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Metasurfaces have been used to realize optical functions such as focusing and beam steering. They use subwave-
length nanostructures to control the local amplitude and phase of light. Here we show that such control could also
enable a new function of artificial neural inference.We demonstrate thatmetasurfaces can directly recognize objects
by focusing light from an object to different spatial locations that correspond to the class of the object. © 2019
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1. INTRODUCTION

Optical neuromorphic computing offers an alternative ap-
proach to realize artificial neural computing. It has several
potential advantages compared with digital neural computing
such as ultrafast speed and ultralow energy consumption.
Several architectures have been demonstrated based on inte-
grated silicon photonics [1], diffractive optics [2], and nano-
photonic random structure [3]. In this paper, we introduce
another platform to realize artificial neural computing based
on metasurfaces. Metasurfaces were developed to perform ar-
bitrary phase front engineering [4]. Their optical functions
are realized by the resonant scattering of arrays of nanoscale
scatterers fabricated on a flat surface. It is compatible with
today’s nanofabrication and can be mass-produced at low cost
[5]. Here, we use these nanoscale scatterers to perform neural
computing. It leverages the platform of flat optics to realize
high-density integration. We describe the design procedures
and demonstrate direct image recognition of handwritten
digits.

The concept is illustrated in Fig. 1. An object, such as a
handwritten digit, is illuminated by a plane wave. The scattered
light is then processed by a multilayer neuromorphic metasur-
face, which consists of arrays of nanoribbons. By changing the
size of the ribbons, we can control the amplitude and the phase
of scattered light as shown in Fig. 1, which leads to strong in-
terference of light waves passing through the metasurface. With
a few layers of metasurface, the output light becomes a focused
beam and is directed toward a spatial location corresponding to
the value of the handwritten digit. The widths of the nanorib-
bons are the trainable parameters, which are learned through a
training process similar to stochastic adjoint optimization [3].

This work is related to the diffractive neural network dem-
onstrated by Lin et al. in 2018 [2], where they use the thickness
of the material that light passes through to modulate the

phase. Changing the thicknesses is not easily compatible with
nanofabrication for large-scale integration. By using metasurfa-
ces, we can tune the phase delay using the lateral dimension so
that the device can be made easily with today’s lithography.
In order to account for the phase delay caused by lateral struc-
tures, full-wave electromagnetic modeling must be used. Such
full-wave modeling can be extremely expensive. Here we de-
scribe the approaches to reduce the computational load. Also
related to the work is Ref. [3], where continuous media are used
for neural computing. Here the metasurface can be fabricated
on flat surfaces, greatly simplifying the fabrication process.

2. STRUCTURE DESIGN

We use a specific example to illustrate how to design neuro-
morphic metasurfaces. The goal is to recognize handwritten
digits such as the one shown in Fig. 1. We use the database
MNIST [6], which contains 60,000 different handwritten dig-
its. We use 50,000 examples for training and 10,000 examples
for the test stage. The neuromorphic metasurface should cor-
rectly recognize the value of the digits despite their different
handwriting styles. We divide the dataset into two groups.
The first group, the training set, is used to train the metasur-
face. The second group, the test set, is used to test the utility of
metasurface. A plane wave illuminates the handwritten digits
and then passes through the metasurface, which scatters the
light in a way that is equivalent to artificial neural computing.
The output light will focus on one of 10 different spatial
locations that correspond to different digits. Below, we will
use two-dimensional (2D) metasurfaces to illustrate the design
process. The three-dimensional design follows the same pro-
cedure. The 2D design can be done on a personal desktop
in 13 h. The three-dimensional metasurface design is computa-
tionally feasible on a computer cluster. The computational re-
source required will be proportional to the area of metasurface.
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The metasurface consists of a large area of subwavelength
scattering elements. Full-wave simulation tools such as the
finite-difference time-domain method are too computationally
expensive for this type of multiscale problem. To obtain the
full-wave electromagnetic properties without losing speed, we
use locally periodic approximation [7–17]. It assumes the
metasurface is locally periodic: the transmitted field in any
small region is approximately the same as the transmission
from a periodic surface. The field amplitude and phase immedi-
ately after a scattering element are calculated by a full-wave
simulation assuming a periodic boundary condition, as shown
in Fig. 2.

