transmission and

attenuation bands can be formed [22]. The fiber-based inter-
ferometer can be categorized into two types: transmissive and
reflective fiber interferometers.

The structure of the transmissive type can be formed by
splicing three fiber segments, including SMF, a fiber-based cav-
ity for optical interference (e.g., an MMF [92,93]), and then
SMF. A typical schematic is shown in Fig. 4(a), where MMF is
used as a cavity for optical interference. In the sensor, the op-
tical mode couples from SMF to MMF and then couples back
to SMF. To enhance the sensitivity of the sensor, etching, pol-
ishing, and thin film deposition can be applied to the middle
fiber segment [92–95]. The schematic in Fig. 4(b) left panel
illustrates the concept of etching the cladding of the MMF to
enhance the optical mode interaction with the analyte. The
measurement result of sensing anti-IgG analyte with different
concentrations is illustrated in Fig. 4(b) right panel. The inter-
ference wavelength shift can be observed when the concentra-
tion varies from 4 mg/L to 200 mg/L. The Hill equation fitting
of the wavelength shift data gives an LOD of 0.2 mg/L (or
200 ng/mL) [92].

Besides using MMF, other ways to create an interferometric
structure for mode beating include implementing the following
fiber segments between the two fiber pigtails: PCF [9], mis-
aligned fiber [96,97], tapered fiber [98,99], and noncore fiber
(NCF) [14]. The schematic of the misaligned fiber is shown in
Fig. 4(c) top panel. It is formed by a section of SMF fusion
spliced between two sections of SMF with a core offset of
62.5 μm. Its sensing measurement result is shown in Fig. 4(c)
bottom panel, with the inset illustrating the linear fitting curve
in a low analyte (human IgG) concentration range from
0.5 μg/mL to 5 μg/mL. Based on the measurement results, the

Fig. 3. Bragg grating-based fiber sensors. (a) Top: schematic of grating-based fiber sensors with LPBG using GO coating to achieve ultrasensitive
detection. Bottom: sensorgram showing wavelength shift normalized to SRI sensitivity under different analyte concentrations for three sensors.
(Adapted with permission from [13]. Copyright 2018 Elsevier.) (b) Top: cross section of PBGF with PS/PMMA multilayer structure.
Bottom: transmission spectra of PBGF during the PVB layer dissolution process. (Reprinted with permission from [89]. Copyright Optical
Society of America.) (c) Top: schematic of side-polished PBGF. Bottom: the PBGF wavelength shift with respect to refractive index change
for three different polishing depths (PDs). (Reprinted with permission from [91]. Copyright 2012 IEEE.)
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LOD of the sensor can be obtained as 47 ng/mL. Figure 4(d)
shows the schematic of the NCF-based sensor and the sensing
result. From the schematic, we can see that the nickel ions
on the surface of the NCF can bind the analyte for sensing

purpose. The sensing result illustrates the wavelength shifts
with respect to the analyte concentration variation. The exper-
imental data is fitted by using the Langmuir isotherm model,
from which the LOD can be obtained as 0.8368 ng/mL. It is

Table 3. Summary of Recent Grating-Based Optical Fiber Biosensors

Sensing
Mechanism Functional Material Wavelength Analyte Sensitivity LOD Ref.

FBG Graphene oxide – C-reactive protein 20.15 pm for 1 mg/L CRP 0.01 mg/L [84] (2015)
FBG Aldehyde group and antibody 1559 nm Escherichia coli bacteria 25 pm for 1:100 E. coli

bacteria diluted in DI water
– [100] (2017)

TFBG� SPR Au film ∼1545 nm Glycoprotein 2.867 dB/(mg/mL) 15.56 nM [101] (2017)
TFBG� SPR Au film ∼1543 nm Cytokeratin 17 1.5 dB amplitude shift at

10−10 g∕mL
10−12 g∕mL [102] (2017)

LPFG Polycarbonate-GO
multilayer

1300–1650 nm Biotinylated BSA
(bBSA)

2000 nm/RIU 0.2 aM [13] (2018)

LPFG Silica-titania film 1560–1570 nm Anti-IgG 7000 nm/RIU 0.025 mg/L [86] (2017)
PBGF PS/PMMA multilayer 550–750 nm Polyvinyl butyral

dissolution dynamic
in liquid

0.07 nm/nm (surface
spectral sensitivity)

– [89] (2016)

PBGF PS/PMMA multilayer 600–800 nm Liquid analyte solution 1850 nm/RIU – [90] (2019)

Fig. 4. Interferometer-based optical fiber sensors. (a) Schematic of fiber with SMF-MMF-SMF structure for the interferometry-based sensor.
(b) Left: schematic of interferometry-based fiber sensor with SMF-etched MMF-SMF. Right: sensing result of wavelength shift corresponding to
different concentrations of goat anti-IgG from 4 mg/L to 200 mg/L. (Adapted with permission from [92]. Copyright 2018 Elsevier.) (c) Top: schematic
of the fiber sensor with SMF-misaligned fiber-SMF. Bottom: sensing measurement data showing wavelength shift with respect to the analyte con-
centration. The measurement data is fitted by Langmuir isotherm curve. Inset: the linear fitting curve in a low analyte concentration range from 0.5 to
5 μg/mL. (Adapted with permission from [96]. Copyright 2018 Elsevier.) (d) Top: schematic of the fiber sensor SMF-NCF-SMF structure. Bottom:
sensing measurement result showing the absolute wavelength shift with respect to the analyte concentration. (Adapted with permission from [14].
Copyright 2018 Elsevier.) (e) Top: schematic of the interferometry-based sensor with the FP cavity external of the optical fiber. Bottom: measured
reflection spectra from the samples with different refractive indices. (Adapted with permission from [103]. Copyright Optical Society of America.)

