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Differential phase contrast microscopy (DPC) provides high-resolution quantitative phase distribution of thin
transparent samples under multi-axis asymmetric illuminations. Typically, illumination in DPC microscopic sys-
tems is designed with two-axis half-circle amplitude patterns, which, however, result in a non-isotropic phase
contrast transfer function (PTF). Efforts have been made to achieve isotropic DPC by replacing the conventional
half-circle illumination aperture with radially asymmetric patterns with three-axis illumination or gradient am-
plitude patterns with two-axis illumination. Nevertheless, the underlying theoretical mechanism of isotropic PTF
has not been explored, and thus, the optimal illumination scheme cannot be determined. Furthermore, the fre-
quency responses of the PTFs under these engineered illuminations have not been fully optimized, leading to
suboptimal phase contrast and signal-to-noise ratio for phase reconstruction. In this paper, we provide a rigorous
theoretical analysis about the necessary and sufficient conditions for DPC to achieve isotropic PTF. In addition,
we derive the optimal illumination scheme to maximize the frequency response for both low and high frequencies
(from 0 to 2NAobj) and meanwhile achieve perfectly isotropic PTF with only two-axis intensity measurements.
We present the derivation, implementation, simulation, and experimental results demonstrating the superiority
of our method over existing illumination schemes in both the phase reconstruction accuracy and noise-
robustness. © 2019 Chinese Laser Press

https://doi.org/10.1364/PRJ.7.000890

1. INTRODUCTION

Quantitative phase imaging (QPI), which provides phase infor-
mation about the refractive index distribution of transparent
specimens, has drawn much attention in both optical and bio-
medical research [1–3]. The major advantage of QPI over con-
ventional intensity imaging or fluorescence microscopy is that it
requires no exogenous contrast agents (e.g., dyes or fluorescent
protein) to enhance the contrast of the microscopic image,
which enables label-free and stain-free optical imaging of live
biological specimens in vitro [4,5]. The most common QPI
methods are based on interferometry and holography with
coherent illumination and a reference beam, making them ex-
pensive and sensitive to misalignment, vibrations, and speckle
noise [6–8]. To overcome these limitations, non-interferometric
QPI approaches using partially coherent illumination have
been developed, such as transport-of-intensity equation (TIE)

[2,9–14], differential phase contrast microscopy (DPC) [15–20],
and Fourier ptychographic microscopy (FPM) [21–25]. TIE is a
well-established non-interferometric phase retrieval approach,
which enables the QPI of a transparent sample simply by
measuring the intensities at multiple axially displaced planes
[2,9,11–14]. The advantages of the TIE approach are that it
is fully compatible with widely available bright-field microscopy
hardware and able to offer an imaging resolution up to the in-
coherent resolution limit (two times better than the coherent
diffraction limit) under matched annular illumination [26,27].
Without moving the position of a sample, DPC and FPM ap-
proaches retrieve the complex field of the sample by using asym-
metric illuminations. In FPM, a set of low-resolution (LR)
intensity images corresponding to different illumination angles,
with the resolution determined by the numerical aperture (NA)
of the objective lens, are acquired [21,22,24,25]. These LR in-
tensity images are iteratively combined together in the Fourier
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domain, resulting in a wide-field, high-resolution complex image
with the synthesized resolution determined by the sum of the
objective lens and illumination NAs [21–25,28,29]. DPC, how-
ever, achieves phase recovery by using only four images with
asymmetric illuminations in opposite directions [18,19]. It con-
verts invisible sample phases into measurable intensity by shifting
the sample’s spectrum in Fourier space to theoretically achieve a
resolution of twice the coherent diffraction limit [18,19].
Assuming a linearized model for a weakly scattering sample,
the DPC phase retrieval problem becomes a single-step decon-
volution process using the phase contrast transfer function
(PTF). By implementing DPC with a programable LED array
[19,20,30] or a programable LCD panel [31], we are able to
realize dynamic QPI along arbitrary axes of asymmetry, without
any mechanical moving parts.

To recover the quantitative phase information of a weakly
scattering sample, at least two complementary source patterns
are required in DPC. However, the resultant PTF is anti-
symmetric and zero at all spatial frequencies along the axis of
asymmetry, which may lead to significant phase reconstruction
artifacts if not properly handled. So in general, the illumination
of DPC is designed with two-axis half-circle amplitude patterns,
that is, four patterns (top, bottom, left, right half-circles) are
used to avoid missing frequencies. However, artifacts of phase
reconstruction still cannot be completely avoided, since DPC’s
PTF is not circularly symmetric with only two-axis measurements.
Recently, efforts have been made toward developing high-speed,
or even single-shot QPI mechanisms, such as motion compensa-
tion and color-coded DPC based on wavelength multiplexing
[30,32–34]. Other efforts have been made to improve the phase
reconstruction quality of DPC by optimizing the illumination
scheme, phase reconstruction algorithm, and compensating for
aberrations, and so on [35–39]. Among these methods, optimiz-
ing illumination becomes the most direct and effective approach
to improve the image quality of DPC since the PTF of DPC is
directly determined by illumination. By using three-axis radially
asymmetric patterns [35] or two-axis gradient amplitude patterns
[36] instead of more time-consuming intensity measurements
along different illumination angles (12-axis) [20], the isotropic
DPC is achieved with higher imaging efficiency. The machine
learning is also introduced to the DPC illumination design, which
improves the phase recovery accuracy, while reducing the raw
intensity measurements at the same time [38]. Although the trans-
fer response and isotropy of the PTF improved, the underlying
theoretical mechanism of isotropic PTF has not been explored,
so the optimal illumination scheme cannot be determined.
Furthermore, the frequency responses of the PTFs under these
engineered illuminations have not been fully optimized, leading
to suboptimal phase contrast and signal-to-noise ratio (SNR)
for phase reconstruction.

