
Synthetic optical vortex beams from the analogous
trajectory change of an artificial satellite
HAIPING WANG,1 LIQIN TANG,1,2,* JINA MA,1 XIUYAN ZHENG,1 DAOHONG SONG,1,2 YI HU,1,2

YIGANG LI,1,2 AND ZHIGANG CHEN1,2,3,4

1MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics,
Nankai University, Tianjin 300457, China
2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
3Department of Physics and Astronomy, San Francisco State University, San Francisco, California 94132, USA
4e-mail: zgchen@nankai.edu.cn
*Corresponding author: tanya@nankai.edu.cn

Received 28 December 2018; revised 23 July 2019; accepted 25 July 2019; posted 30 July 2019 (Doc. ID 356051); published 28 August 2019

We propose a method to generate specially shaped high-order singular beams of pre-designed intensity distri-
butions. Such a method does not a priori assume a phase formula, but rather relies on the “cake-cutting and
assembly” approach to achieve the azimuthal phase gradient for beam shaping, inspired by the orbital motion
trajectory change of an artificial satellite. Based on our method, several typical vortex beams with desired intensity
patterns are experimentally generated. As an example, we realize optical trapping and transportation of micro-
organisms with a triangle-shaped vortex beam, demonstrating the applicability of such unconventional vortex
beams in optical trapping and manipulation. © 2019 Chinese Laser Press

https://doi.org/10.1364/PRJ.7.001101

1. INTRODUCTION

Optical vortices, optical beams that carry orbital angular mo-
mentum (OAM) as proposed by Allen et al. [1], have attracted
much attention due to their widespread applications in atom
guiding [2], plasmonics [3,4], and information communication
[5]. Such optical beams with one or more singularities are often
used to transmit OAM to particles, driving them into rotation
or even three-dimensional spiraling [6–15]. Specially, the
helical phase of optical vortices with one singularity can be ex-
pressed by exp�ilθ�, where l is the azimuthal index (topological
charge) and θ is the azimuthal angle. In such optical vortex
beams, each photon carries the OAM of ℏl , as has been used
in the generation of arbitrary coherent vortex states in Bose–
Einstein condensates [16]. In many of these applications, both
the helical phase and the intensity distribution of the vortex
beams play an essential role [7,17–22]. Over the past decade,
a variety of optical vortex (OV) beams have been proposed and
demonstrated, including fractional OV beams, perfect or quasi-
perfect OV beams, and anomalous OV beams [23–25]. In ad-
dition, several methods have been proposed to reshape the
intensity distribution of the OV beams, such as using a helical
phase spatial filter [26], the power-exponent phase distribution
[27,28], or the so-called phase-pitch modification [29,30].
Some of these methods are quite effective for the creation of
specific vortex intensity patterns, but multiple diffractive ele-
ments are often needed, which requires complex optical setups.

In addition, since multiple parameters are involved that rely on
the phase equations of OV beams [27–30], shape variation in
these previous settings is typically limited and cannot be easily
reconfigured into other desired trajectories.

In this work, we propose and demonstrate a new method of
phase engineering for the creation of various spatial intensity
profiles of OV beams. Such a method contains two steps: first,
inspired by the analogous change of the trajectory of an
artificial satellite orbital motion, we design different intensity
patterns of the vortex beam; second, we generate the corre-
sponding phase map by “cake-cutting and assembly,” cutting
off some parts of the phase diagrams of the OV beams with
different topological charges and then re-combining them ap-
propriately into a new phase diagram. Based on such a synthetic
phase, we generate the desired intensity patterns of the OV
beams, which we shall call synthetic optical vortex (SOV)
beams. Experimentally, we demonstrate different intensity pat-
terns of such SOV beams. Furthermore, as a typical example,
we demonstrate that these specially designed OV beams can be
used to trap microorganisms such as yeast cells, driving them to
rotate in accordance with the designed paths.

2. DESIGN AND METHOD

Intuitively, we know that an optical vortex beam possesses
OAM as does an artificial satellite that undergoes circular mo-
tion. Thus, we start with the link between the intensity pattern
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of a vortex beam and the trajectory change of satellite motion,
and use this analog to design the change of OAM for shaping
the optical vortex beam. As we know, for the family of
Laguerre–Gaussian transverse modes, the radius of the do-
nut-shaped intensity pattern of the OV beam becomes larger
as the OAM of the beam increases, in a similar fashion to the
trajectory of an artificial satellite having uniform circular mo-
tion. Consequently, an assumption can be made that the inten-
sity distributions of the OV beams can be designed according to
the trajectory change of an artificial satellite. Figure 1 illustrates
the idea and some typical numerical results. When the OAM
of the artificial satellite becomes large enough, the satellite will
fly away from its original trajectory S1 [see solid circle in
Fig. 1(a)] to a new trajectory S2 [see dashed circle in Fig. 1(a)],
provided that the required centripetal potential cannot sustain
its uniform circular motion. The length of semi-major axis of
the Hohmann transfer orbit [31] [the transition trajectory
shown as blue circle in Fig. 1(a)] rH can be expressed as

rH � �r1 � r2�∕2, (1)

where r1 and r2 are the radius of trajectory S1 and S2, respec-
tively. This process goes through two accelerations ΔV and
ΔV 0, which can be described by [32,33]
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ffiffiffiffi
μ
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r � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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− 1

