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Quantum stochastic phase estimation has many applications in the precise measurement of various physical
parameters. Similar to the estimation of a constant phase, there is a standard quantum limit for stochastic phase
estimation, which can be obtained with the Mach—Zehnder interferometer and coherent input state. Recently, it
has been shown that the stochastic standard quantum limit can be surpassed with nonclassical resources such as
squeezed light. However, practical methods to achieve quantum enhancement in the stochastic phase estimation
remain largely unexplored. Here we propose a method utilizing the SU(1,1) interferometer and coherent input
states to estimate a stochastic optical phase. As an example, we investigate the Ornstein—Uhlenback stochastic
phase. We analyze the performance of this method for three key estimation problems: prediction, tracking, and
smoothing. The results show significant reduction of the mean square error compared with the Mach-Zehnder
interferometer under the same photon number flux inside the interferometers. In particular, we show that the
method with the SU(1,1) interferometer can achieve fundamental quantum scaling, achieve stochastic Heisenberg

scaling, and surpass the precision of the canonical measurement.
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1. INTRODUCTION

Quantum optical phase estimation is a critical task in many
applications such as quantum imaging [1-3], quantum sensing
[4-7], and gravitational wave detection [8,9]. To date, most
works have focused on the estimation of a constant phase ¢,
in which a Mach—Zehnder interferometer (MZI) is the most
commonly used device [10,11]. The precision of estimation
is limited by the shot noise when the classic resources are used.
This limit is often called the standard quantum limit (SQL),
A@ x 1/+/N, where N is the average number of photons
in the probe state [12,13]. Many efforts have been taken to
improve the precision. Most of them focus on utilizing non-
classical states to reduce the quantum noise, such as the
squeezed states and entanglement states [14—16]. It has been
shown that the maximally entangled number state (NOON) is
the optimum probe state to reach the Heisenberg limit (HL)
Agp < 1/N [17,18]. Moreover, for the constant phase estima-
tion, the variance of estimation (1/+/2N or 1/./sN) will

decrease indefinitely as the number of measurement v increases.
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However, it is not enough to just estimate the constant
phase because many signals of interest in the real world are time
varying and stochastic [19-23]. Thus, how to estimate such a
time-varying phase with high precision is of practical impor-
tance. We assume that ¢(z) is the phase to be estimated. It
can be treated as a constant in #; < # < ¢; 4 dt if the d# is small
enough, i.e., ¢(#) = ¢;, so the phase can be discretized as
(o> P1s - os @iy ooy @,_1,@,). There is a set of observations
(70> 715 eees 7y eees 7y_1>7,) used to estimate the {¢;}, where 7;
is the observation at time 7. Compared to the estimation of con-
stant phase, ((¢; — @,+,)?) between the phases at two different
times (7, 7 & s5) increases as s increases. Therefore, the correlation
between 7;,, and ¢, decreases as s increases, and the number of
observations that can be used to improve precision is limited. So
there is a limited precision for the stochastic phase estimation,
even for infinite measurement time. The mean square error
(MSE) in the estimation of a stationary Gaussian stochastic phase
with a power-law spectrum x”~!'/(@” + A?) using coherent
states scales as (k/N)?~D/? which is called stochastic SQL.
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Here AV is the photon flux [24-26]. Similar to constant phase
estimation, there is a stochastic Heisenberg scaling for the
estimation of this stochastic phase, which scales as
(k/N)2e=D/+D [24-26]. Previous works show that the sto-
chastic SQL can be surpassed with nonclassical resources such as
the squeezed light with an adaptive quantum smoothing tech-
nique or canonical phase measurement [27-32]. However, prac-
tical methods to achieve quantum enhancement in the stochastic
phase estimation still remain largely unexplored.