By using a small full-wave simulation to obtain the local
field for each element, we can assemble the field along the plane
right after the metasurface. Then, we can use near-to-far-field
transformation to calculate far-field distribution. Compared to
the Rayleigh-Sommerfeld diffraction equation used in Ref. [2],
the local periodic approximation takes into account the wave
effect of structured scatterers. Compared to the finite-difference
full-wave method used in Ref. [3], this method is much faster.
The comparison of this method with full-wave simulation can
be found in Ref. [7]. Here we use TiO2 pillars on a SiO2

substrate to construct the metasurface [13]. As shown in
Fig. 2(a), the thickness of the substrate is 300 nm. The height
of the pillar is fixed to 600 nm, and the pitch is fixed to
235 nm. We vary the pillar’s width from 50 nm to 180 nm.
The phase ϕn�w� and amplitude An�w� of the transmitted light
are shown in Fig. 3, where w is the width of the pillar and the
learnable parameter, and the subscript n represents the normal
incident direction. The operating wavelength is 700 nm.

The input wavefront to neuromorphic metasurfaces is gener-
ally much more complex than plane waves. Since we have to use
a plane wave as the incident condition when applying the locally
periodic approximation, we first decompose the incoming wave-
front E�x� using Fourier basis Ek �

P
xE�x�eikx and then sim-

ulate the response of metasurface under each individual plane
wave Ek. Then, we sum all the contribution of plane waves to-
gether. We could also safely neglect plane waves with large wave
vector k because of the large distances between different meta-
surfaces and between the object and the metasurface.

The phase delay and amplitude modulation change for
plane waves incident from different angles. Figure 3 shows
the response of the pillars for different incident angles. When
we only consider small k components, which correspond

(a)

(b)

Fig. 1. (a) Schematic of the neuromorphic metasurface. The neuro-
morphic metasurface consists of multiple layers of nanostructures,
which are composed of an array of nanoribbons on top of a dielectric
substrate. A handwritten digit is illuminated by a plane wave, and the
scattered light then is processed by the neuromorphic metasurface.
By changing the sizes of ribbons, the phase and amplitude of the trans-
mitted light after each layer can be modified. After multiple layers, the
transmitted field can be focused on specific photodetectors, which are
labeled by the values of the handwritten digits, i.e., 0 to 9. (b) Intensity
distribution of the transmitted light after each layer in a three-layer
neuromorphic metasurface. Handwritten digits of 7 and 2 with differ-
ent writing styles are used as examples. Despite the different writing
styles, the transmitted light is always focused on the spot correspond-
ing to the value of the handwritten digit. Here, we normalize the
intensity of the transmitted light after each layer to its maximum
for clarity.

(a) (b)

Fig. 2. (a) Schematic of locally periodic approximation. The meta-
surface consists of an array of TiO2 pillars on top of a SiO2 substrate.
For plane wave incidence from the bottom side of the substrate, we set
up a periodic boundary condition around each pillar. The local field
of the transmitted light above each pillar then is approximated by that
of the corresponding periodic array. (b) The phase (blue) and ampli-
tude (red) of transmitted light as a function of the width of the pillar
under normal plane wave incidence. The results are obtained from
a full-wave simulation of a periodic array of pillars, which only takes
a few minutes.