In this paper, we improve on these works by providing a
rigorous theory for achieving isotropic DPC, where a new op-
timal illumination scheme is derived. The major advantages of
the new illumination scheme are twofold. First, it is able to
produce a circularly symmetrical PTF with only two-axis inten-
sity measurements under partially coherent condition. Thus, it
is expected to achieve high-quality phase reconstruction with
isotropic transverse resolution and SNR by using only four

intensity measurements. Second, the resulting PTF achieves
a broadband frequency coverage for partially coherent imaging
(from 0 to 2NAobj) with a smooth and significantly enhanced
response for both low and high frequencies, which alleviates the
ill-posedness of the PTF inversion.

2. OPTIMAL ILLUMINATION SCHEME DESIGN

A. Derivation of Generalized Illumination Function
for Isotropic Differential Phase Contrast
Consider a weak-scattering object with complex transmission
function t�r� � e−a�r��iϕ�r�, illuminated by an oblique plane
wave with a uniform intensity distribution S�uj� (uj denotes
the spatial frequency of the tilted illumination). Invoking the
weak object approximation t�r� ≈ 1 − a�r� � iϕ�r� [40,41],
the intensity spectrum of the bright-field image under oblique
illumination can be separated into three terms [42], including
the background, absorption contrast, and phase contrast terms
(ignore systematic aberrations):

I j�u�� S�uj�δ�u�jP�uj�j2
−S�uj�A�u��P��uj�P�u�uj��P�uj�P��u−uj��
� iS�uj�Φ�u��P��uj�P�u�uj�−P�uj�P��u−uj��, (1)

where P�u� denotes the pupil function of the objective lens
(assuming it is an ideal low-pass filter with a cutoff frequency
of NAobj

λ ), and A�u� and Φ�u� are the Fourier transform of the
sample’s absorption and phase function, respectively. To gen-
erate the phase contrast image IDPC

l r (e.g., the left–right DPC)
along a specific direction of the phase gradient, a pair of images
where each S�u� has complementary gradient vector are used to
calculate IDPC

l r � I r−I l
I r�I l

[18,41]. Since two illumination patterns
are symmetrical along the same axial direction (e.g., x-axis
in left–right DPC), the background term and absorption
contrast term are cancelled, leaving only the phase contrast
term. So, the corresponding PTF of the left–right DPC can
be expressed as

PTFl r�u��
RR
Slr�uj��P��uj�P�u�uj�−P�uj�P��u−uj��d2ujRR jSlr�uj�jjP�uj�j2d2uj :

(2)

It can be found from Eq. (2) that once the optical configuration
of the microscope is fixed (the pupil function of the objective
lens is predefined), the PTF is fully determined by the illumi-
nation function [43].

To reconstruct the sample’s quantitative phase information
from Eq. (2), we can solve the inverse problem with a single-
step deconvolution [20]. Tikhonov regularization parameter β
is often introduced in the denominator to avoid singularity in
the PTF inversion [44]:

ϕ�r� � F −1

�P
i �PTF�i �u� · IDPC

i �u��P
ijPTF�i �u�j2 � β

�
, (3)

where PTF�i �u� denotes complex conjugation of PTF along dif-
ferent axial directions. The denominator term

P
ijPTF�i �u�j2

represents the synthetic square of amplitude of the multi-axial
PTFs, which can be used to indicate the degree of isotropy for
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DPC imaging. For simplicity, we use a shorthand notation
C�u� for this term in the following analysis.

The following derivation about isotropic DPC is performed
in the polar coordinate instead of the Cartesian coordinate; that
is, we use �ρ, θ� instead of �x, y�, where ρ and θ respectively
represent the radius and the polar angle. This is because the
optical systems have circular symmetry, and most circularly
symmetric functions are separable in their polar coordinates,
i.e., we can write Slr�ρ, θ� and Sud �ρ, θ� as a product of
two one-dimensional functions about ρ and θ, respectively:

Slr�ρ, θ� � L�ρ�M�θ�,
Sud �ρ, θ� � L�ρ�N �θ�: (4)

Since the phase contrast image is generated by complementary
illumination in each axis measurement Slr � Sr − Sl , the illu-
mination function Slr�ρ, θ� is an even function about θ.
Similarly, the illumination function Sud �ρ, θ� for the up–down
axis is an odd function about θ. Thus, M �θ� and N �θ� can be
further expanded in the Fourier series defined on (−π, π]:

M �θ� �
X∞
n�1

an cos�nθ�,

N �θ� �
X∞
n�1

bn sin�nθ�: (5)

For general illumination and aperture function, the PTF can be
calculated by integrating the overlapping areas between the ob-
jective pupil function (with its center at the origin O) and its
off-axis version (with its center at the point Q), as illustrated by
the red and blue regions in Fig. 1. This is because the illumi-
nation falling in the red regions can ensure the point Q is
within P�u� uj� � 1, and the illumination falling in the blue
regions can ensure the point Q�u� is within P�u − uj� � 1.
However, it should be noted that when the illumination angle
is close to the central axis of the objective lens, the two red and
blue regions corresponding to P�u� uj� and P�u − uj� will be
partially cancelled out by each other. So the integral interval
should be partitioned according to the location of point Q

[see Figs. 1(a) and 1(b)], which can be represented as (taking
left–right axis illumination for example)

PTFl r�ρ, θ� �

8>>>>><
>>>>>:

2
R NAobj

ρ−NAobj

R
θ�α

θ−α
Slr �ξ, ε�dεdξR NAobj

0

R
2π

0
jSlr �ξ, ε�jdεdξ

NAobj ≤ ρ ≤ 2NAobj

2
R NAobj

NAobj−ρ

R
θ�α

θ−α
Slr �ξ, ε�dεdξR NAobj

0

R
2π

0
jSlr �ξ, ε�jdεdξ

0 ≤ ρ < NAobj

:

(6)

Substituting Eqs. (4) and (5) into Eq. (6) gives the PTF
along the left–right axis direction. Although the mathematical
formulas appear complicated, we should keep in mind that to
achieve isotropic DPC, it is only required that the synthetic
square of amplitude of the multi-axial PTFs C�ρ, θ�
[C�ρ, θ� � jPTFl r�ρ, θ�j2 � jPTFud �ρ, θ�j2] is only a func-
tion of ρ. Close inspection of Eq. (6) reveals that the isotropy
cannot be achieved if there are cross-trigonometric terms in
C�ρ, θ�, suggesting there should be only one single-harmonic
component in the Fourier series expansion of Eq. (5), that is
(see Appendix A for detailed derivation):

Slr�ρ, θ� � L�ρ� cos�nθ�
Sud �ρ, θ� � L�ρ� sin�nθ� �n � 1, 3, 5,…�: (7)

Note that in Eq. (7), we neglect the unimportant constant fac-
tors. It should be further noted that when n is even, the illu-
mination pattern is centrosymmetric so that the resulting PTF
will be completely canceled out. Therefore, n should be an odd
number �n � 1, 3, 5,…� to guarantee a valid non-zero PTF.
Equation (7) is the main result of our work, which provides
the necessary and sufficient conditions for DPC to achieve iso-
tropic PTF.

B. Optimal Illumination Scheme
Since no restrictions were imposed on the form of the function
L�ρ�, L�ρ� can be any function of ρ without affecting the isot-
ropy of the DPC’s PTF. Thus, we can optimize the function
L�ρ� to improve the frequency coverage and response of the
corresponding PTF. In our recent studies, an annular source
has been demonstrated that optimizes the PTF of DPC [45],

°

°

°

°

°

°

°

° °

°

°

°

°

°

°

°

°

(a) (b)

Fig. 1. Schematic diagram of the integral for PTF along the left–right axis in the polar coordinate system. (a) The radius ρ of the point Q is in the
range of NAobj ≤ ρ ≤ 2NAobj. (b) The radius ρ of the point Q is in the range of 0 ≤ ρ < NAobj.
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TIE [26,27], and FPM [28,42]. In this paper, the annular
source is also used in the generalized illumination function
of isotropic DPC to optimize the transfer response of PTF.
In Appendix B, we compare the resultant PTFs of three different
functions L�ρ�: constant weight, linear weight, and Kronecker
delta weight functions with a fixed n � 1 by simulation. The
results suggest that the delta weight function (a thin annulus)
produces the PTF with the highest response at almost all
frequencies from 0 to 2NAobj.

To further analyze the influence of the thickness of the an-
nulus on the PTF, we illustrate the corresponding PTFs of dif-
ferent annular thickness by fixing the NA of the outer circles to
beNAobj and by only changing the thickness of the annulus. As
might be expected, the phase contrast is gradually reduced as
the annulus width increases, especially at low and high frequen-
cies. This is because the paraxial illumination does not produce
low-frequency phase contrast, and only illumination matching
the objective NAobj can produce the strong response at all
frequencies. Specific simulations and comparisons can be found
in Appendix C. When the thickness of the annulus is extremely
small (σ � NAill

NAobj
→ 0), the phase response finally approaches

that of the constant weight function L�ρ� � 1. From the re-
sults in Appendix C, it can be deduced that we should choose
the diameter of the annulus to be equal to that of the objective
pupil and make its thickness as small as possible [δ�ρ −NAobj�,
where δ�ρ� is the delta function] to optimize the response
of PTF.

Finally, we study the effect of the number n in Eq. (7) on the
PTF. Three odd n numbers are selected to generate three illu-
mination patterns and corresponding PTFs (see Appendix D).
It is shown that when n increases (n � 3, 5), not only the PTF
response is significantly attenuated, but also the number of zero
crossings in C�ρ, θ� increases. In such cases, the reconstruction
phase can be severely distorted due to the ill-posedness of the
PTF inversion. Thus, n � 1 provides the optimal PTF for
DPC with the strongest response and no zero crossings from
0 to 2NAobj. Based on the above analysis, the optimal illumi-
nation scheme for isotropic DPC can be represented as

Slr�ρ, θ� � δ�ρ −NAobj� cos θ,
Sud �ρ, θ� � δ�ρ −NAobj� sin θ: (8)

Meanwhile, we can also give the analytical expressions of PTF
under the optimal illumination scheme:

PTFl r�ρ, θ� � sin α cos θ,

PTFud �ρ, θ� � sin α sin θ: (9)

Based on the geometric relationship of the isosceles triangle
BOQ in Fig. 1, α is determined by cos α � ρ

2NAobj
. In this case,

C�ρ, θ� can be calculated as

C�ρ, θ� � 1 −
ρ2

4NA2
obj

: (10)

Equation (10) indicates that C�ρ, θ� is only related to ρ, which
means that the corresponding PTF of DPC is isotropic.