In this paper, we propose a method to estimate the stochastic
phase using a new measurement device, the SU(1,1) interfer-
ometer. Such device, also known as the nonlinear interferom-
eter (NLI), was original proposed by Yurke and experimentally
demonstrated with a signal-to-noise ratio (SNR) surpassing that
of the MZI [33-43]. By combining the NLI with adaptive
feedback technique, we show that MSE of the estimation is
reduced over a range of parametric amplifier gain G' compared
to that of MZI. For a fixed photon flux, there is an optimal G
that minimizes the MSE and maximizes the precision. In par-
ticular, with the optimal G, the precision of our scheme sur-
passes the stochastic SQL and achieves stochastic Heisenberg
scaling asymptotically.

2. STOCHASTIC PHASE ESTIMATION SCHEME

The schematic diagram of the estimation of a stochastic phase
with NLI is shown in Fig. 1, in which the NLI contains two
parametric amplifiers (PAs). Two input modes of the first PA
are injected with a coherent state |a) and a vacuum state. The
phase @(#) to be estimated is imposed to one arm of the inter-
ferometer. One of the output modes is measured with the ho-
modyne measurement. The measured results after a displaced
operation yield photocurrent 7(z). The phase ®(z) in the other
arm and the phase 6(¢) of the local oscillator are adaptively
controlled based on ¢ /(#), which is estimated from 7(s) for
all the regions s < z. In the NLI, the first PA plays the role

of beam splitting. If we define &, d;, to be the annihilation

10) {a,
ey ——] PA |

Cin

Fig. 1. Schematic diagram of enhanced stochastic phase estimation
with an SU(1,1) interferometer. This interferometer consists of two
parametric amplifiers (PAs), and the input states are the coherent state
and the vacuum state. ¢(z) is the stochastic phase to be estimated, and
the phase ®(z) in the other arm is adaptively controlled. »(¢) is photo-
current, which is equal to the homodyne measurement results after an
added operation. The phase 6(#) of the local oscillator is adaptively
controlled simultaneously, and 4,, is the optimum linear processor
of phase tracking.
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operators of the two inputs and C, D to be the annihilation
operators of the outputs, the relation of the input/output of the
PA can be written as C = G2, —i—goAz’iTn, b = Gd, —I-gEiTn,
where the gain G of the PA can also be parametrized by hyper-
bolic functions [44,45] and G* — g* = 1 [36]. The second PA,
which has the same gain G, plays the role of recombination, so
the complete input/output relation of the NLI is

toue = G(Glyy + gd})e® D + g(gty, + Gdf)e ),
Ao = g(GE}, + gd)e ™D + G(gt}, + Gdy)e?®. (1)

When we perform a homodyne detection at the output
mode 4, and the homodyne detection result is added by
2Gglalgy(2), the photocurrent can be approximately repre-
sented as (Appendix A)

2Gglp|
Veeg™t

Here we have adaptively controlled the feedback phase and the
phase of the local oscillator to be @(¢) = —¢((2) — 7z, O(¢) =
@7(#) + x/2. This adjustment makes each measurement most
sensitive and maximizes the phase information obtained. 7(¢) is
the normalized Gaussian white noise from the homodyne mea-
surement, which satisfies (7(¢)n(s)) = 6(s — ). Moreover, the
photocurrent has Gaussian stationary statistics, and 6% =
([p(t) — @ f(t)]z) is stationary MSE. We have defined the
photon flux in the interferometer to be |B|> = (G* + ¢°)|al*.

According to the time span of the observations in the esti-
mation, the time-varying phase estimation can be divided into
three cases. Prediction: the future phase ¢, ,, is estimated with
observations (¢, 7y, ..., 7;). Tracking: the current and previous
observations (g, 71, ...,7;) are used to estimate the current
phase @;. Smoothing: the measurement results beyond the time
i are also used to estimate phase ¢;. To analyze these three es-
timation problems simultaneously, we introduce a general de-
sired signal 4(z) = @(r + €), which is estimated with
photocurrent 7(s < #). Here € can be any real number, and
the three kinds of phase estimation can be defined according
to the value of €. Based on the measurement photocurrent 7(z),
the desired signal can be estimated as

ds(e) = /_ " deh, (4, 7)7(2), @)

r(t) ~ 2G2g263p + 1n(z). (2)

