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All-inorganic cesium lead bromide (CsPbBr3) perovskite quantum dots (QDs) with excellent optical properties
have been regarded as good gain materials for amplified spontaneous emission (ASE). However, the poor stability
as the results of the high sensitivity to heat and moisture limits their further applications. Here, we report a facile
one-pot approach to synthesize CsPbBr3@SiO2 QDs at room temperature. Due to the effective defects passi-
vation using SiO2, as-prepared CsPbBr3@SiO2 QDs present an enhanced photoluminescence quantum yield
(PLQY) and chemical stability. The PLQY of CsPbBr3@SiO2 QDs reaches 71.6% which is higher than 46%
in pure CsPbBr3 QDs. The PL intensity of CsPbBr3@SiO2 QDs maintains 84% while remaining 24% in pure
CsPbBr3 after 80 min heating at 60°C. The ASE performance of the films is also studied under a two-photon-
pumped laser. Compared with the films using pure CsPbBr3 QDs, those with as-prepared CsPbBr3@SiO2 QDs
exhibit a reduced threshold of ASE. The work suggests that room-temperature-synthesized SiO2-coated perov-
skites QDs are promising candidates for laser devices. © 2020 Chinese Laser Press

https://doi.org/10.1364/PRJ.399845

1. INTRODUCTION

Owing to the outstanding optoelectronic properties, such as
high photoluminescence quantum yield (PLQY), flexible tun-
ability of emission wavelength, and narrow emission spectrum,
all-inorganic CsPbX3 (X � Cl, Br, I) quantum dots (QDs)
have received attentions as promising candidates for the next
generation optoelectronic devices [1–3]. The outstanding op-
tical properties make them potentially suitable for using in
light-emitting diodes (LEDs) [4–6], solar cells [7,8], photode-
tectors [9,10], and most importantly as optical gain materials
[11–14]. Lasers and amplified spontaneous emission (ASE)
from perovskite QDs have been reported recently [15–17].
Yakunin et al. first reported the ASE performance of CsPbBr3
QDs under a single-photon-pumped laser [18]. Pan et al.
showed the ASE threshold of CsPbBr3 QDs film to be
192 μJ∕cm2 and 12 mJ∕cm2 under single-photon and two-
photon pumped laser, respectively [19]. Most recently, Song
et al. embedded CsPbBr3 QDs into an Au@SiO2 core–shell
nanostructure and showed a reduced threshold of 5 mJ∕cm2

under one-photon exciton [20]. In addition, a number of stud-
ies were performed to reduce the threshold of ASE and laser
[21–24]. However, their practical applications are still limited
owing to the poor stability resulting from the high sensitivity to
moisture and heat [25–27].

Therefore, various strategies, including coating, doping/
alloying heteroatoms, and ligand modification have been stud-
ied to improve the stability of CsPbBr3 QDs [28–33]. Our
group reported a ligand modification method to synthesize
CsPbBr3 QDs by using 2-hexyldecanoic acid (DA), resulting
in an excellent stability [34]. Nag et al. reported a doping
method by using Mn and Yb with a reduced-defect density
and enhanced stability [35]. However, ligand modification
and elemental doping are not effectively protecting QDs from
humidity and heat. Among all these methods, coating is an ef-
fective and practical strategy to control the stability and sup-
press the nonradiative auger recombination [36–39]. Chen
et al. reported a two-photon-pumped ASE performance by em-
bedding the CsPbBr3 QDs with dual-mesoporous silica [40].
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Tang et al. showed that by capping CsPbBr3 QDs core with a
CdS shell, the chemical stability and two-photon-pumped ASE
performance could be improved [41]. Zhang et al. embedded
CsPbBr3 QDs into silica by tetraethyl orthosilicate (TEOS)
hydrolysis, which improved the moisture resistance and en-
hanced the stability [42]. However, such methods are generally
complicated because it requires the use of extra gases during the
synthesis and is not time efficient. The high processing temper-
ature and prolonged stirring might also impede further research
of stable and efficient gain materials. Therefore, it is quite ur-
gent to exploit a room-temperature synthesis technique, which
could synthesize CsPbBr3 QDs with high PLQY and high
stability for ASE.