�
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r �
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where μ is the standard gravitational parameter of the artificial
satellite. As we see, when r1 and r2 in these equations change,
the value of ΔV and ΔV 0 also changes. Likewise, if the OAM
of an OV beam changes, the corresponding ΔV and ΔV 0 vary,
so the density distribution of OV beam becomes more nonuni-
form. Thus, during the design of intensity distribution of the
OV beam, the change of the OAM should go smoothly. In this
way, one can construct, for example, a triangle-shaped trajec-
tory for the artificial satellite by reconfiguring its OAM readily.
In this case, the OAM of the artificial satellite is increased first
and then suddenly changed back to the original value, and its
trajectory will make a turn, forming one corner of the triangular
pattern. Let us call this dynamic process one “corner stage”,
each indicated with a white dashed line in Figs. 1(e)–1(g).

If the OAM of the artificial satellite goes through three such
stages, a triangular trajectory can be realized [see Fig. 1(b)].
Clearly, during these processes to form the triangle-shaped
trajectory, the OAM of the artificial satellite must be in a dis-
crete changing mode. Furthermore, one can control the num-
ber of the corners by controlling the change rate of the OAM. If
the OAM of the artificial satellite goes through four and six
corner stages, corresponding square- and hexagon-shaped tra-
jectory of motion, respectively, can be realized [see Figs. 1(c)
and 1(d)].

Based on this point of view, we can design OV beams with
similar intensity patterns by the control of the OAM change
around the azimuthal direction similar to the just-discussed ar-
tificial satellite. In order to achieve such shaped optical beams,
we need to discretize the phase distribution nonuniformly
from otherwise uniform OV helical phase so as to match the
trajectory change shown in Figs. 1(b)–1(d). Such phase distri-
butions corresponding to desired OAM changes are presented
in Figs. 1(e)–1(g), which can lead to triangle, square, and
hexagon-shaped intensity patterns as experimentally demon-
strated below.

Next, let us elaborate in a bit more detail about the design of
the aforementioned phase distributions [Figs. 1(e)–1(g)]. The
phase function of an OV beam is in an exponential term,
exp�ilθ�, where the topological charge l can be an integer or
a fractional number [24] and the azimuthal angle θ varies in the
interval [0, 2π]. When l takes a value of 6, 7, or 8, the cor-
responding phase maps are shown in Figs. 2(a)–2(c). During
the specific operation of designing the phase distribution dia-
gram, we use the cake-cutting method: cutting off some parts of
the OV phase diagrams with different topological charges, and
then splicing into a new phase diagram so as to have nonuni-
form OAM variations, as shown in Fig. 2. As a specific example
for generating the triangular intensity pattern [Fig. 1(b)], differ-
ent magnitudes of the phase gradient for the three different
topological charges are used. The needed parts are digitally la-
beled, from (1) to (12) in Figs. 2(a)–2(c), where the boundaries
are marked by the white dashed lines. In this specific operation,
we cut off regions (1)–(3) from the phase map in Fig. 2(a),
regions (4)–(9) in Fig. 2(b), and regions (10)–(12) in Fig. 2(c),
and then assemble them into a new combined phase diagram as
shown in Fig. 2(d).

Compared with the OV phase in Figs. 2(a)–2(c), the phase
change in the newly combined phase diagram of Fig. 2(d) is no
longer uniform. In fact, the phase diagram is composed of
several parts with different phase gradients, which can be

Fig. 1. (a) Schematic of trajectory change of an artificial satellite
undergoing uniform circular motion. If the OAM of the artificial sat-
ellite is increased sufficiently, the artificial satellite will fly away from its
original trajectory as shown by the blue curve. (b)–(d) Sketched tra-
jectories for a “predesigned” artificial satellite motion, forming triangle,
square, and hexagon patterns. (e)–(g) Desired phase distributions for
generation of vortex beams with different intensity patterns corre-
sponding to those trajectories in (b)–(d). The corner stages are marked
with white dashed lines in (e)–(g).