where 4,(¢,7) is the impulse response function, which repre-
sents the output at time ¢ if the input at time 7 is an impulse,
and it can be marked as 4,,(#, 7), 4,,(¢,7), and 4,,(2, 7) for pre-
diction, tracking, and smoothing, respectively. The optimum

linear processor 4,(zr,7) for minimizing the MSE
E(r) = ([d(z) — df(t)]z) satisfies [46)]
Kat-n= [ ho-oK(e-nie, @

which is the Wiener—-Hopf equation and K, (¢t —7n) =
(d(®)r(n)), K,(e —n) = (r(e)r(n)). The correlation function
only depends on the time difference due to the fact that re-
ceived photocurrent and desired signal are jointly stationary
and time invariant. We can obtain the optimum linear impulse
response function 4, by solving the Wiener—Hopf equation,
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Fig. 2. Ratio of the two SNRs. The blue surface represents the ratio
of the two SNRs. The red surface represents the case in which the two
interferometers have equal SNR.

and the MSE of the phase estimation can be calculated at the
same time.

In the MZI case, the splitting and recombination of light are
accomplished by 50:50 beam splitters (BSs). The relation of the
input/output of the beam splitter is C=1/v20, + id,)
and D = 1/V2(it,, + ;iin). Similar to NLI, we set the two
feedback phases ®(z) = @/(z) and 0(¢) = ¢ /(1) + 7 for
the most sensitive estimation. The photocurrent can be calcu-
lated as 7(z) = |p|ep(z) + n(z) (Appendix A). Here we should
note that the two input modes of the first BS are injected with a
coherent state |#) and a vacuum state, which makes the photon

number flux inside both interferometers the same. From the

. . SNR
two photocurrents, we can derive the relation UL —

o SNRyz1
a Gz_lfgc(gci)l)g} i where SNRy;; and SNRy; are the
SNRs of these two interferometers, respectively. Figure 2 shows
the ratio of the two SNRs (blue surface). As G increases from 1,
the SNR of the NLI increases with G, which agrees with the
previous analysis of NLI [36]. Moreover, the two parameters
(G, g) in the relation of the input/output of the PA are asym-
metric. If the gain G is close to 1, for the fixed photon flux |5]?,
the part of signal of Eq. (2) is close to zero and the SNR of the
NLI is smaller than that of the MZI. When G exceeds a certain
threshold, the SNR of the NLI surpasses that of the MZI. For
finite 0}, the further increase of G will reduce the SNR. This

result can be understood from Eq. (2): when G is large, the
signal term increases linearly with G while the noise term in-
creases quadratically with G. Since the MSE in the estimation
of time-varying phase cannot be arbitrarily small, we expect
there is an optimal G for stochastic phase estimation,
which is different from the case of measuring a constant

phase.

3. ORNSTEIN-UHLENBACK STOCHASTIC
PHASE ESTIMATION

As an example, we consider the situation that the time-varying
phase ¢(z) to be estimated follows an Ornstein—Uhlenback
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stochastic process, which can be found in many practical physi-
cal processes and is defined by [31]

dp(t) _
L = —hoe) + VR ®)

Here 27! is the correlation time of ¢(%). dV(t) represents the
Wiener process, which satisfies (dV (£)dV (s)) = 6(s — £)dz.
k is the magnitude of the Wiener noise. The expectation value
of ¢(z) is 0 and its statistics are stationary, which means the
correlation between the phases at two different times only de-
pends on their time difference. Moreover, the spectral density
spectrum of ¢(z) is S, (@) = k/(w* 4+ 4%). In this situation,
Eq. (4) can be solved with the Wiener technique, and the
Fourier transform of the optimum linear response function

h, is (Appendix B)
Kﬁeiws

dV(t)

) NAOHVTER VT A i) >0, .
Ho(w) - kS Peive 1 ee(imfzw)u_’»iw) < 0 ( )
NP*(14+A)+0?] B TN, ESN) i|x sV,

where P =4G*¢*|al>, A =Pxk/NA*, and N =
2G2g2612[ + 1. Equation (6) shows that the optimum linear
processor is a low-pass filter with a cutoff frequency of
A1+ A in the case of € = 0. When this optimum linear
processor is used to estimate the phase, the minimum MSE
of the estimation is (Appendix C)

£ = ([d() — d; () = K4(0) - /O “KL@d (@)
where

\/ﬁl(‘ 1

—i(H—s)
K, (1) = «/—/11+\/T t+e20, 8)
z Px V1+A(T+ )
T ”—*1+ & g, 74e<0.