3. IMAGING PERFORMANCE OF OPTIMAL
ILLUMINATION SCHEME

To verify the isotropy of the optimal illumination scheme, we
numerically simulated PTFs and C�ρ, θ� for four DPC illumi-
nation patterns under two-axis illumination, including three
states of the arts, namely uniform illumination [20], (two-axis)
radial illumination [35], gradient amplitude illumination [36],
and the optimal illumination proposed in this work, as shown
in Fig. 2. In Figs. 2(b1)–2(b4), we show PTFs along the left–
right axis under these different illumination patterns. It can be
observed that the PTF under optimal illumination scheme has a
smooth and significantly enhanced response at almost all
frequencies of the theoretical bandwidth of the entire partially
coherent imaging (from 0 to 2NAobj). These can be seen more
clearly from the amplitude of C�ρ, θ� in Figs. 2(c1)–2(c4),
where the C�ρ, θ� under the optimal illumination scheme
has obviously enhanced values at the low-frequency compo-
nents near the zero frequency and the high-frequency compo-
nents approaching 2NAobj.

To quantitatively compare these four PTFs, the black cross-
section in Fig. 2(c1) is used to characterize the amplitude of
C�ρ, θ�. As shown in Fig. 2(d), the optimal illumination
scheme has the maximum phase contrast at almost all frequen-
cies from 0 to 2NAobj. Moreover, the peak values of C�ρ, θ� for
the other three illumination patterns are below 0.9, while they
can reach 1 under the optimal illumination scheme. The strong
phase contrast under the optimal illumination can be finally
converted to the quantitative phase images by the PTF inver-
sion, resulting in high-quality reconstructions with a uniform
background and an improved resolution. To compare the de-
gree of isotropy, we further plotted the values along three differ-
ent concentric circles within C�ρ, θ� in Figs. 2(e1)–2(e3).
A constant frequency response can be obtained along the
circle under the gradient amplitude illumination and the opti-
mal illumination scheme, suggesting that C�ρ, θ� obtained
under these two illumination patterns are isotropic, while
the uniform illumination [20] and the radial illumination [35]
cannot generate isotropic PTFs under two-axis illumination
due to their fluctuant frequency responses along the concentric
circles.

The proposed optimal illumination scheme is then compared
with different illumination patterns based on simulations. The
Siemens star image [shown in Fig. 3(a)] [46] is used as an exam-
ple phase object that is defined on a grid with 244 × 244 pixels
with a pixel size of 0.2 μm × 0.2 μm. The wavelength of the
illumination is 525 nm, and the NAobj is 0.40. For such an im-
aging configuration, the ideal phase imaging resolution that can
be achieved is 656 nm (λ∕2NAobj), which is also shown in
Fig. 3(b). For partially coherent image calculation, we use the
Abbe’s method, in which each sub-image corresponding to point
source in the aperture plane is superimposed at the image plane
to generate captured images of DPC. To simulate the noise ef-
fect, each DPC image is corrupted by Gaussian noise with a stan-
dard deviation of 0.0003. In Fig. 3, we compare the phase
retrieval results of different illumination patterns for different
regularization conditions. For the case without regularization
(β is an infinitesimal), the noise corresponding to the frequency
components with extremely weak PTF responses was amplified,
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resulting in grainy artifacts superimposed on the reconstructed
phases by using uniform illumination [20], (two-axis) radial
illumination [35], and gradient amplitude illumination [36]
[Figs. 3(c1)–3(c3)]. To stabilize the deconvolution process, a
regularization parameter β is generally introduced to the denom-
inator of Eq. (3) to suppress the noise effect. As shown in
Figs. 3(d1)–3(d3), when β � 0.2, the grainy artifacts are signifi-
cantly reduced under these three illumination patterns, but
meanwhile, the low-frequency phase values are underestimated,
and high-frequency features are significantly attenuated. Thus, a
more properly chosen regularization parameter is required for
these illumination patterns to achieve reliable phase reconstruc-
tions under noisy conditions. In contrast, the proposed optimal
illumination scheme can always obtain accurate and high-quality
reconstructed phases with any regularization parameters attrib-
uted to its significantly enhanced PTF response from the 0 to
2NAobj range [Fig. 2(b4)], as shown in Figs. 3(c4) and 3(d4).
The root-mean-square error (RMSE) values for the optimal
illumination DPC are compared with the other illumination pat-
terns to quantitatively measure the SNR of these reconstructed

phases. It can be found that the reconstructed phase under
the optimal illumination always achieves the lowest RMSE
values.

To verify the isotropy of the DPC phase reconstruction
under the optimal illumination scheme, phase values along
three small circles corresponding to different spatial frequen-
cies evenly distributed from 0 to 2NAobj are extracted and
plotted in Fig. 3(e) (the black curve denotes the ground
truth, and the red, green, and blue curves represent the
low frequency, middle frequency, and high frequency, respec-
tively). From these curves, the line widths corresponding to
different frequency components can be clearly distinguished
at all angles, which indicates that optimal illumination
achieves an isotropic resolution at all spatial frequencies. In
addition, it can be observed that the reconstructed phase
contrast under optimal illumination is close to the ground
truth phase. Furthermore, to quantitatively compare the
resolution of DPC reconstruction results of these four
illumination patterns, we then extracted and plotted the
phase values along a small circle of the same radius in

Fig. 2. PTF and C�ρ, θ� with four illumination patterns. (a1)–(a4) Four illumination patterns. (b1)–(b4) PTFs along the left–right axis.
(c1)–(c4) C�ρ, θ� with two-axis illumination. (d) Quantitative curves of C�ρ, θ� along the black straight line under the four illumination patterns.
(e1)–(e3) Quantitative curves of C�ρ, θ� under the four illumination patterns on three radii.