1710 Vol. 8, No. 11 / November 2020 / Photonics Research Review



worth mentioning that a record low LOD of 125 pg/mL was
reported contributed by the modified fiber surface with a high
affinity toward a specific protein [9]. In addition, the length
of the middle segment can also be optimized to achieve high
sensitivity and low LOD [96].

Alternatively, the reflective interferometer can be formed by
a Fabry–Perot (FP) cavity through the backreflection from two
interfaces. These interfaces can either be internal [104,105] or
external [103] of the optical fiber. In Ref. [104], the internal FP
cavity is formed by the backreflections from different surfaces
of the microbubble created by the arc on the fiber splicing ma-
chine. In the meanwhile, the external FP cavity can be formed
by the backreflections from the surface of the fiber facet and the
sample with an air gap in between. The schematic is shown in
Fig. 4(e) top panel. The spectra of reflected signal from glass
samples with different refractive indices are shown in Fig. 4(e)
bottom panel. From the fringe contrasts, the refractive index of
the sample can be calculated. The FP-based fiber interferometer
has the advantage of low cost, compactness, and ease of imple-
menting analyte for biomedical applications [106,107]. FP
structure-based fiber sensors are used to detect BSA with the
LOD reported to be 0.48 ng [106], and measure liposome
with a concentration range from 2.5 mM to 10 mM [107].
Also, the selected recent works within the past 5 years on inter-
ferometer-based optical fiber biosensors covering all the struc-
tures mentioned above are summarized in Table 4.

3. FIBER PROBES FOR BIOIMAGING

In this section, various fiber-based technology development is
reviewed to improve the image quality and miniaturization for
in vivo applications. At the end of the section, future directions
are given based on new exciting emerging technologies that
have been demonstrated for other fields and have the potential
to be applied in the bioimaging field. Note that fiber-based im-
aging systems that did not demonstrate biomedical applications
are not included.

A. Optical Bioimaging
Many optical bioimaging techniques, especially endoscopes, are
based on fibers with their capabilities to transmit, reflect, and
scatter light. Imaging techniques based on the light at the far
field, such as optical coherence tomography (OCT), multipho-

ton microscopy, and nonlinear Raman scattering microscopy,
will be introduced with the focus on how the development of
optical fibers helps to improve the image resolution. However,
the light at the far field is being affected by diffraction, which is
a fundamental property of light. Hence, the resolution cannot
go beyond the diffraction limit. Near-field imaging techniques
capture the sample image at the near field by using the evan-
escent wave of the light before it propagates to the far field and
hence, the resolution is not affected by the diffraction.

Fiber-based imaging with a high spatial resolution is con-
trolled by the confinement of the light field in the fiber core,
which is closely related to the PCF design parameters, e.g., core
diameter, pitch size, and refractive index contrast between the
core and the cladding. It has been shown that the effective
mode area is

Aeff �
�R jE j2dA�2
R jE j4dA � �R IdA�2R

I 2dA
, (4)

where E is the electric field amplitude and I is the optical in-
tensity. The mode radius is w �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Aeff∕π

p
. It is sensitive to the

above-mentioned PCF parameters. In Ref. [108], the authors
plotted the effective radius of a PCF mode as a function of the
core diameter (d ) and the pitch size (Λ). A larger d∕Λ ratio
leads to a higher spatial resolution of a fiber probe. For example,
with a ratio of 0.9, the minimum core size can reach w � 0.2λ.
Hence, a detailed understanding of the physical parameters of
PCF designs can provide unique properties in imaging and
microscopy applications.

1. Optical Coherence Tomography (OCT)
OCT is a noninvasive imaging technique that was developed in
the early 1990s and was since successfully applied in biomedical
diagnosis. Because it can achieve micrometer resolution at
millimeter depth within a scattering medium, such as biological
tissue, it is widely used in ophthalmology and optometry to
obtain detailed images from the retina. It has also been used
in head and neck, cardiology, and dermatology clinical diagno-
sis. Specifically, the use of fiber optics enables the OCT imaging
of internal organs. OCT uses low-coherence light interferom-
etry configuration and detects the change in the refractive index
of the sample. The input light is divided into two arms, a sam-
ple arm (attached to a tissue sample) and a reference arm
(attached to a movable reference mirror). The reflected light

Table 4. Summary of Recent Interferometer-Based Optical Fiber Biosensors

Sensing
Mechanism Functional Material Wavelength Analyte Sensitivity LOD Ref.

SMF-etched
MMF-SMF

Eudragit L100 and IgG 1360–1380 nm Anti-IgG 280 nm/RIU 200 ng/mL [92] (2018)

SMF-PCF-SMF – (fiber surface modification
for immobilization)

1535–1550 nm Antigen bovine
serum albumin

722.3 nm/RIU 125 pg/mL [9] (2017)

SMF-tapered
SMF-SMF

Biomarker antibody 1510–1560 nm Breast cancer
biomarker (HER2)

2333 nm/RIU 2 ng/mL [98] (2017)

SMF-misaligned
SMF-SMF

Staphylococcal protein A,
goat anti-human IgG

1300–1700 nm Human-IgG 13936 nm/RIU 47 ng/mL [96] (2018)

SMF-NCF-SMF Chitosan (CS)-nickel
(Ni) film

1570–1610 nm Hexa-histidine
tagged microcin

0.0308 nm/(ng/mL) 0.8368 ng/mL [14] (2018)

MMF-FP – 1530–1570 nm Water-glycerin
mixture

5.49 nm/RIU – [104] (2018)
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from the two arms recombines and forms an interference signal
only when the optical path lengths of the two arms are matched
within the coherence length of the input light. Depth scanning
is achieved by moving the reference mirror.