In this work, we synthesized the CsPbBr3 QDs with a high
thermal stability by a facile one-step at room temperature
method. The QD films were coated with SiO2 by adding
3-aminopropyl-triethoxysilane (APTES). The PLQY of
CsPbBr3@SiO2 QDs reached 71.6%, while it was only 46%
in those with pure CsPbBr3 QDs. In addition, the
CsPbBr3@SiO2 QDs exhibited an excellent stability under
heat. An enhanced two-photon pumped ASE that operated
in an ambient air condition was also demonstrated. Compared
with those using CsPbBr3 QDs, the ASE threshold of
CsPbBr3@SiO2 QDs films was reduced by 70 μJ∕cm2 under
a two-photon pumped laser excitation. Such a simple and yet
effective method to coat shell onto CsPbBr3 QDs might have
potential applications in fields such as room-temperature-
operated frequency up-conversion lasers.

2. EXPERIMENT

Chemicals and reagents: PbBr2 (99.99%) and CsBr (99.9%)
were purchased from Xi’an Polymer Light Technology
Corp. DMF (99.9%, Sigma-Aldrich). OA (90%), OAm
(80%–90%), toluene (99.5%), and APTES (99.5%) were
obtained from Adamas. All these reagents were used without
further purification.

Synthesis of CsPbBr3 QDs: PbBr2 (0.4 mmol) and CsBr
(0.4 mmol) were first added in 10 mL of DMF and stirred
for 1 h to obtain a clear solution. Then OA (0.6 mL) and
OAm (0.2 mL) were added into the precursor solution followed
by a stirring for another 30 min. After that, 0.5 mL of the
precursor solution was quickly added in a beaker containing

10 mL of toluene under vigorous stirring at 1500 r/min
for 10 s.

Synthesis of CsPbBr3@SiO2 QDs: 0.5 mL precursor solu-
tion was quickly added into 10 mL toluene containing 0.69 μL
APTES under vigorous stirring at 1500 r/min for 10 s. All the
above experiments were carried out at room temperature.

Characterizations: The X-ray diffraction (XRD) characteri-
zation was performed using XRD-6100 (Shimadzu, Japan).
Fourier transform infrared (FTIR) spectra of the samples were
recorded with a Nicolet iS50 (Thermo Fisher Scientific,
Waltham, MA, USA). X-ray photoelectron spectroscopy
(XPS) profiles were measured on an ESCA Lab220I-XL.
The transmission electron microscopy (TEM) was performed
using an electron microscope (Libra 200 FE, Zeiss, Germany).
Absorption spectrum was enforced by a UV-2100 (Shimadzu,
Japan). The photoluminescence spectrum was obtained by
a fluorescence spectrophotometer (Agilent Cary Eclipse,
Australia) equipped with a Xe lamp. Time-resolved fluores-
cence spectra were recorded with a GL-3300 (Photon
Technology International Inc., USA). The PLQY was investi-
gated by an FLSP920 (Edinburgh Instruments Ltd., UK).
The ASE measurements were performed using a pumping
source of a Ti:sapphire amplifier system (wavelength: 800 nm,
repetition rate: 1 kHz, pulse-width: 50 fs, Solstice, Spectra-
Physics). The ASE was detected by a fiber spectrometer
(Ocean Optics) with a spectral resolution of 1 nm.

3. RESULTS AND DISCUSSION

CsPbBr3@SiO2 QDs were obtained through a modified super-
saturated recrystallization method at room temperature, and
the whole process only took 10 s. As shown in Fig. 1, first
CsBr, PbBr2, OA, and OAm (OA:OAm � 3:1, volume ratio)
were all mixed in N, N-dimethylformamide (DMF). Precursors
were then rapidly injected into the toluene solution, which con-
tained a certain amount of 3-aminopropyl-triethoxysilane
(APTES). Upon the injection into a poor solvent of toluene,
CsPbBr3 QDs were formed immediately. Meanwhile, APTES
gradually linked to the surface of QDs and then reacted with
the trace of water from open air to hydrolysis [42]. Finally, silica
(SiO2) was formed and coated onto the CsPbBr3 QDs.

The crystal structure of CsPbBr3 QDs was first studied us-
ing X-ray diffraction. As shown in Fig. 2(a), black and red lines