Fig. 2. Illustration of the “cake-cutting” method of phase engineer-
ing for generation of SOV beams. (a)–(c) Phase diagrams of vortex
beams of topological charge l � 6, 7, 8, respectively. (d) Assembled
phase diagram from slices in (a)–(c) for generation of a triangle-shaped
beam as shown in Figs. 1(b) and 1(e).
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expressed by the topological charge that is increased from 6 to
8, and then decreased from 8 to 6 three times around one
roundtrip azimuthally, corresponding to three corner stages
in a triangular trajectory. Using such an engineered phase dis-
tribution, we can obtain a triangle-shaped beam such as that
illustrated in Fig. 1(b). The otherwise donut-shaped OV beam
turns into an SOV beam with discrete phase gradients around
the azimuthal direction, in much the same way as the non-
uniform change of the OAM which leads to the trajectory
change of the motion of an artificial satellite. Note that with
this design, the phase velocity is not uniform along the azimu-
thal direction, but rather is more rapid at the corner stages of
the phase map. In a similar approach, other shapes of the SOV
beams can be generated by increasing the numbers of the cor-
ner stages. As illustrated in Figs. 1(f ) and 1(g), four and six
corner stages in the phase diagrams can be introduced, leading
to square and hexagonal intensity patterns. By using this
method, we can easily generate other vortex beams with com-
plex intensity distributions, as shown later. These vortex beams
with predesigned intensity patterns are in contradistinction
with commonly reported circular or broken spiral-like vortex
beams [28,34].

3. EXPERIMENTAL RESULTS

To generate the proposed SOV beams experimentally, we used
a setup (as sketched in Fig. 3) similar to that used for generation
of morphing autofocusing Airy beams [35]. Holograms of
phase information encoded onto the phase spatial light modu-
lator (SLM) are read out by a collimated Gaussian beam
(λ � 532 nm). With suitable spatial filtering through a 4f sys-
tem, the desired intensity patterns of the SOV beams can be
observed. At the output, all the designed transverse intensity
patterns are monitored by a CCD camera.

Typical experimental results for the generated SOV beams
are presented in Fig. 4, where the holograms based on the pre-
viously discussed phase designs for the SLM are shown in
Figs. 4(a)–4(c), and the corresponding intensity profiles of
the SOV beams are shown in Figs. 4(d)–4(f ). The holograms
in Figs. 4(a)–4(c) are formed by a simple straight-line grating
with different topological charges as composed by phase distri-
butions in Figs. 1(e)–1(g). Figure 4(d) is supposed to be a
similar triangle-shaped intensity profile because there are three
corner stages, as shown in Fig. 1(e). When we change
three corner stages to four or six stages, similar square or

hexagon-shaped patterns are generated [Figs. 4(e) and 4(f )].
For these results, the square and hexagonal OV phase distribu-
tions are composed of three different magnitudes of the phase
gradient that expressed by the topological charges l � 10, 11,
12. These results show a proof of principle that the intensity
distributions of the OV beams can form similar patterns to the
trajectory of artificial satellites as governed by Newton’s motion
law of objects.

However, one can see clearly that the polygonal shapes in
Fig. 4 are not that ideal. To reduce the intensity discontinuity
of the SOV beams, we let the phase distributions vary from 0 to
2π more continuously. In order to make the entire phase dis-
tribution vary more smoothly, each phase element is judiciously
“cut” in such a way that it starts at 0 and ends at 2π. Thus,
when all phase elements are assembled into a complete phase
map for the SOV beam, they do not exhibit a phase gap or
discontinuity, as the phase of the whole beam varies more con-
tinuously. How “sharp” the corner is to form a good polygon
vertex would depend on the topological charges of the vortex
phase filaments employed, which determines how rapid the
phase gradient change is at the turning point. For example,
if the phase diagram of the vortex beam for the triangular pat-
tern is assembled from l � 6, 7, 8 and then back to l � 8, 7, 6
(see Fig. 2), the low phase gradient leads to a smooth corner of
triangular intensity distribution [see Fig. 4(d)]. As such, we
need to increase the topological charge for all vortex phase fil-
aments in order to synthesize a phase mask for better polygon
patterns. Thus, to make a better triangle pattern, a much larger
change of phase gradient (corresponding to l � 20, 30, 40
and then back to l � 40, 30, 20) is employed as shown in
Figs. 5(a1), 5(b1), and 5(c1). Specifically, the phase distribution
of the triangle-shaped OV [see Fig. 5(a1)] is assembled from
three different vortex phase elements corresponding to the
topological charges l � 20, 30, 40, whereas that for the
square-shaped OV [see Fig. 5(a2)] corresponds to the topologi-
cal charges l � 9, 18, 36 and that for the hexagon-shaped OV
[see Fig. 5(a3)] corresponds to l � 18, 24, 36. Other variations

Fig. 3. Experimental setup for the generation of SOV beams and
their application in cell transportation. SLM, spatial light modulator;
Lens L1 and L2, 4f system; F, spatial filter; CCD, charge-coupled
device; BS, beam splitter; O, oil immersion objective lens; Lens
L3, condenser lens; WLS, white light source.