It has been shown that the image resolution in the axial di-
rection is proportional to the wavelength of the input light (λ)
and inversely proportional to the bandwidth of the input light
(Δλ) [109]. Hence, a light source with a small λ and large Δλ is
desired to achieve a high image resolution, i.e., small Δx.
Optical fibers can help increase Δλ of light sources. In vivo
imaging of the cornea and anterior segment with a resolution
of 6.5 μm and a sensitivity of 119 dB was demonstrated. OCT
systems operating at a center wavelength of 1.7 μm were also
developed [109]. An all-fiber-based system was generated by a
normal-dispersion highly nonlinear fiber with a femtosecond
ultrashort pulsed Er-doped fiber laser as the seed source.
A large-mode-area PCF and a polarization-maintaining fiber
were also used for dispersion compensation. In vitro OCT im-
ages showed an ultrahigh resolution of 3.3 μm and a sensitivity
of 95 dB.

Another way to improve resolution is to focus the light com-
ing from the fiber by adding a focusing element directly on the
fiber facet or in the light pathway before reaching the sample
(e.g., tissues). Graded-index (GRIN) lenses and ball lenses are
widely used options as focusing elements. GRIN lenses have
been fused onto SMF and PCF [110] for in vivo microscopic
brain motion measurements and biological sample imaging
with a working distance of up to 1270 μm and resolution
of 14.2 μm, which are comparable to the values obtained by
using a conventional objective lens. Not only GRIN lenses, re-
searchers have also tried to attach a sapphire ball lens at an SMF
tip with an air gap [working distance �WD� � 415 μm,
resolution � 11 μm] or an ultraviolet epoxy spacer (WD �
1221 μm, resolution � 18 μm). Because of the high refractive
index of sapphire (n � 1.75), high focusing power and lateral
resolution were achieved even when the probe was submerged
in the vitreous gel. Ultrahigh sensitivity up to 88 dB OCT fiber
probe was applied for corneal and retinal imaging [111].

The latest trend is to adopt nanotechnology into the
development of nanoendoscopic OCT for better imaging

performance than GRIN lenses and ball lenses. A new type
of nano-optics endoscopic OCT probe was recently developed
based on metasurface which tackles the spherical aberration and
chromatic aberration [112]. The metasurface is an assembly of
nanostructures capable of manipulating light properties such as
amplitude, phase, and/or polarization at sub-wavelength preci-
sion. In particular, a metasurface lens (metalens) is a type of
metasurface that functions as a lens but is ultrathin and flat
[113]. A metalens was attached to a prism on an SMF facet
encased in an OCT catheter and achieved near-diffraction-
limited focusing resolution and high depth of focus.
Endoscopic OCT imaging in resected human lung specimens
and in sheep airways in vivo was demonstrated using the probe.

2. Nonlinear Optical Imaging
Multiphoton (or two-photon) excitation microscopy is a fluo-
rescence imaging technique that utilizes a nonlinear process
whereby a fluorophore is excited by two or multiple infrared
photons (typically 700–1000 nm) and emits a single photon
of higher photon energy in the visible spectrum (typically
400–500 nm). Because infrared light can penetrate deeper into
the tissue and cause less photodamage, it has advantages over
the confocal microscopy using single-photon excitation.
However, two or multiple photons need to be absorbed simul-
taneously. The probability of fluorescence emission increases
dramatically with the excitation intensity, so femtosecond lasers
are required which are much more expensive than the continu-
ous wave lasers used in confocal microscopy.

Three-dimensional two-photon excitation microscopy en-
doscopic imaging in vitro of a gastrointestinal tract tissue and
a human breast cancer tissue was demonstrated [114,115]. The
imaging system consists of a double-clad PCF (DCPCF), a
GRIN lens, and a two-axis microelectromechanical system mir-
ror. The DCPCF consists of a large core surrounded by two
cladding layers. The excitation light propagates in the core re-
gion and the collected fluorescence light propagates in the clad-
ding, which supports multimode [see Figs. 5(a)–5(c)]. In this
way, both the excitation and collection efficiencies are in-
creased. The penetration depth was approximately 100 μm
and the axial resolution was 10 μm. A similar and improved

Fig. 5. Nonlinear bioimaging techniques. (a) Schematic of a two-photon fluorescence endoscope. (b) Scanning electron microscopy (SEM) image
of a DCPCF overlaid with the light output patterns: single-mode propagation in the core at 800 nm and multimode propagation in the inner
cladding at 410 nm. (c) 3D visualization of the human breast cancer tissue imaged using system in (a). [(a)–(c) reprinted from [115] licensed under
CC BY 4.0.] (d) Schematic of a fiber-probe based CARS imaging system. Fiber 1 was used for delivery of the excitation pulses and fiber 2 was used
for detecting the CARS signal from the sample. (e) CARS image of small adipocytes of mouse ear skin. (f ) CARS image of adipocytes of the
subcutaneous layer of rabbit skin. Scale bar is 50 μm. [(d)–(f ) reprinted with permission from [116]. Copyright Optical Society of America.)
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configuration based on DCPCF was reported [117]. Besides
DCPCF, a hollow-core PCF was also used for two-photon fluo-
rescence imaging. A miniaturized two-photon fluorescence
endoscopy was demonstrated [118]. It was composed of a
PCF for light delivery, an MMF for light collection, a high-
numerical-aperture (NA) GRIN lens for focusing, and a
two-axis piezo scanner system for scanning. It achieved an axial
resolution of 5.8 μm with a field of view 420 μm × 420 μm for
imaging mitochondria. A major problem with the fiber-based
two-photon imaging technique is the small aperture of the fiber
probes limiting the collection efficiency of the fluorescent sig-
nal. To solve this problem, solutions based on DCPCFs have
been proposed. In Ref. [119], the short pulse excitation signal
passed through the inner single-mode core and the fluorescent
signal was collected through a high-NA multimode outer core
(NA > 0.65 at the fluorescent wavelength). In this way, both
the excitation and collection efficiencies were kept high. It was
shown that an order of magnitude improvement over the con-
ventional SMF or MMF can be achieved. A modified version of
this experiment was reported in Ref. [120] through a guided-
wave mechanism. Here, when the PCF probe was brought in
contact with the target molecules, a few nanoliters of two-pho-
ton excited molecules filled the air holes in the fiber cladding
and were interrogated with the evanescent field of the PCF
waveguide modes. The fluorescent signal detected in this
way showed a 2 order of magnitude improvement over that
in Ref. [119]. Experiments were done with an R6G dye and
the Alexa Fluor family of dyes, which are commonly used in
cell biology, fluorescent microscopy, and green fluorescent
protein.