The stochastic phase is stationary and the optimum filter is
time invariant, so the minimum MSE is a constant. To calcu-
late the MSE analytically, we divide the discussion into three
cases according to the value of &: (i) € =0, (ii) € > 0, and
(iii) € <0. When € =0, d(z) = ¢(z). This is the phase-
tracking case, and ¢ = 0}. The integral result & of Eq. (7)
is still implicit because A is a function of 6%. After solving
the implicit result, the minimum MSE of tracking is

(Appendix C)

—~(- G+ ¢ (=G +4G2¢ (Hom+2)x

o= 4l
2.2
462 (1)

9)
Similarly, the MSEs of the other two cases can be calculated as
(Appendix C)

_ A —24

;7[1 e 8], £> 0,

S = (10)
e 1 + AV THAe e <0
20 [ VI+A T (1+/1+A)*VT+A] >

where € > 0 stands for the prediction of the future phase
with current measurement outcomes and & < 0 is the case
of smoothing. Before investigating the enhancement of
phase estimation with NLI, we set the precision of the
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Ornstein—Uhlenback stochastic phase estimation with a coher-
ent state and the MZI as the classical limit. To compare the
MSE:s of the two types of interferometers, we make the photon
number flux inside them equivalent, i.e., Nyz = Ny =
IA)?. In this case the MSE of phase estimation with the
MZI can be written as (Appendix C)

K Ay —2e
= _—— >
22 [1 (14 /1+4,)° ¢ }’ £>0,

K 1 + Aleﬂmf e<0 (11)
201 J1HA T (140 W 1HA | -

where A; = |B|?k/A*. To investigate the effect of the gain G
on the MSE 62, we consider the stochastic phase tracking
with a fixed photon number flux [B> =1.0x 107 571,
k = 1.0 x 10% rad/s, and 4 = 1.0 x 10° rad/s, and we vary
G? from 1.1 to 50. Figure 3 shows that the MSE off can
be reduced using the NLI compared to the classical limit with
MZI. There is an optimal G*> = 7.4 that gives the minimum
MSE. For the feasible gain (G? = 2.28) with current tech-
niques [47], we can already obtain 40.4% improvement in
the MSE of phase tracking. This is expected from the analysis
of the SNR. Here the optimal degree of gain depends on the
photon number flux |B|%, k, and .

Figure 4 shows the MSE ¢ as a function of A¢ according to
Egs. (9)—(11), where the horizontal axis is the ratio between ¢
and the correlation time of ¢(#). Here we have set the param-
eters k = 1.0 x 10% rad/s, A = 1.0 x 10° rad/s, G* = 7.4,
and |1 = 1.0 x 107 s7'. We can conclude three key impli-
cations from Fig. 4. First, the MSE becomes large with the in-
crease of &, and the smallest error is achieved with the
smoothing. When ¢ is close to the correlation time, the MSEs
tend to be the mean square variation of the stochastic
phase k/24, i.e., we cannot predict the phase away from coher-
ence time. Second, the MSE of phase estimation with tracking
is nearly two times of smoothing for both kinds of interferom-
eters. Third, the MSEs of all cases are reduced significantly

vz =

0.035 T T T T T T T T T
——MSEs with NLI
—MSEs with MZI|
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Fig. 3. MSE 0]2( of tracking as a function of G* for MZI (red line)
and NLI (blue line). Here we take x = 1.0 x 10% rad/s, 1=