894 Vol. 7, No. 8 / August 2019 / Photonics Research Research Article



Figs. 3(d1)–3(d4). As shown in Fig. 3(f ), the uniform, radial,
and gradient amplitude illuminations all produce results with
underestimated phase contrast (phase amplitude 0.1). In con-
trast, the phase amplitude is stabilized around 0.4 under our
optimal illumination, which is closer to the ground truth.
Moreover, it can be seen that the phase detail in the green

marked regions, which corresponds to the weak PTF fre-
quency responses under the uniform and radial illumination
patterns, cannot be recovered correctly. However, the optimal
illumination scheme achieves an isotropic resolution, as well
as much more accurate phase values, due to its isotropic PTF
with much stronger responses.

Fig. 3. Simulation results with different regularization parameters under four illumination patterns. (a) Original phase image. (b) Diffraction limit
phase image of DPC (2NAobj). (c1)–(c4), (d1)–(d4) Phase results with regularization parameters of 0 and 0.2. (e) Phase values along three small
circles corresponding to different spatial frequencies evenly distributed from 0 to 2NAobj. (f ) Phase values along a small circle of the same radius in
(d1)–(d4) under four illumination patterns.
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4. EXPERIMENTAL RESULTS

A. Phase Resolution Target
To verify the effectiveness of the optimal illumination scheme
experimentally, we first measured a pure phase resolution target
[Quantitative Phase Microscopy Target (QPTTM), Benchmark
Technologies Corporation, USA]. Our setup was based on a
commercial inverted microscope (IX83, Olympus), in which
the original condenser diaphragm is replaced by a high-contrast
an amorphous silicon (a-Si) thin-film transistor LCD screen
[4.3 inch (1 inch = 2.54 cm), pixel resolution 480 × 272]
[47]. In our experiments, the built-in halogen white light
source with a green interference filter (central wavelength
λ � 550 nm, 45 nm bandwidth) was used for illumination,
and the LCD screen was used to modulate the illumination
in asymmetrical manners. The images were captured by an ob-
jective lens with a magnification of 10× and an NA of 0.25
(Olympus PLAN 10X/0.25), and finally digitalized by a charge

coupled device (CCD) camera with the pixel size of 3.75 μm
(the imaging source DMK 23U445). Figure 4(a) shows a
bright-field image captured when the LCD screen is transpar-
ent, which has very little intensity contrast. To illustrate the
imaging resolution more clearly, the small regions near the
center of the image (green-boxed areas) of the reconstructed
phases under the half-circular uniform illumination and opti-
mal illumination schemes are shown in Figs. 4(c) and 4(d). In
the reconstruction phase of Fig. 4(c), two more suitable regu-
larization parameters are used to suppress low-frequency and
high-frequency errors, respectively. To demonstrate the isot-
ropy of the optimal illumination scheme, the phase values
at three uniformly distributed frequencies of Fig. 4(d) are ex-
tracted to plot the quantitative curves. As shown in Fig. 4(e),
the optimal illumination achieves isotropic resolution at differ-
ent frequencies. Furthermore, line profiles along a small circle
of the same radius (blue and red circles) are extracted and

(a)

(b)

(c)

(d)

rad

(e)

Angle (rad)

)dar( esah
P

50µm

10µm

)dar( esah
P

Angle (rad)

Ground truth Radius 1 Radius 2 Radius 3

(f)

Fig. 4. Phase reconstruction results of a phase resolution target QPTTM. (a) A bright-field image. (b) A zoom-in of the interest region of the bright-
field image. (c) Phase reconstruction result under the half-circular uniform illumination pattern. (d) Phase reconstruction result under the optimal
illumination scheme. (d) Phase values along three small circles evenly distributed from 0 to 2NAobj under the optimal illumination pattern. (e) Phase
values along a small circle of the same radius in (c), (d) under the half-circular uniform illumination pattern and optimal illumination pattern.
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illustrated in Fig. 4(f ) to quantitatively compare the highest
achievable resolution. These results are generally consistent
with the theoretical prediction, as well as our simulation results.
It can be seen that the phase details in the green areas, which
correspond to the frequency components with weak responses
in the non-isotropic PTF of the uniform illumination pattern,
cannot be recovered correctly, indicating that half-circular uni-
form illumination cannot provide phase reconstruction with
isotropic transverse resolution and SNR. Once again, the phase
reconstruction result obtained by using the optimal illumina-
tion scheme demonstrates much better isotropy.

B. Unstained HeLa Cells
The high-resolution QPI capability of the proposed optimal
illumination scheme provides unique possibilities for the
label-free imaging of cell growth in culture, using repeated
imaging of cultures to assess the progression toward confluence
over designated periods of time. In Fig. 5, we show the quan-
titative phase images of the human cervical adenocarcinoma
epithelial (HeLa) cell division process over the course of
5 h. The experimental setup generally followed the parameters
of the previous experiment, except that an objective lens
with 10×, 0.4 NA (Olympus UPlanSApo 10X/0.4) and an
additional 1.25× camera adapter were used (effective magnifi-
cation 12.5×). A time-lapse movie created with one-phase
reconstruction per 22 s is provided in Visualization 1. We show
the full-field-of-view phase reconstruction result in this video
[one frame from the video is shown in Fig. 5(a)]. From two
selected zoom-in regions (red-boxed and blue-boxed areas)
in Figs. 5(b) and 5(c), subcellular features, such as cytoplasmic
vesicles and pseudopodium, can be clearly observed. In
Fig. 5(d), we further selected one cell [corresponding to the
green-boxed region shown in Fig. 5(a)] to study its morphology

during division, which spanned over about 1 h. These high-res-
olution phase images clearly reveal the cell morphological
changes during different mitosis phases. In addition, since
the optimal illumination scheme requires only two-axis illumi-
nations, all these retracting, extending, reorganizing, migrating,
and maturing processes of the cell(s) were recovered accurately
without any motion blur. These results demonstrate that the
optimal illumination scheme is capable of imaging unlabeled
cells in a non-invasive manner, allowing for a high-resolution
QPI over an extended period of time.