Coherent anti-Stokes Raman scattering (CARS) is another
nonlinear optical modality that has a growing interest. Differ-
ent from multiphoton fluorescence imaging, which is induced
by a single laser pulse, CARS imaging requires two pulses with
different wavelengths. Because the CARS signal is coherent, it
is orders of magnitude stronger than the Raman signal, which is
spontaneous emission. There are three frequencies of interest:
a pump beam with frequency wp, a Stokes beam of frequency
ws, and a probe beam with frequency wpr. The output anti-
Stokes frequency will be wpr � wp − ws. This gives rise to
design challenges such as how to suppress the optical nonlinear-
ities in the delivery fiber and how to effectively collect the
backward-scattered signal in the detection fiber [116]. Three
types of fibers were investigated for light delivery, including
an SMF, a DCPCF, and a large-mode-area PCF. The large-
mode-area PCF was chosen for light delivery with minimal
spectral broadening effect and a large-mode-area MMF was
chosen for maximum signal collection. Examples of CARS im-
aging of the mouse ear skin, the rabbit skin tissues, and the
meibomian gland in mouse ex vivo are shown in Figs. 5(d)–
5(g). Another challenge is how to tailor the short-pulse laser
excitation source spectrally and temporally. PCFs were used
to address this problem [121,122]. For example, a PCF was
used to generate a frequency-tunable Stokes source through
a soliton self-frequency shift. By varying the power of laser
pulses launched into the PCF, the soliton output from the
PCF was tuned from 1.35 to 1.75 μm. The dispersion, non-
linearity, and length of the PCF were carefully designed to

match the input laser pulse parameters. The efficiency of energy
conversion of these PCFs was 15%. Experiments with mouse
brain were carried out and CARS spectra were taken [15].
By studying the peaks of the lipid symmetric C-H stretch vibra-
tional mode and the symmetric and asymmetric H2O stretch
vibrational modes, it was shown that the system was able to
distinguish two regions in the mouse brain with different
lipids and water contents and orientation. This will help dis-
tinguish the white matter from the gray matter in the mouse
brain tissues.

3. Near-Field Optical Microscopy
In scanning near-field optical microscopy (SNOM), the inci-
dent light is focused through an aperture, usually a fiber tip
with a diameter smaller than the wavelength generating evan-
escent waves that are nonpropagating and only exist in the close
distance to the aperture. The sample is placed in the near-field
regime of the light and imaged by a detector which is mounted
on a piezoelectric stage for raster scanning to form an image.
The spatial resolution of SNOM is not dependent on the in-
cident wavelength, but only on the length of the aperture or the
diameter of a microscopic probe tip, e.g., a tapered fiber tip.
Hence, the ability to fabricate a high-quality small-diameter
fiber tip is important. In the review [123], the authors summa-
rized several fabrication techniques including grinding and pol-
ishing, chemical etching, thermal pulling, focused ion beam
milling, femtosecond laser machining, electron-beam lithogra-
phy, nanoimprinting lithography, and photopolymerization
methods, etc.

A hybrid system combining an SNOM tip attached to a
conventional inverted optical microscope was built [124]. It
was used to image fibroblasts sub-surface cellular structures
at 250 nm resolution and 100 nm depth. It was also used
to image the fragile chromosomes at 100 nm resolution. In an-
other example, SNOM was combined with atomic force
microscopy (AFM) to provide nanoscale fluorescence imaging
of single amyloid fibrils [125]. The SNOM probe is a metal-
coated tapered fiber tip having an aperture of 100 nm. The
sample was imaged at the near field approximately 10 nm below
the fiber tip. Fluorescent signals generated from fibrils were col-
lected by a microscope objective and an avalanche photodiode
and used as the feedback signal for AFM topological structural
imaging. The study of amyloid fibril formation is helpful in a
variety of human diseases diagnoses.

Another arm of near-field imaging is using a microsphere as
a tool to transfer the near-field image to the far field and the
image was captured by a fiber or an objective. It is often called
a near-field nanoscope. A biomaterial-based near-field nano-
scope constructed by trapping a cell on a fiber tip was recently
developed [126]. Unlike nanoscopes that are made of inorganic
materials, nanoscopes that are made of biomaterials suffer
from intrinsic small refractive index contrast that limits their
performance as high-resolution imaging devices. The authors
overcome this by having a spherical-shaped cell (termed a “bio-
magnifier”) semi-immersed in a suspension and combining
with the interference effect from the reflection of a mirror sub-
strate. A sub-diffraction light spot and focusing were achieved.
Human epithelial cells were used as imaging samples. A reso-
lution of 100 nm (λ∕5.5) was achieved at a scanning rate of
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20 μm/s. Moreover, the focal length could be tuned from
0.7 μm to 5 μm by varying the shape of the biomagnifier.