1.0 X 10° rad/s, and |8]> = 1.0 x 107 s71.
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Fig. 4. MSE ¢ as a function of Ae for MZI (red line) and NLI (blue
line). The horizontal axis is the proportion between ¢ and the corre-
lation time of ¢(#). The proportion equal to 0 represents phase
tracking (black dotted line). 2¢ > 0 and e < 0 stand for prediction
and smoothing, respectively. Here we make x = 1.0 x 10* rad/s,
A=1.0x10% rad/s, G = 7.4, and |B|> = 1.0 x 107 57!,

below the classical limit (red line in Fig. 4) when we use
the NLIL

So far we have shown that the stochastic phase estimation
can be enhanced with NLI In the following, we will demon-
strate that the NLI achieves the Heisenberg scaling asymptoti-
cally. For a fixed photon flux ||?, the SNR of the measurement

4GB
[(2647G2)g}+1](26271)- There

photocurrent Eq. (2) is SNRy; =

is an optimal degree gain G, maximizing the SNR, and the
minimum MSE of phase tracking can be calculated as 6]2( ~

1/2G%. When G?> 1, %’i» A B2 >k, and Gl > ),

the optimal gain G, meets the relationship G2 =
(|8*k*)'/3/2*/’k and we can obtain the tracking MSE
(Appendix D)

2/3
0%~ 2113 (i> . (12)
! |BI?
Substituting this expression into Eq. (10) yields the MSE of
smoothing
 \2/3
e (55) (13)
21p?

which means the MSE of stochastic phase estimation with NLI
can achieve the stochastic HL scaling [24-26]. Figure 5 shows
the optimal smoothing MSE in the two kinds of interferom-
eters and canonical measurement for different mean photon
flux, which varies from |f|*> = 10° s™! w0 |f]? = 1010 s~
It can be seen that the phase estimation with NLI has an en-
hancement on scaling compared with the classical limit

End (ﬁ)l/ 2 using MZI, and the smoothing MSE can reach

the stochastic Heisenberg scaling O[(ﬁ)z/ 3] [25]. Moreover,

using the NLI we can surpass the minimum MSE of canonical
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Fig. 5. Optimal smoothing MSE ¢ as a function of photon number
flux |B|?> for MZI (red line), NLI (blue line), and canonical measure-
ment (black line). Here we take x = 1.0 x 10* rad/s and
A= 1.0 x 10 rad/s.

measurement, which is %(#)2/ 3 [24]. Tt is worth noting that

the MSE of tracking is nearly two times of smoothing for both
interferometers. Therefore, the phase tracking can also reach
the stochastic Heisenberg scaling. However, the MSE of sto-
chastic phase prediction increases with the increase of €, and
we cannot predict the phase away from coherence time. So
the prediction cannot reach the stochastic Heisenberg scaling
when € is relatively large.

4. CONCLUSION

In summary, we have proposed the stochastic optical phase es-
timation with an SU(1,1) interferometer. We find that a suitable
range of parametric amplification gain can enhance the estima-
tion, and there is an optimal gain minimizing the MSE, which is
different from the estimation of constant phase [34,36].
Moreover, compared with the classical limit with MZI, the
MSEs have significant reduction for prediction, tracking, and
smoothing simultaneously under the same photon number flux
inside the interferometers if we optimize the parametric amplifier
gain. At last, we can achieve the stochastic Heisenberg scaling
and surpass the minimum MSE by using the canonical measure-
ment. These results highlight the advantages of the SU(1,1)
interferometer in stochastic optical phase estimation and provide
a new avenue for practical quantum metrology.