Fig. 1. Reaction process schematics of the formation of CsPbBr3@SiO2 QDs.
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correspond to CsPbBr3 and CsPbBr3@SiO2 QDs, respectively.
The CsPbBr3 QDs exhibit diffraction peaks at 15.66°, 21.96°,
31.01°, 34.87°, 38.15°, and 44.30°, which correspond to the
(100), (110), (200), (210), (211), and (202) planes of
CsPbBr3 QDs (JCPDS 18-0364), respectively. The XRD pat-
terns of CsPbBr3@SiO2 are in good agreement with those of
CsPbBr3 QDs, indicating that the in situ growth of the SiO2

does not affect the cubic crystal structure of CsPbBr3. Surface
functional groups were then determined using Fourier trans-
form infrared spectra of CsPbBr3 and CsPbBr3@SiO2 QDs
shown in Fig. 2(b). While the weak peaks located at 1113,
1013, and 751 cm−1 indicate the presence of Si–O–Si bonds,
the one located at 925 cm−1 corresponds to the existence of
Si–OH bonds, both suggesting the presence of SiO2 in
CsPbBr3@SiO2 QDs. To determine the chemical composition
of CsPbBr3@SiO2 QDs, X-ray photoelectron spectroscopy was
also carried out with Fig. 2(c) showing the full scan of
CsPbBr3@SiO2 QDs. While the peaks of Cs 3d [737.5 and
723.8 eV, Fig. 2(d)], Pb 4f [142.8 and 137.9 eV, Fig. 2(e)],
and Br 3d [68 eV, Fig. 2(f )] clearly demonstrate the formation
of CsPbBr3 [43,44], Si 2p peak [102.4 eV, Fig. 2(g)] and O 1s
peak [531.7 eV, Fig. 2(h)] suggest the formation of Si–O–Si
bonds [45] and are in agreement with the results obtained from
FTIR spectra.

Figures 3(a)–3(d) show the transmission electron microscopy
(TEM) and high resolution TEM (HRTEM) images of the

obtained CsPbBr3 QDs and CsPbBr3@SiO2 QDs, respectively.
It is found that the CsPbBr3@SiO2 QDs maintain an ortho-
rhombic morphology, a good dispersity, and the same lattice
plane distance of 0.58 nm as pure CsPbBr3 QDs, indicating
that the SiO2 coating has no effect on the crystal structure of
CsPbBr3. In addition, it was found that CsPbBr3 QDs were all
dispersed and embedded inside the SiO2. The average size of
CsPbBr3 QDs is 13.4 nm [inset of Fig. 3(a)], while a shrinking
and narrow size distribution with an average QD size of 12.3 nm
is observed in CsPbBr3@SiO2 QDs [inset of Fig. 3(c)]. This
phenomenon might be due to the hydrolysis of APTES, which
in turn leads to the presence of silica around the lead ions and
binds the growth of perovskite crystals [46]. Figure 3(e) shows
the energy-dispersive spectroscopy (EDS) mapping images of
CsPbBr3@SiO2 QDs, from which a uniform distribution of
the Cs, Pb, and Br components, and the presence of SiO2 were
observed in the films with CsPbBr3@SiO2.

As shown in Fig. 4(a), although both CsPbBr3 and
CsPbBr3@SiO2 QDs show green emission colors, the lumines-
cence of CsPbBr3@SiO2 QDs is greener. In Fig. 4(b), we show
the PL emission spectra of both CsPbBr3 QD films with the
same quantity, which were measured under the same condition.
The PL intensity of the films with CsPbBr3@SiO2 QDs is
almost doubled compared with those using CsPbBr3 QDs.
In particular, the PLQY of CsPbBr3@SiO2 QDs is as high
as 71.6%, while it is only 46% in the CsPbBr3 case. As shown

Fig. 2. (a) XRD patterns, (b) FTIR spectra, (c) XPS full scan of CsPbBr3@SiO2 QDs and the high-resolution XPS profiles of (d) Cs 3d, (e) Pb 4f,
(f ) Br 3d, (g) Si 2p, and (h) O 1s.
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in Fig. 4(c), the absorption and PL peaks of CsPbBr3 and
CsPbBr3@SiO2 QDs are located at 529/526 nm and 517/
508 nm, respectively. For CsPbBr3@SiO2 QDs films, a blue
shift is observed both in the absorption and PL results, which
might be due to the decreased QDs size [47]. To understand the
carrier dynamics, a PL lifetime measurement was carried out with
the results shown in Fig. 4(d). These PL decay curves are fitted
with a biexponential function consisting of a fast-decay compo-
nent (τ1) and a slow-decay component (τ2) [48]. The fast-decay
component (τ1) is speculated to be the trap-assisted nonradia-
tive recombination, while the slow-decay component (τ2) is

speculated to be the free-charge carrier radiative recombination
[49]. Clearly, the CsPbBr3@SiO2 QDs exhibit a longer decay
time [7.6 ns (τ1) and 36.6 ns (τ2)] than CsPbBr3 QDs
[4.9 ns (τ1) and 22.5 ns (τ2)] [in inset of Fig. 4(d)]. SiO2 might
reduce the surface defect/trap state density of the perovskite QDs,
resulting in a suppression of the defect-assisted nonradiative re-
combination [45]. Therefore, it is believed that such an enhanced
PLQY and elongated PL lifetime of CsPbBr3@SiO2 QDs are
mainly due to the passivation effects of SiO2, and the decrease
of the surface defects could contribute to the improvement of the
QDs luminescent performance.