B. Acoustic Bioimaging
Ultrasound imaging uses sound waves or acoustic waves to view
the internal organs, monitor heart rates, and examine baby
growth in expectant mothers and for other nonmedical appli-
cations. Compared with optical bioimaging, acoustic waves can
penetrate much deeper into the tissue, but the resolution is
poorer. Two important parameters of ultrasound transducers
are high sensitivity and large bandwidth. Unfortunately, most
commonly used piezoelectric transducers based on the piezo-
electric effect face this challenge of the inherent trade-off be-
tween sensitivity and bandwidth. Hence, researchers have
proposed to use optical methods to generate and receive ultra-

sound as an effective alternative to overcome this challenge.
In addition, optical methods based on optical fibers offer the
additional benefit of being a small footprint for minimally in-
vasive endoscopic ultrasound.

A comprehensive review paper was published to summarize
the technology development in the laser-generated ultrasound
(LGUS) as well as optical detection of ultrasound as an all-
optical ultrasound imaging platform [127]. For ultrasound
generation, it is mainly based on the photoacoustic effect
where materials absorb incident light and generate ultrasound
[see Fig. 6(a)]. Widely used light-absorbing materials are car-
bon nanotubes and gold nanoparticles attached at the fiber tip.
For ultrasound detection, it is mainly based on resonant cavities
such as FP cavities, Bragg gratings, and microring resonators.
The first two have been applied in the fiber context.

Fig. 6. Fiber probes for acoustic bioimaging. (a) SEM images of carbon nanotubes and gold nanoparticles as the light-absorbing materials attached
at the fiber tip for LGUS. (Adapted from [128] licensed under CC BY 4.0. Adapted with permission from [129]. Copyright 2014 AIP Publishing.)
(b) All-optical ultrasound imaging based on fibers encased in a needle for interventional imaging. (c) The needle tip was positioned at the right atrial
appendage wall with imaging depths extended more than 1 cm into the tissue. [(b) and (c) adapted from [130] licensed under CC BY 4.0.]
(d) Schematic of the all-optical endoscopic imaging system with a dual clad fiber. (e) Photo of the concave cavity FP sensor probe. [(d) and (e) adapted
with permission from [131]. Copyright 2011 SPIE.]
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The earlier development was based on FBG. Bragg gratings
are used to selectively reflect the light of a certain wavelength
(λB) with high sensitivity. Since λB is sensitive to perturbations
of the grating structures, FBG can be used for pressure
(e.g., caused by acoustic waves) and temperature sensing [132].
The change in λB due to the strain caused by ultrasound was
measured electrically by a radio frequency spectrum analyzer.
However, it was found that the grating was subject to a non-
uniform strain, i.e., a portion of the grating was modulated
while another portion was unmodulated, which made the sys-
tem response complex. To make it an effective ultrasound
probe, the authors concluded that the grating length should
be less than half of the acoustic wavelength in fused quartz,
which limits the acoustic frequency detection range. It was fur-
ther suggested that proper desensitization of the fiber is helpful.

Detecting ultrasound signals by using FP cavities has also
attracted attention recently. Acoustic waves incident on the
FP cavity will cause a change in the cavity characteristics which
can be detected by the reflectivity change of the interrogation
light beam. An all-optical ultrasound imaging probe based on
optical fibers was developed and used for interventional imag-
ing for the first time [130]. Two optical fibers separated by a
metal septum for acoustic isolation were encased in a cardiac
needle for in vivo imaging [see Figs. 6(b) and 6(c)]. The optical
transmitter is an MMF with one end coated with multiwalled
carbon nanotube-polydimethylsiloxane for ultrasound genera-
tion. The optical receiver is an SMF with an FP cavity attached
at one end. A preclinical swine study was conducted. The nee-
dle was able to image the dynamic movement of a beating heart
at a 50 Hz scan rate at a depth of 2.5 cm with an axial resolution
of 64 μm. An improved FP cavity design based on a planar–
concave optical microresonator was proposed to improve the
performance [133]. A tightly focused interrogation light beam
was incident on the planar side and diverged as it propagated
inside the cavity, but the divergence was perfectly matched with
the concave side which refocuses the beam and prevents the
beam from any lateral position shift. As a result, a high Q value
of greater than 105 was achieved corresponding to large band-
width and high sensitivity, i.e., low noise-equivalent pressure.
All-fiber-based 3D pulse-echo ultrasound imaging of ex vivo
porcine aorta was performed. The sensor bandwidth is 55 MHz
(tunable by the cavity thickness). The axial and lateral resolu-
tions are 94.2 μm and 65.9 μm, respectively. Other references
based on FP cavities are, for example, Refs. [134–136].

Photoacoustic imaging (PAI) is based on the photoacoustic
effect where pulsed light energy was absorbed by the sample
and converted to thermal energy causing the transient thermal
expansion motion and emission of ultrasound waves in the
megahertz range. The ultrasound signals are detected by ultra-
sound transducers and are proportional to the absorbed light
energy. Hence, by studying the emitted ultrasound signal
strength, one can obtain the optical contrast information of dif-
ferent samples. Photoacoustic imaging uses light as the excita-
tion and sound as the detection, so the imaging resolution and
depth are in between optical imaging and acoustic imaging
techniques. It has been used in medical applications including
functional brain imaging [137,138], breast cancer [139], tumor
margin detection [140], and skin diseases such as nonmela-

noma skin cancer detection [141] and psoriasis [142]. Optical
fibers can play a role in PAI in three areas: the light source, the
light delivery, and ultrasound detection. Similar to all-optical
ultrasound imaging, an all-optical-based photoacoustic imaging
probe was proposed [131]. The fiber was a dual-clad 1550 nm
SMF, where the core area was used for ultrasound detection
and the inner multimode cladding was used for excitation light
delivery [see Figs. 6(d) and 6(e)]. The ultrasound detection
principle was based on the FP cavity similar to the one
in Ref. [133]. A variety of phantom studies were conducted
to demonstrate the potential applications for endoscopic imag-
ing. This approach presents the minimum possible photoacous-
tic probe that can be achieved, i.e., the diameter of a single
fiber (∼200 μm).