APPENDIX A. THE CALCULATION OF
PHOTOCURRENT

When we perform homodyne detection at the output &, the
measurement operator can be described as

X toudl0()] = i) + d o0, (A1)

where 0(z) is the phase of the local oscillator. If two input
modes of the first PA are injected with a coherent state
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|@) and a vacuum state, the mean value of homodyne measure-
ment is

Kaoul00)]) =

= 4Gyg cos

(gzuteig(t) + 2l)l,lte_lp(t)>

@) + ¢(2)
2

X cos M + 0(z) | |a|

(1) —zqvf(t) al

~ 2Gglp(t) — @ (1)]lal, (A2)
and the variance is

AX 40, [0(0)] = (X30l0(D]) — (X goul0()])?
= 4G*g*{1 + cos[®(2) + p(1)]} + 1

@(t) —@r(2)
e fusser)

22672 p() — 9 (F + 1. (A3)

The photocurrent that we are interested in is
Xdout(t) = (Xdout[e(t)]) + A)?dout[g(t)]”(t)

~2Gglo(t) — @ (D]l + /2G*¢*07 + 1n(0),

(A4)

~ 4Gy sin

+1

where we have adaptively controlled the feedback phase in the
other arm as ®(#) = —@(#) — 7, and the phase of the local
oscillator was controlled as 6(z) = @ (¢) + x/2. n(z) is a
Gaussian white-noise term. Here the photocurrent has
Gaussian stationary statistic, and 62 = = {lp(1) — ;) is
stationary MSE. When the photocurrent is added by
2Ggpr(t)|al, the photocurrent can be approximately repre-
sented as

r(t) ~ 2Gglalp(t) + | /Zng%fp + 1n(2)
__26Gglpl e 41
== +g_2 o(t) + ng + 1n(z), (A5)

where we have defined that the photon flux inside the inter-
ferometer is |5]> = (G? + g%)|al*.

In the MZI case, the splitting and recombining of light are
accomplished by 50:50 beam splitters. The relation of the in-
put/output of the beam splitter is C=1/v2@, + zdm) and

= 1/2(it, + dm) The complete input/output relation
of the MZI is

out

b = [0 OO ) 4 P01
2 mn mjio

A

1 ) ) ) ) N
= U0 4 PO, [0 RO (AG)
Similar to the NLI, two input modes of the first BS are injected
with a coherent state |#) and a vacuum state, and the mean
value of homodyne measurement is
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(j\(dout[e(t)])

= (leutele(t) + goute_i(}(t))

_ D(r) — (1) D(2) + () m

= {2 cos 5 cos [ 5 —0(z) +§} }|ﬂ|
N @r(t) + (1) ™

~ 2|p| cos {2 —0(¢) + 2}

~ Bllp(r) — @ r(2)], (A7)

and the variance is
A X goul0()] = (X5, [00)]) -
The homodyne photocurrent is
Xgour(®) = (Xaoul0®]) + AX 4o [0()]n(2)
~ Bllp() — (O] + n(2). (A9)

Here the two feedback phases are ®(z) = @, (2);0(¢) =
@y (#) + n. When the photocurrent is added by [Ble/(2),

the photocurrent can be approximately represented as

r(2) ® |Plo(2) + n(2).

Kaoul0®))* ~ 1. (AB)

(A10)

APPENDIX B. SOLUTION OF THE WIENER-
HOPF EQUATION

When we set 7=1r—o0 and v = ¢ —¢, the Wiener—Hopf
equation

K (t—0) = / L h(t— oK, (c—o)de  (B1)
became

Ky(0) = A * h()K(x — )do. (B2)

Here we solve the equation with two steps. The first step of
solving this equation is that we suppose there is a whitening
filter impulse response (7, ), which can transfer 7(¢) to white
process z(7), and the filtering process can be described as

2() = 1 ® Dz — 1)de. (B3)

Taking the inverse Fourier transform on both sides, we can
obtain

|W(@)|*S, (@) = 1, (B4)

where W(w) is the transfer function of impulse response
w(t—1t) and S.(w) is the spectrum density of 7().
According to the Eq. (2) in the main text, we can calculate spec-
trum density as
4G22 al?
() = 0L

When we set HT(w) = \/N"”H‘/H_A, A= 1\];:1‘2, N =
2G2g20'§( +1, and P = 4G2g2|a|ﬁ, the spectrum density
can be decomposed as S,(w) = H" (w)H(w). In this step,
we can see that the transfer functlon that transfers 7(¢) to white
process z(7) is W(w) = H+(w)

In the second step, we suppose that f(z,7) is the impulse
response of the optimum linear filter for estimating 4(r) with
z(1), so the corresponding Wiener—Hopf equation is