(a) (b)

Fig. 3. (a) Amplitude and (b) phase of the transmitted field as a
function of the width of the pillar for the different incident angle α.
The incident wavelength is 700 nm. When the incident angle is small,
the phase response curve shifts horizontally as we increase the incident
angle, while the amplitude response does not vary significantly with
the incident angle. When the incident angle continues to increase,
some resonances appear. The inset shows the shift of the phase re-
sponse as a function of the incident angle. The shift increases nonli-
nearly with increasing incident angle.
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to small incident angles, the phase response curve shifts hori-
zontally but the amplitude does not vary significantly. This
observation allows us to further accelerate the computation
by approximating the angular response with Ec�x� �P

kEke−ikx�iθk . The phase compensation θk accounts for the
difference of phase delay compared to the normal incident wave
k � 0 [Fig. 3(b) inset]. Now we can calculate the scattering
field using transmission of normally incident plane wave with
the corrected wavefront compensated for the different inci-
dent angles. The transmitted wave is calculated by the convo-
lution Ec�x� � An�w�x��eiϕn �w�x��, where w�x� is pillar width at
position x.

We now discuss the training process. The output of the
neuromorphic metasurface is defined by the distribution of
electric field intensity on a plane behind the last layer of the
metasurface. In the 2D case, the output is y�x� � jEL

f j2.
Here we use subscript f to indicate the far-field distribution
of light after passing the Lth metasurface layer. The training
target for the output is

yt�x� � I 0 exp

�
−
�x − xt�2
2σ2

�
, (1)

where t is the value of the handwritten digits. xt is the location
where we would like output light to focus on. Locations for
different digit values are evenly distributed on the output plane.
One can also choose other training targets as long as it serves
the purpose of classification. In our 2D case, the peak positions
of the target intensity xt for different digits are equally spaced
by 9.4 μm, and the variance σ of the target intensity is 2.35 μm.

Training the metasurface is a gradient descent process that
minimizes a loss function J . Here we use the L2 distance
between the metasurface output and the target output
J �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�y�x� − yt�x��2

p
. Unlike typical optimization used in

nanophotonics and metasurfaces [7,17], the gradient descent
used here is stochastic, which comes from the input data.
Here, a stochastic optimization method Adam is used [18].

Next, we discuss how to compute J and its gradients. First,
we try to formulate the relation between the far-field outputs
of the l th layer and the �l − 1�th layer. This relation depends
on the width of pillars wl

i in the l th layer. The far-field output
is calculated from the near-field El

n�x� through a near-to-far-
field transformation [19],

El
f �x� � −

Z
surface

G�x, x 0�El
n�x 0�dx 0, (2)

where G is a Hankel function, G�x, x 0� � − ik
4 H

�1�
1 �kr�n̂ · rr.

Here k � 2π
λ , r � x − x 0, and r � jrj. The near-field is

obtained through local periodic approximation,

El
n�x� �

X
k

Eke−ikx�iθk � An�wl �x��eiϕn �wl �x��: (3)

Here Ek is the Fourier component of El−1
f , the far-field out-

put of the �l − 1�th layer. This series of calculation that
connects El

f �x� and El−1
f �x� can be represented as matrix op-

erations and implemented in TensorFlow. For example, the
integral is changed to summation and can be expressed as a
matrix multiplication, Ef � G · En, where Gij � G�xi, x 0j�,

En�j� � En�x 0j�, and Ef �i� � Ef �xi�. We neglect the reflec-
tion of the metasurfaces as the low-index substrate used here
results in weak reflection.

We now are ready to calculate the derivative of the loss func-
tion with respect to the pillar widths ∂J

∂w�x�. The calculation can

be divided into two steps because ∂J
∂w�x� � ∂J

∂El
n�x�

∂El
n�x�

∂wl �x�. The first
term is the derivative of the loss function with respect to each
layer’s near-field output, which is calculated by following the
chain rule of derivative ∂J

∂y
∂y
∂EL

n

∂EL
n

∂EL−1
n
… ∂El�1

n
∂El

n�x� in TensorFlow.
The second is the derivative of the output field with respect
to the pillar widths ∂El

n�x�
∂wl �x� �

∂El
n�x�

∂ϕ�x�
∂ϕ�x�
∂wl �x� �

∂El
n�x�

∂A�x�
∂A�x�
∂wl �x�. The

phase ϕ�wl �x�� and amplitude A�wl �x�� as a function of pillar
width are shown in Fig. 3, which allows us to easily calculate ∂ϕ

∂w
and ∂A

∂w. One difference from the conventional deep learning is
that the learnable parameters here are also constrained by the
physical limit of pillar sizes.