Fig. 3. (a), (c) TEM images and (b), (d) HRTEM images of pure CsPbBr3 and CsPbBr3@SiO2 QDs. (e) Element distribution of CsPbBr3@SiO2

QDs.
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Subsequently, the thermal effects on the PL performance
of CsPbBr3 and CsPbBr3@SiO2 QDs films were tested, as
shown in Fig. 5. While the PL intensity of CsPbBr3 QDs
film decreases quickly under the heating at 60°C [Fig. 5(a)],
the CsPbBr3@SiO2 QDs film exhibits a slow decrease in PL
intensity [Fig. 5(b)]. Although both types of the films show
a decrease of PL intensity over time, the films with
CsPbBr3@SiO2 QDs maintain 84% of their initial PL inten-
sity, while only 24% remains in the case with pure CsPbBr3
after 80 min continuous heating, indicating that the
CsPbBr3@SiO2 QDs film is fairly resistant to heat and pos-
sesses a good chemical stability. This result confirms that coat-
ing the CsPbBr3 QDs film with SiO2 could significantly
enhance the thermal stability of perovskite, which is critical
for optoelectronics in future practical applications.

All-inorganic CsPbX3 perovskites were previously reported
to exhibit excellent potentials as candidates for lasers and

two-photon-excited up-conversion devices [50,51]. To fur-
ther study the potential of our materials, CsPbBr3 and
CsPbBr3@SiO2 QDs were deposited on glass to obtain ASE
performance under a two-photon (800 nm) excitation at room
temperature. At a relatively low pump excitation, a broad spon-
taneous emission (SE) with a peak centered at 529 nm and
an FWHM of 23 nm are found for CsPbBr3 QDs film, as
shown in Fig. 6(a). With the increase of pump density, a peak
located at 535 nm emerges and quickly becomes dominant.
Meanwhile, the FWHM of the emission spectra narrows
sharply to 4.9 nm [Fig. 6(b)], suggesting the transition from
SE to ASE regimes. As shown in Fig. 6(c), the emission
of CsPbBr3@SiO2 QDs films has similar features: initially a
broad SE shows at low pump and quickly transforms to an ob-
vious ASE phenomenon with the increase of pump output
power [Fig. 6(c)]. Also, the FWHM of the emission spectra
narrows sharply from 25 to 3 nm, as shown in Fig. 6(d).

Fig. 4. (a) Photographs of CsPbBr3 and CsPbBr3@SiO2 QDs solution with/without UV light and films with UV light. (b) PL intensity,
(c) Absorption and PL spectra, and (d) PL decay curves of CsPbBr3 and CsPbBr3@SiO2 QDs.

Fig. 5. PL spectra of (a) CsPbBr3 and (b) CsPbBr3@SiO2. (c) Normalized PL intensity of CsPbBr3 and CsPbBr3@SiO2 under continuous
heating at 60°C.
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The thresholds (Pth) of two-photon pumped ASE are found
to be about 6.9 and 6.2 mJ∕cm2 for CsPbBr3 QDs and
CsPbBr3@SiO2 QDs films, respectively, under excitation of
800 nm and 35 fs laser pulses. A clear decrease of ASE threshold
for 70 μJ∕cm2 is found here owing to the effective capping
with SiO2, suggesting such a method is promising for deposit-
ing laser devices.

4. CONCLUSION

CsPbBr3@SiO2 QDs were synthesized by a one-step in situ
method at room temperature in air. By coating with SiO2,
surface defects of CsPbBr3 QDs are passivated, which sup-
presses the defect-assisted nonradiative recombination. As a re-
sult, the PLQY ofCsPbBr3 QDs increases from 46% to 71.6%,
and the thermal stability significantly improves. In addition,
under the two-photon (800 nm) pump laser excitations, the
ASE threshold of CsPbBr3@SiO2 QDs film is 70 μJ∕cm2

lower than that of the CsPbBr3 QDs film owing to the effective
SiO2 passivation. The results demonstrate a simple synthesis
method to coat SiO2 with CsPbBr3 QDs at room temperature,
which also provides an industry-compatible deposition method
for lasers.
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