+2G2%0% + 1. (B5)

K.(7) = A Y WK (c—vdo, >0, (B6)

K 4,(1), and

Because z(7) is a white process, therefore f,(7) =
it can be found as

<d(t) /jo w)r(t—7— v)dv>

— [T ot - (87)

Kdz(f)

If we take the inverse Fourier transform on both sides, we get

o _ Sdr ((U)
Sl = WV @Sl = |49 @)
where [S,.(0)]; = [§° K 4.(t)e7”"dr. Here we use the sub-
script [ ], which denotes that the integration time of the in-
verse transform from 0 to oo. In this step, we can see that the
transfer function of optimum linear filter for estimating 4(¢)
with z(7) is

_ Sﬂ'r (CU)
F(w) = {[H+ (w)]*} K (B9)

After the two steps, we can see that the complete optimum
linear processor in the frequency domain is

_ Flo) 1 Sur(@)
1) = i = o [ P
On the other hand, there is correlation K,.(7) =
(d()r(t = 1)) = VPK,(z + ) and Sy, (w) = 22 S

S, (w) K/ Pe'®® A —iw

kP 1

At iw VNQOVT+A = iw)

Peioe 1 1
T YN+ VIEA) </1+ o T IJTT A l'w>'
(B11)
To find [S,,(®)];, we take the inverse Fourier transform
K. (2) = FS s (@)]
_ Peive
B {f NA(1+ T+ A)

1
X (Hz-wUm_iwﬂ
_ Kﬁe—ﬁ(r+£)
T VN1 + VI A)
K\/_eﬂx/ﬁ_‘(ﬂrs)
\/_,1(1+«/1+A)

where u(7) is the Heaviside function. When & = 0,

u(t + ¢)

—e), (B12)

kN/Pe*
VN1 + VTFA)

fo@) =Ky (7) = u(r)  (B13)

and
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K\/ﬁ 1
Flw) =[S, (w)],. = —, (B14
so the complete optimum linear processor of phase tracking in
the frequency domain is

_ Flo)
Hot(a)) - H+ (CO)
_ kP 1 A+ iw
T VUNA1+ VIFA) A+ io /NG + A + iw)
= kVP (B15)
T NAQ 4+ VT F NGV F A+ iw)
When ¢ < 0,
_ _ K\/ﬁ olE
F)=Bau@l =75 {(/1 + i) (AT + A — iw)
NTEA
- : } (B16)
A1+ VT + AUV + A — iw)

So the complete optimum linear processor of smoothing in the
frequency domain is

Fw) &P e
HY(w) N [(z + i) (A1 + A — iw)
N ERN
SN TN TN l'w)}
y A+ iw
VNQOVTF A + iw)
K\/ﬁei”’g |:

H,(w) =

es(ﬂ\/l—-i—/\-—im)(l + za))
= 1-—
N[22+ A) + o?] ]

A1+ V1+A)
(B17)
When ¢ > 0,

Kﬁeiws 1

so the complete optimum linear processor of prediction in the
frequency domain is

F(w)
H* (w)
K/ Pei* 1 A+ iw

Hop(w) =

T YN+ VTR N A+ io JNOST A + io)
K Peiwe
CNA 4+ VTF AUV + A+ iw)

Similatly, for the MZI case, the complete optimum linear proc-
essor in the frequency domain is

(B19)

Klﬁ‘e‘""f

, > 0,
A+ THA) (A/14A, +im) ‘
H =
0(60) K‘ﬂ‘fiws B e /1+A1’i“’)(},+iw) <0
ZO+A) Fa? W+4/140) |7 -
(B20)

2
where we set A; = ‘[;‘ZK.