4. FIBER PROBES FOR OPTICAL STIMULATION

In recent decades, there has been a lot of interest to explore the
potential capabilities to optically stimulate cells, control the
neurons activeness, and simultaneously monitor the neural
activity. Compared with the established electrical and mag-
netic stimulation, the optical approach can confine the light
in regions with micrometer scale and hence achieve better per-
formance in terms of higher spatial resolution, targeting preci-
sion, and biological specificity. However, implanting solid-state
light sources (light-emitting diodes or laser diodes) directly into
the region of interest would cause tissue damage after large-area
exposure or long-time illumination. Several prototypes have
been built as alternative approaches to deliver light to the
biological specimen through flexible optical fiber. The term
“optrode” was used in analogy to “electrode” to describe the
fiber probe for optical stimulation. This section specifically de-
scribes several configurations of fiber probes in such an appli-
cation scenario.

A. Flat Distal End Fiber Probe
The most common configuration is a flat distal end fiber probe
[143]. Once the fiber delivers the light (either coherent or non-
coherent) into the target tissues, electrodes in the proximity
location could conduct in vivo recordings of neuron activities
[144]. This can determine how optical stimulation affects the
local field potentials during the experiment. A benefit from the
development in microtechnology, integration of optical fibers
with microelectrode, could be realized as shown in Ref.
[144]. More sophisticated probe designs were realized to com-
bine three key functions for neuro-study, namely microchan-
nels for chemical delivery/injection, optical waveguides/fibers
for light stimulation, and electrode contacts for detection
[145,146].

Due to the implantation nature of the device, the heat per-
formance is always a concern for laser beam delivery. Through
Monte Carlo simulations, Shin et al. calculated the optimized
fiber-to-target distances by controlling the light intensity [147].
By considering the bioheat model, the analysis provided a guide-
line to design a fiber probe in an optogenetics experiment to
avoid over-/under-illumination of the light-sensitive proteins.

B. Angled Fiber Probe
Extending the design freedom of the fiber probe from a flat
distal end to structures varying in propagation direction is a

Review Vol. 8, No. 11 / November 2020 / Photonics Research 1715



trend. One of the typical cases is the angled fiber probe [148].
By side-firing, the polished or cleaved angle becomes another
parameter to control the illumination direction. Through
numerical simulation, the angle of side-firing can be optimized
[149]. The experimental results show that a 38° angle polished
fiber tip has the best radiant energy for the infrared wavelength.
As illustrated in the fluorescence detection, the single fiber ap-
proach offers compactness, compared with the configuration
of using separate fibers for light delivery and detection.

For some applications, it is required not only to deliver the
light to the side, but also to focus the beam onto the tissues.
Tan et al. designed a smart needle, as shown in Figs. 7(a) and
7(b) [150]. The ball-shape focusing lens was fabricated at the
end of the coreless fiber via a commercial fusion splicer. The focal
distance and the emission beam spot size at the focal plane were
mainly determined by the curvature of the ball lens. In the work,
the ball lens was designed to have a focal length of ∼400 μm to
ensure the positioning of the focal plane outside the catheter
sheath and in the surrounding tissue. The designed sagittal
and tangential radii of the ball lens were 75 μm and 100 μm,
respectively. After that, the ball lens was further polished at an
angle of 36°. The total internal reflection of the incident beam
enables the side-viewing catheter design as shown in Fig. 7(a).

Reflective coatings could be applied on the angle cleaved
fibers to steer the beam direction. Tamaki et al. designed a fiber
tip to be inserted in a tube-shaped probe for optical stimulation
of neurons and electrical signal recording at arbitrary depths
[151]. The silica-based MMF with a core diameter of 50 μm
was cleaved at an angle of 45° and a thin layer of Al/Cr film

was sputtered on the angle-cleaved surface to make sure the
optical stimulation was in the vertical direction, as shown in
Figs. 7(c)–7(e). The sideway illumination to the tissue material
was ensured by an in situ power measurement during the probe
assembly.

C. Tapered Fiber Probe
For a flat end-facet fiber even with side-firing, the light pen-
etration depth is around a few hundred micrometers. This is
mainly due to the strong absorption of the tissue. Increasing
the interaction volume with biomaterials at the targeted region
or illumination of spatially extended tissue regions is expected.
By tapering an MMF gradually shrinks the cladding diameter
from ∼200 μm down to 500 nm within a few millimeters of
length. The tapered fiber probe exposes a large area for
light emission through ray radiation into the surrounding
[152–154]. For use in optogenetic manipulation of small nuclei
where larger than 100 μm fiber tips can easily damage the bio-
organisms, the tapered fibers can be used to scan for multiple
layers to search for a strong behavioral effect when the tissues
are optogenetically activated. Some special materials such as
crystalline Al2O3 could be used to fabricate fiber probes. New
functions such as optically stimulated luminescence (OSL)
could be obtained. A green laser was fed into the optical fiber
and stimulated OSL from the dosimeter connected at the distal
end, as shown in Ref. [155].