Generally, the input of neuromorphic metasurface is the
light scattered by an object. In the simulation, the input is re-
placed by the image of the object. For the 2D case, we vectorize
the image of the handwritten digit number. The original image
is resized to 20 by 20 pixels and converted to a 1 by 400 vector,
and the intensity is normalized from 0 to 1. Then, we can set
the intensity of the vectorized image as the amplitude of the
input field. The phase of the input field is set to be the same.
The input field is polarized in the z direction such that field can
be treated as a complex scalar in simulation and the wavelength
is 700 nm. At this frequency, the response of periodic TiO2

structure changes smoothly when the width of pillar changes.
To match the size of the input vector, each layer of neuromor-
phic metasurface also contains 400 elements. The pitch is
235 nm wide, the total length of the metasurface is 94 μm,
and the distance between the two adjacent layers is 188 μm.
The distance between adjacent layers is chosen based on
two criteria. First, the distance should be large enough so that
only the far-field from one layer of the metasurface reaches the
next layer. Second, as we discussed earlier, we approximate the
far-field wavefront by plane waves with only small k vectors.
The distance should be large enough so that the contributions
from plane waves with large k vectors to the wavefront can be
neglected. For any distance between adjacent layers that satis-
fies the above two criteria, the calculation process is the same.
However, the system needs to be retrained after changing the
distance between the adjacent layers, and the accuracy will
decrease if the layers are too far apart.

3. RESULTS AND DISCUSSION

The training process of the five-layer neuromorphic metasur-
face is shown in Fig. 4(b). Each data point is the averaged L2
loss over 100 training samples. The computation took about
13 h on an Intel Core i5-4430 CPU 3.00 GHz × 4.

The neuromorphic metasurface starts to show its utility even
with just two layers of metasurfaces, where it can achieve 80%
accuracy for MNIST classification. It means that eight out
of 10 times, this double-layer metasurface can focus the
light on the right location based on the meaning of the hand-
written digit. It is a remarkable focusing effect compared with
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traditional metasurfaces that focus all light to a single spot. The
accuracy can be further improved when more layers are used.
These results are shown in Table 1. However, more layers lead
to more energy loss, which leads to the difficulty of detecting
in practice. The output intensity of a multilayer structure
decreases with increasing number of layers as I � I 0�T �L,
where I 0 is the incident intensity, T is the transmission efficiency
of each layer, and L is the number of layers. In practice, the trans-
mission efficiency should also be optimized during training if

more layers are added to the system. Figure 5 shows the light
field propagation in a five-layer neuromorphic metasurface be-
fore and after training. It can be seen that at the beginning
of the training, light is directed to a random distribution. After
training, light is focused on the right classification spot.

Unlike our previous work demonstrated in Ref. [3], here we
did not use nonlinear activation. In this simple recognition
task, nonlinear activation does not significantly enhance perfor-
mance, but nonlinear activation is crucial for more complex
tasks such as face recognition. Nonlinear materials such as a
layer of saturable absorber can be easily fabricated into multi-
layer metasurfaces. In Ref. [3], we solve the nonlinear Maxwell’s
equation to account for the nonlinear activation. To make the
computation more manageable, here we did not apply nonlin-
ear activation for these multiscale metasurfaces. Further work is
needed to significantly speed up the electromagnetic modeling
of nonlinear materials to be used for metasurfaces.
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