5. DISCUSSION AND CONCLUSIONS

In this work, a rigorous theoretical analysis about the necessary
and sufficient conditions for DPC to achieve an isotropic PTF
has been explored. We have derived an optimal illumination
scheme to maximize the frequency response and meanwhile
achieve isotropic DPC. Compared with a traditional DPC
method that uses half-circle illumination, our optimal illumi-
nation scheme produces a perfectly circularly symmetrical PTF
with only two-axis intensity measurements, avoids missing
frequencies, and enhances the phase response, providing
high-quality phase reconstruction with isotropic transverse res-
olution and SNR. The resultant PTF removes the ill-posedness
of the PTF inversion so that artifacts in phase reconstruction
results can be significantly reduced. A theoretical analysis, sim-
ulations, and experimental results have verified the superiority
of our method over existing illuminations in both the phase
reconstruction accuracy and noise-robustness. The investiga-
tion of live HeLa cell mitosis in vitro has demonstrated that
our optimal DPC scheme is a simple, efficient, and stable ap-
proach for label-free quantitative cell imaging with subcellular
resolution. Furthermore, the intrinsic advantages, such as being

rad
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20µm
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(a) (b)
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Fig. 5. Phase reconstruction results of HeLa cells under the optimal illumination scheme. (a) Full-field-of-view phase distribution. (b), (c) Phase
maps of two selected zooms. (d) Phase results at different time points.
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non-interferometric, having the compatibility with bright-field
microscopic hardware, and incoherent diffraction-limited reso-
lution up to 2NAobj, make it a competitive and promising tech-
nique for various microscopy applications in life sciences and
biophotonics.

In this work, we derived the optimal illumination scheme in
an ideal imaging system. It should be noted that the actual im-
aging system is often more complicated due to the aberrations
and noise. Several studies have improved the imaging perfor-
mance of DPC from other aspects, such as the optimized
reconstruction algorithm, regularization algorithm, and aberra-
tion compensation [38,39]. In this paper, to make a fair
comparison, we adopted the most common and the simplest
algorithm to ensure that the improvement of the phase
quality can only result from the illumination optimization. In
Appendix E, it is demonstrated that the optimal illumination
can still achieve stable high-quality imaging results in an imaging
system with a small aberration. In essence, the optimal illumi-
nation scheme can be combined with other optimized compen-
sation approaches to further improve the phase reconstruction
quality of DPC. On the other hand, compared with the existing
12-axis and three-axis method, the optimal scheme improves the
imaging speed while ensuring the isotropic, but does not exceed
the imaging speed of the traditional two-axis DPC. When im-
aging rapidly varying samples, the optimal illumination cannot
completely avoid motion artifacts. Combining our approach
with color-multiplexing techniques to achieve single-shot iso-
tropic DPC imaging can potentially solve this problem, which
is an interesting direction for future work.

APPENDIX A: DERIVATION OF ISOTROPIC DPC
UNDER GENERALIZED ILLUMINATION
CONDITIONS

In this section, we present the rigorous theoretical analysis
about the necessary and sufficient conditions for DPC to
achieve a perfectly isotropic PTF under generalized illumina-
tion conditions. As presented in Fig. 6, we show the schematic
diagram of the integral for PTF along the left–right axis

illumination in the polar coordinate system. Since the phase
contrast image is generated by complementary illumination
in each axis measurement Slr � Sr − Sl , the illumination func-
tion Slr�ρ, θ� can be expressed as a periodic even function
about θ. Similarly, we can get the illumination function
Sud �ρ, θ� in the up–down axis direction as a periodic odd func-
tion about θ. Thus, Slr�ρ, θ� and Sud �ρ, θ� can be expanded in
the Fourier series defined on (−π, π):

Slr�ρ, θ� � L�ρ�
X∞
n�1

an cos�nθ�,

Sud �ρ, θ� � L�ρ�
X∞
n�1

bn sin�nθ�, (A1)

where an and bn are a series of constants, and L�ρ� is a function
about radius ρ.

For the general illumination and aperture function, the PTF
can be calculated by integrating the overlapping areas between
the objective pupil function (with its center at the originO) and
its off-axis version (with its center at the point Q), as illustrated
by the red and blue regions in Fig. 6. This is because the illu-
mination falling in the red regions can ensure the point Q is
within P�u� uj� � 1, and the illumination falling in the blue
regions can ensure the point Q�u� is within P�u − uj� � 1.
However, it should be noted that when the illumination angle
is close to the central axis of the objective lens, the two red
and blue regions corresponding to P�u� uj� and P�u − uj�
will partially cancel out each other. So the integral interval
should be partitioned according to the location of point Q
[see Figs. 6(a) and 6(b)], which can be represented as (taking
the left–right axis illumination, for example)

PTFl r�ρ,θ� �

8>>>>><
>>>>>:

2
R NAobj

ρ−NAobj

R
θ�α

θ−α
Slr �ξ, ε�dεdξR

NAobj

0

R
2π

0
jSlr�ξ, ε�jdεdξ

NAobj ≤ ρ ≤ 2NAobj

2
R NAobj

NAobj−ρ

R
θ�α

θ−α
Slr �ξ, ε�dεdξR

NAobj

0

R
2π

0
jSlr�ξ, ε�jdεdξ

0 ≤ ρ < NAobj

:
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Fig. 6. Schematic diagram of the integral for PTF along the left–right axis illumination in the polar coordinate system. (a) The radius ρ of the
point Q is in the range of NAobj ≤ ρ ≤ 2NAobj. (b) The radius ρ of the point Q is in the range of 0 ≤ ρ < NAobj.
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Substituting Eq. (A1) into Eq. (A2) gives the PTF along the left–right axis direction:

PTFl r�ρ, θ� �

8>>>><
>>>>:

P
∞
n�1

an cos�nθ�
R NAobj

ρ−NAobj
L�ξ� sin�nα�dξ

n
P

∞
n�1

an
R

NAobj

0
L�ξ�dξ NAobj ≤ ρ ≤ 2NAobj

P
∞
n�1

an cos�nθ�
R NAobj

NAobj−ρ
L�ξ� sin�nα�dξ

n
P

∞
n�1

an
R

NAobj

0
L�ξ�dξ 0 ≤ ρ < NAobj

,

PTFud �ρ, θ� �

8>>>><
>>>>:

P
∞
n�1

bn sin�nθ�
R NAobj

ρ−NAobj
L�ξ� sin�nα�dξ

n
P

∞
n�1
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R

NAobj

0
L�ξ�dξ NAobj ≤ ρ ≤ 2NAobj

P
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n�1

bn sin�nθ�
R NAobj

NAobj−ρ
L�ξ� sin�nα�dξ

n
P

∞
n�1
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R NAobj
0 L�ξ�dξ

0 ≤ ρ < NAobj

:

(A3)

The above PTFl r�ρ, θ� and PTFud �ρ, θ� are further squared and
summed to obtain the synthetic square of amplitude of the
multi-axial PTFs by C�ρ,θ��jPTFl r�ρ,θ�j2�jPTFud �ρ,θ�j2.
Isotropic DPC requires C�ρ, θ� to be a function only about
ρ, which means that there are no cross-trigonometric terms
in C�ρ, θ�, suggesting that there should be only one single-
harmonic component in the Fourier series expansion of
Eq. (A1). It should also be noted that when n is even, the illu-
mination pattern is centrosymmetric so that the resulting PTF
will be completely canceled out. Therefore, n should be an odd
number �n � 1, 3, 5,…� to guarantee a valid non-zero PTF. As
a result, the illumination functions Slr�ρ, θ� and Sud �ρ, θ� can
be deduced as

Slr�ρ, θ� � L�ρ� cos�nθ�
Sud �ρ, θ� � L�ρ� sin�nθ� �n � 1, 3, 5,…�: (A4)

Note that in Eq. (A4), we neglect the unimportant constant
factors. Following this step, the corresponding PTFs can be sig-
nificantly simplified as follows:

PTFl r�ρ,θ��

8>>>><
>>>>:
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n
R
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R
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0
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,
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8>>>><
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ρ−NAobj
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NAobj
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(A5)

To further simplify the expression, we define a new function
M �ρ� to represent the integral term:

M�ρ� �

8>>>><
>>>>:

R NAobj

ρ−NAobj
L�ξ� sin�nα�dξ

n
R

NAobj

0
L�ξ�dξ NAobj ≤ ρ ≤ 2NAobj

R NAobj

NAobj−ρ
L�ξ� sin�nα�dξ

n
R

NAobj

0
L�ξ�dξ 0 ≤ ρ < NAobj

, (A6)

where α is a variable determined by ρ. From the geometric
relationship of the triangle BOQ in Fig. 6, we have

cos α � ρ2�ξ2−NA2
obj

2ρξ , so M�ρ� here is a function only about ρ.
Thus PTFl r�ρ, θ� and PTFud �ρ, θ� can be expressed as
PTFl r�ρ,θ�� sin�nθ�M �ρ�, and PTFud �ρ,θ�� cos�nθ�M�ρ�.
We can get the expression of C�ρ, θ� as

C�ρ, θ� � M �ρ�2: (A7)

This result shows that C�ρ, θ� is independent of θ, suggesting
that the distribution of C�ρ, θ� is circularly symmetric.
Therefore, we can conclude that the necessary and sufficient con-
ditions for DPC to achieve a perfectly isotropic PTF is that the
illumination function should be in the form of Slr�ρ, θ� �
L�ρ� sin�nθ� and Sud �ρ, θ� � L�ρ� cos�nθ�, where L�ρ� is an
arbitrary function of ρ. This conclusion provides great conven-
ience for the illumination design of isotropic DPC. However, it
should be noted that Eq. (A6) generally has no analytical solu-
tion, so the PTFs of different patterns can only be evaluated
based on numerical simulations.

APPENDIX B: COMPARISON OF DIFFERENT
ILLUMINATION SCHEMES FOR ISOTROPIC DPC

Since no restrictions were imposed on the form of the function
L�ρ�, L�ρ� can be any function of ρ without affecting the isot-
ropy of the DPC’s PTF. Thus, we can optimize the function
L�ρ� to improve the frequency coverage and response of the
corresponding PTF. In this section, we compare the PTFs
of three different functions L�ρ�: constant weight, linear
weight, and Kronecker delta weight functions with a fixed
n � 1 by simulation, as shown in Figs. 7(a1)–7(a3). The
PTFs along the left–right axis under different illumination
patterns are displayed in Figs. 7(b1)–7(b3). It can be seen
the PTF with L3�ρ� produces the PTF with the highest re-
sponse at almost all frequencies from 0 to 2NAobj. The results
can be seen more clearly from the amplitude of C�ρ, θ� shown
in Figs. 7(c1)–7(c3). To quantitatively characterize the ampli-
tude of these three C�ρ, θ�, the responses along the black cross
section are extracted and compared in Fig. 7(d). Although these
three illumination patterns can all obtain isotropic C�ρ, θ�,
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a PTF corresponding to L3�ρ� (a thin annulus) has the highest
response at almost all frequencies from 0 to 2NAobj.