D. Multi-emitting Fiber Probe
In recent years, there has been an effort to increase the stimu-
lating optrode from a single point to multiple points. With the

Fig. 7. Selected examples of angled and tapered fiber probes for in vivo applications. (a) Flexible transbronchial smart needle with angle fiber
probe for biopsy guidance. (b) Microscopic photograph of the polished ball-lens optical probe. (Reprinted with permission from [150]. Copyright
Optical Society of America.) (c) Schematics, (d) cross-sectional view, (e) integrated device of flexible tube-shaped neural probe for recording and
optical stimulation of neurons at arbitrary depths. (Adapted with permission from [151]. Copyright Optical Society of America.)
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increased density of stimulation and readout points, more in-
formation about the spatial distribution and even neuron cir-
cuitry connectivity could be obtained. The fabrication methods
of the probes with multiemission functions require precision
manufacturing down to the sub-micrometer level. The diam-
eter of a standard silica fiber was tapered down from 125 μm
to 200 nm at the tip by a “heating and pulling” method. Then
the tapered region was coated with 300 nm gold film as reflec-
tive material to prevent leakage of light in propagation. A few
local optical windows were created by removing the metallic
coating using a focused Ga� ion beam system. The window
dimensions (width and depth) were varying along the tapered
region, but with a fixed adjacent distance. Both simulation and
experimental results have demonstrated the capability of the
fiber probe to provide multiple emitting points along a single
fiber (up to seven in Ref. [156]). More interestingly, multiple
wavelengths of the light beam could be independently delivered
via a single fiber. This was realized by only changing the input
angle of the light source to fiber coupling. A red emission beam
and a green emission beam were output from two separate op-
tical windows.

However, the above probe only demonstrated multiple
emission in the vertical direction. In many other applications,
multiple emission along the transverse direction is in need as
well. Abaya et al. have fabricated a three-dimensional optrode
array for infrared neural stimulation [157]. The 10 × 10 array
of optrodes with rows of varying lengths from 500 μm to
1.5 mm on a 400 μm pitch was fabricated on an undoped
silicon substrate, as shown in Figs. 8(a)–8(c). An optical fiber
was used at the back of the tip for coupling in this case; these
tips also perform the function of miniaturized optical wave-
guides. More comprehensive designs and integrations with
commercial neural interfacing devices can be found in Ref.
[158]. It is worth mentioning here that the optical sources with
near-infrared wavelengths at 1.87 μm and 2.1 μm have been
identified as effective stimulation sources. They have been
found with practical potential since they not only provide min-
imal nerve damage, but also correspond to a tissue penetration
depth over 300 μm.

E. Other Fiber Probe Designs
New optical approaches have in turn inspired the development
of new technologies to optically interface with the central nerve
systems. New classes of implantable nanophotonic and micro-
photonic devices have emerged for investigating causal connec-

tions in brain microcircuits, employing a combination of
multipoint optical control and readout of brain activities
[159–161]. One example of the special probe design was shown
in Fig. 9. A chain design by three or five high-index spheres was
proposed on the fiber probe [162]. Numerical simulation
shows a twofold improvement in spatial resolution over a single
sphere design could be achieved with 20%–40% optical loss.
Sophisticated probe designs such as using a microlens or axicon
on fiber tip [163] could potentially achieve high precision in
beam delivery, but the complexity in fabrication control may
remain as a challenge.

Beam engineering is a research direction that has drawn a lot
of interest. Laser beam shaping is a potential technique to op-
timize light–biomaterial interactions, especially in improving
the uniformity of the energy distribution. Through wet chemi-
cal etching of the distal fiber tip, a concave shape was produced
to help transform the Gaussian spatial beam to a top-hat beam
profile, as described in Ref. [164]. The redistribution of laser
energy improves the beam utilization efficiency, minimizes the
local hot spot, and hence avoids tissue damage. Moreover, the
flat-top beam profile provides more uniform nerve irradiation
and simplifies the alignment of the laser beam.

Nonlinear effects such as two-photon fluorescence could be
excited by delivery of an ultrafast femtosecond laser [165].
However, compared with setups using microscope objectives
and complex scanning beam geometries, the fiber tip provides
cellular circuitry probing with more precise spatial modulation.
Combining microendoscopy with laser stimulation is a collabo-
rative effort between nonlinear optical imaging and optoge-
netics, which is another trend for deep brain research [166].
Although most literature presented fiber probes application
in brain-related optical stimulation, it can be extended to other
organs as well, such as the heart [167]. Klimas et al. summa-
rized a group of genetically encoded optical indicators and ac-
tuators. Light from the fiber is focused onto the sample using
an endoscopic probe. The fluorescence signal is then coupled
back into the fiber using the same probe and sent to the de-
tector using a dichroic mirror. A fiber bundle-based integrated
platform for wide-field bioimaging and structured/modulated
optical stimulation in the deep brain is another trend for pre-
cision targeting.

After or during optical stimulation, the electrical signal
was mainly collected as an observing parameter for biomedical
analysis. However, the optical fiber itself can be designed
based on the optical coupler/splitter concept, in order to re-
trieve the reflection signal. In this case, a photometry device

Fig. 8. Three-dimensional optrode array for infrared neural stimu-
lation. (a) SEM micrograph of the 3D optrodes array with different
lengths, (b) tapered profile of the 3D optrode tip, and (c) a detailed
description of the structure. (Reprinted with permission from [157].
Copyright Optical Society of America.)

Fig. 9. Ray tracing simulation of a contact focusing three-sphere
microprobe. (Reprinted with permission from [162]. Copyright
Optical Society of America.)
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can be integrated with fiber stimulation [168] for an all-optical
approach.

5. DISCUSSION AND CONCLUSION

In this paper, first, the resonance-based and interference-based
optical fiber sensors demonstrated within the recent 5 years
have been reviewed. The sensors are categorized based on dif-
ferent sensing principles. For each sensor type, fiber sensor
probe design and measurement results have been illustrated
in the figures. Also, the sensing mechanism, functional
material, working wavelength, analyte type, sensitivity, and
LOD have been summarized in the corresponding tables.
Various functional materials including metal-organic frame-
work and covalent organic framework have been applied to en-
hance the sensor performance [169–175]. It is worth noting
that these materials have drawn a lot of interest in biosensing
contributed by their biocompatibility [176–178]. Hence, one
of the focuses for future work could be the exploration of novel
functional materials for various bioanalyte samples to demon-
strate the lab-on-fiber sensor devices [21,179] with high sensi-
tivity, selectivity, and low LOD.