Fig. 4. Experimental demonstrations of the SOV beams.
(a)–(c) show the holograms used to generate the SOV beams.
(d)–(f ) show corresponding intensity patterns in triangle, square,
and hexagon shapes without fine-shaping. We take the topological
charges l � 6, 7, 8 in (a) and (d), and l � 10, 11, 12 in
(b), (c) and (e), (f ).
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can also be realized. By overlapping the corresponding holo-
grams on the SLM, we generate the intensity patterns in tri-
angle, square, hexagon, irregular quadrilateral, and special
spiral shapes [Figs. 5(b1)–5(b5)]. It is worth mentioning that,
as compared with Figs. 4(a)–4(c), Figs. 5(a1)–5(a3) show much
finer structures of the phase modulation for the SOV beams,
which leads to much smoother patterns [Figs. 5(c1)–5(c3)], in-
dicating improved shaping of the SOV beams. The equivalent
topological charges for these three cases are 30, 20, and 24,
which can also be identified by careful counting of the fork
bifurcations in the holograms [Figs. 5(b1)–5(b3)]. Based on
the conventional phase equations [29,30], it is in principle dif-
ficult to generate irregular intensity patterns. To prove that our
method has better flexibility in shaping the OV beams, we also
design two complex SOV beams in the right two columns of
Fig. 5, which correspond to irregular quadrilateral-shaped
[Fig. 5(c4)] and spiral-shaped [Fig. 5(c5)] vortex beams. The
equivalent topological charges for these two latter cases are de-
termined to be 28 and 32 5

6, respectively. For the quadrilateral-
shaped vortex, the charge value can be identified either by
counting the multiples of the 2π phase in one azimuthal round-
trip [Fig. 5(a4)] or by counting the fringes directly from the
hologram [Fig. 5(b4)]. For the spiral-shaped vortex beams, it
is hard to count precisely the fork bifurcation in the hologram
[Fig. 5(b5)] since such an SOV beam involves a fractional
charge. For this latter case, we counted there are 32 times
of 2π phase changes in the phase diagram [Fig. 5(a5)], plus
an extra small region (1/60) cut from a separate phase map
of a high-order (l � 50) vortex, and thus the overall topological
charge equals 32 5

6. These two examples prove that one can use
this method to design other, more complex shapes of the OV
beams. It should be noted that, as seen from the preceding re-
sults, the main issue for shaping the beam is the nonuniform
change of the phase gradient along the azimuthal direction. In
addition, the topological charges of the constituting vortices are
also important to achieve fine-shaped patterns.

Furthermore, we perform an optical tweezing experiment to
show that these SOV beams can also be used in optical trapping

and manipulation. For this purpose, we employ the triangle-
shaped vortex beam, as an example, in the setup of optical
tweezers as shown in Fig. 3. Representative experimental results
are shown in Fig. 6, along with the accompanying media file. In
a microscopic system, an oil immersion objective lens of a high
numerical aperture (1.3) is used for focusing the triangular vor-
tex beam into 2.5 micrometers. The beam is then used to trap
and manipulate yeast cells of about 1 μm size suspended in
water. The motion of yeast cells illuminated by a white-light
source is recorded by a CCD camera. As seen from the snap-
shots of Fig. 6, under the action of the triangle-shaped vortex
beam, a yeast cell moves smoothly in the direction of the
dashed black arrow, whose path of motion is clearly driven
to follow the triangular trajectory (see also Visualization 1).

4. CONCLUSIONS

In summary, we have proposed a method to design and gen-
erate complex intensity patterns of optical vortex beams by us-
ing an analogy to the trajectory variation of orbital motion of an
artificial satellite. We have experimentally demonstrated such
SOV beams and discussed how to improve the technique by
judicious phase engineering for fine-shaping of the SOV beams
with OAM. These SOV beams, with intensity distributions de-
signed to the desired trajectories, may find unique applications
in optical trapping and manipulation. As an example, we have
demonstrated optical trapping and controlled transportation of
a yeast cell along a triangular path. We envisage that these un-
conventionally twisted light beams may also find applications
in the control of complex nanofluids [36–38] and stirred Bose–
Einstein condensates, in addition to optical trapping and
manipulation of cells or microparticles [39].
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