APPENDIX C: ANALYSIS OF THE ANNULAR
THICKNESS INFLUENCE ON THE FREQUENCY
RESPONSES OF PTF

We next analyze the effect of the thickness of the annulus on
the PTF by fixing the illumination numerical aperture (NA) of
the outer circles to beNAobj and only changing the thickness of

the annulus (σ � NAill

NAobj
). As shown in Figs. 8(b1)–8(b3), when

the illumination annulus becomes wide, the frequency re-
sponses of the PTF are gradually weakened, especially at low
and high frequencies. For the synthetic square of amplitude
of the multi-axial PTFs C�ρ, θ� shown in Figs. 8(c1)–8(c3),
it can be observed that a wider annulus attenuates the response
near the zero frequency and the high-frequency components
approaching 2NAobj. When σ → 0, it can be expected that
the phase response finally approaches that of the constant
weight function L�ρ� � 1 [Figs. 7(a1)–7(c1) are reproduced].

Fig. 7. PTF and C�ρ, θ� with a different L�ρ� function. (a1)–(a3) Illumination patterns. (b1)–(b3) PTFs along the left–right axis.
(c1)–(c3) C�ρ, θ� with two-axis illumination. (d) Quantitative curves of C�ρ, θ� along the black line.
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This is because the paraxial illumination does not produce low-
frequency phase contrast, and only illumination matching the
objective NAobj can produce the strong response at all frequen-
cies. From the results shown in Fig. 8, it can be deduced that we
should choose the diameter of the annulus to be equal to that of
the objective pupil and make its thickness as small as possible
[i.e., the Kronecker delta weight function, δ�ρ −NAobj�] to op-
timize the response of PTF. However, in a practical imaging
system, the width of the annulus cannot be infinitesimally thin.
From the results shown in Fig. 8(c1) and Fig. 8(c2), it can be
found that although C�ρ, θ� corresponding to σ � 0.9 is
slightly inferior to that obtained when σ � 1, it can still ensure

a relatively strong response over a broad frequency range while
the light throughput can be much improved.

APPENDIX D: ANALYSIS OF INFLUENCE
OF PERIODICITY OF THE ILLUMINATION
FUNCTION ON THE FREQUENCY
RESPONSES OF PTF

Finally, to analyze the effect of number n in Eq. (A4) on
the PTF, the same L�ρ� function and different n are
adopted to generate three illumination patterns, as shown in
Figs. 9(a1)–9(a3). The PTFs obtained under these three

Fig. 8. PTF and C�ρ, θ� with different thickness of the annulus (three σ). (a1)–(a3) Illumination patterns. (b1)–(b3) PTFs along the left–right
axis. (c1)–(c3) C�ρ, θ� with two-axis illumination. (d) Quantitative curves of C�ρ, θ� along the black line.
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illumination patterns are presented in Figs. 9(b1)–9(b3). It is
shown that when n increases (n � 3, 5), not only the PTF re-
sponse is significantly attenuated, but also the number of zero
crossings in C�ρ, θ� increases. This is because the increase of n
causes more changes of periods for the illumination pattern,
resulting in a large number of positive and negative apertures
to cancel each other out, so that only a PTF with a very weak
response can be obtained. In such cases, the phase information
of the sample is hardly transmitted into the intensity, and the
reconstruction phase can be severely distorted due to the ill-
posedness of the PTF inversion. Thus, we can conclude that
n � 1 provides the optimal PTF for DPC with the strongest
response and no zero crossings from 0 to 2NAobj.

APPENDIX E: PERFORMANCE ANALYSIS OF
OPTIMAL ILLUMINATION SCHEME WITH
OPTICAL ABERRATION

Generally, the real imaging system includes optical aberrations.
In Appendix E, we evaluate the performance of the optimal
illumination scheme with optical aberration by simulating
DPC-captured images with an additional pupil aberration
error. As shown in Figs. 10(a1)–10(f1), different levels of aber-
rations are introduced to the DPC imaging system to generate
captured images. These images are used to achieve phase
reconstruction. If the system aberration is not pre-measured,
but the ideal PTF is directly used to implement the

Fig. 9. PTF and C�ρ, θ� with a different n. (a1)–(a3) Illumination patterns. (b1)–(b3) PTFs along the left–right axis. (c1)–(c3) C�ρ, θ� with two-
axis illumination. (d) Quantitative curves of C�ρ, θ� along the black line.
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phase reconstruction, the reconstructed phase is shown in
Figs. 10(a2)–10(f2). The zoom-ins of the smallest features
are displayed to compare the effects of different level aberra-
tions on the phase reconstruction results. It can be observed
that when the aberration is not big [Figs. 10(a2)–10(c2)], a
stable correct reconstruction phase can still be obtained. As
the aberration increases, the errors and artifacts in the phase
results become larger. We further extract and plot the phase
value at the diffraction limit resolution in Figs. 10(b2)–10(d2),
as shown in Fig. 10(g). Although the phase contrast of this res-
olution in different directions is reduced to varying degrees due
to the influence of the aberration, the diffraction limit resolu-
tion of Figs. 10(b2)–10(c2) still can be clearly distinguished.
Thus, we can conclude that a high-quality reconstructed
phase can still be obtained with optimal illumination when
the system aberration is not very large. In systems with large
aberrations, it is necessary to eliminate them by means of aber-
ration compensation [39].
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