Regarding imaging probes, we have systematically reviewed
the roles of optical fibers including as the excitation source, as
the light delivering medium, and as the signal collection chan-
nel in various bioimaging applications. Fibers are flexible and
excellent waveguides for endoscopy and remote imaging appli-
cations. However, the effect of bending, twist angles, and linear
motion of the fiber probe on the imaging quality has to be care-
fully examined, which may be complex compared to conven-
tional plane waveguides. In the future, one of the exciting areas
to explore is the rapid advancement of fiber fabrication tech-
nologies and nanotechnologies; optical fibers with patterned
nanostructures will be empowered with added functionalities
such as beam steering [180], beam focusing [181], and
Bessel beam generation [182], which can be readily applied
in the biomedical imaging field. Another area of exploration
is on the quantitative phase and polarization-sensitive imaging.
Biological objects, such as amino acids, enzymes, glucose, and
collagen, possess intrinsic polarization (or chirality or handed-
ness). Polarization is also an indication of the health of certain
tissues and cells. Hence, polarization-sensitive imaging is an
important research topic in the biology community. Conven-
tionally, it is relying on cascading of multiple optical compo-
nents in a sophisticated setup that is bulky. Lin et al. developed
an all optical fiber-based polarization-sensitive OCT imaging
system where bulk quarter-wave plates were replaced by fiber
optics polarization controllers. The system was demonstrated
with in vivo imaging of human fingertip and nail [183].
Similarly, Fu et al. developed a fiber-optic catheter-based polari-
zation-sensitive OCT imaging system. Experiments were con-
ducted on biological samples such as human finger skin in vivo,
and untreated and thermally ablated porcine myocardium
ex vivo. The obtained phase retardation images based on the
tissue birefringence and the scattered intensity information pro-
vide more accurate and robust results than conventional OCT
alone [184]. Gordon et al. used a fiber bundle for the quanti-
tative phase and polarization-sensitive imaging, which can be
easily applied on biosamples [185]. One of the applications

of PCFs is the polarization-maintaining fibers. Future work
in this area can be the design of PCFs for a shorter beat length
that reduces the bend-induced coupling between polarization
states and thus a high polarization extinction ratio, as well
as much reduced thermal sensitivity of birefringence.

The challenges for next-generation fiber-based stimulation
probes as a multifunctional device will be their compatibility
with existing high-resolution or whole-brain imaging and
stimulation techniques. Multimodality and integration with
existing systems, for example, with magnetic resonance imag-
ing, are shown in Refs. [159,186,187]. To link brain function
to behavior, optical approaches should also be compatible with
untethered and free-moving animal models. This will require
the integrated remote/wireless systems to have control of multi-
ple optical stimulations and drug delivery. Experiments in freely
moving animals would also be facilitated by the development
of wireless powering systems, to mitigate the weight and un-
dependability of on-board batteries. Various components of
optogenetic neural interfaces, expected multipoint optical
modulation and control of neural activity, as well as in situ drug
delivery and specific monitoring of neurotransmitter release,
could be demonstrated for in vivo prototypes.

In summary, optical fibers could be considered as a class of
flexible optical platform. They offer remote-access capabilities
that could not be easily realized in free-space optical compo-
nents. The microfabrication and nanofabrication technologies
on the fiber and in the fiber make the diversity of new func-
tionalities integrated in the updated generation of devices, in-
cluding sensors, imaging, and stimulation probes. Looking
forward, to achieve compactness enabled by microintegration
technologies, light-weight as well as biocompatible materials
could be the technical challenges with future potentials.
From the optical engineering perspective, spatiotemporal beam
shaping, ultrafast laser for nonlinear optics, and compatibility
with existing biomedical approaches to realize multimodalities
are the trends in fiber probes technology.

List of abbreviations
AFM atomic force microscopy
ATP aminothiophenol
bBSA biotinylated bovine serum albumin
CARS coherent anti-Stokes Raman scattering
CRP C-reactive protein
CS chitosan

CTAB cetyltrimethylammonium bromide
DCPCF double-clad photonic crystal fiber

FBG fiber Bragg grating
FP Fabry-Perot
GO graphene oxide

GRIN graded-index
HCF hollow-core fiber
IgG immunoglobulin G
ITO indium tin oxide

LCPCF liquid-core photonic crystal fiber
LGUS laser-generated ultrasound
LMR lossy mode resonance
LOD limit of detection

LPFG (or LPG) long-period fiber grating
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LSPR localized surface plasmon resonance
MMF multimode fiber
NA numerical aperture

NCF noncore fiber
Ni nickel

NIR near-infrared
NP nanoparticle

OCT optical coherence tomography
OSL optically stimulated luminescence
OTA ochratoxin A
PAI photoacoustic imaging

PBGF photonic bandgap fiber
PCF photonic crystal fiber
PD polishing depth

PMMA poly-methacrylate
PS polystyrene

PVB polyvinyl butyral
R6G rhodamine 6G
Rh rhodamine

RIU refractive index unit
SA streptavidin

SCF solid-core fiber
SEM scanning electron microscopy
SERS surface-enhanced Raman scattering
SMF single-mode fiber

SNOM scanning near-field optical microscopy
SNP silver nanoparticles
SPR surface plasmon resonance
SRI surrounding refractive index

TCMMF tip-coated multimode fiber
TFBG tilted fiber Bragg gratings
WD working distance
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