APPENDIX C. THE CALCULATION OF MINIMUM
MEAN SQUARE ERROR

In this paper, the phase to be estimated is stationary and the
optimum filter is time-invariant, so the MSE is time indepen-
dent and can be calculated as

£(r) = <{d(t) - /_ w r(f)/;,,(t—f)d1r>

= K, (0)— / " (e — DK (s — D)

(s8]

— K,0) - / " K 4y (r)dy
=K ,(0) — /0oo K 4o (1)dr

1 [ [, K 4.(2)é”"dr
jwt ©
x {271 [we do HY (w) - (©1)

In the third line we let # — 7 = y, and we substitute 4,(y) with
the inverse transform of H, (w) = H+(m) I K 4 (t)e 7™ dt in
the last line. Moreover, from Eq. (B8) we can sce
Ky (2) = 5= [, e‘f“”da)H+(w) [ K 4,(t)é”"dz. So the MSE
can be expressed as

E(1) = K 4(0) - A * K2, (0)dr, (c2)

where K ,4(0) = 55, and K, can be found from Eq. (B12).
When & = 0, there is filtering with zero delay, which is the
phase tracking case. The integral result is

, K o Prc? 1 Cdieg
0L =—— — e ————F—¢ T
F720 Jo N2+ J1+A)2
K A
- — 1_ 5 CS
2/1{ (1+«/1+A)2} (C3)

which is still implicit because A is a function of 6%. After solv-
ing the implicit result, the MSE of phase tracking is

—(A—G*g*) + \/(z— G2g%k)2 + 4G22 (G‘f—fng)K

462 (s +2)

2
Gf—

(C4)

When € > 0, there is filtering with prediction, and the MSE of
the prediction is

£ _r_ > P’ 1 2 +e) 4
720 Jo NZ2(1+J1+A)?
K A
= |l - ———5 | C5
2/1[ A+ JitA2" (c9)

When € < 0, it is the case of smoothing. The MSE of smooth-

ing is
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K PK‘2 fofe 62/1»,/1+A(1+e)d,[ + ffz 672i(r+6)d,[

S0 NE (1+J1+A)
K PK2 1 1— eZﬂ«/lJrAe 1
= + —
2 N22(1+«/1+A2<2/1«/1+A 2,1>

(C6)

K 1 A€2A~/1+Ae
22 [«/1 +A (14 JV/1+A)2V1 +A}

For the MZI case, we set Ht(w) = \/Niiw+iw+;+/\]’

A = %, =1, P = |B|?, and we use the same calculation
method as for the NLI. The MSE of phase estimation with

MZI can be written as

72].8:| , £ > 0,

£ {1 Y\ VIR
2 (44147,
x I 4 Aleuﬂ/u/\lu £ <0
214N A+ 1HA) 144, | -

Envizr =

(C7)

APPENDIX D. THE STOCHASTIC HEISENBERG
LIMIT WITH NLI

The signal-to-noise ratio of the photocurrent Eq. (2) in the
main text is

4G*g*|al? 4G2(G? = 1)|p)?
SNRxu = 555 5 = 4 2).2 2 :
2 +1 (267 - Yol + 11267 - 1)
(D1)
The optimal gain G, that minimizes the MSE of estimation is
equal to that maximizes the signal-to-noise ratio. Taking the
derivative of both sides of the equation with respect to G2,
and letting the derivative be 0, we can obtain
s 42GHGE—-1) + 1] %L,
/ [4G3(G—DF 26
The approximate equals sign is true in the case of G? > 1.

Then it is combined with Eq. (9) in the main text, and we
can obtain

1 1

(D2)

= —2[A—(G4—G?)«]
2G§ 2 { ? ?
8(Gi—G?) (—2};’%_1 —M)
18I
+4 | 44— (GE - GHKP+16(GE—G2) mﬂ K .

(D3)

2
When G2 > 1, % > A, |B|? > «,and G4k > 1, it can trans-
form to ’

1 —2[—(GHx] + VA (GHKF + 8G2| B«

— (D4)
2G4 4 (182
G, 86 (L)
After the calculation, the optimal gain G, is
2,21/3
(81 ©05)

22/3k

Substituting it into Eq. (D2), we can obtain the tracking MSE

‘ Research Article

2/3
2 o3[ K
0y~ 2 (|ﬁ|2> . (D6)
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