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We show optical waves passing through a nanophotonic medium can perform artificial neural computing.
Complex information is encoded in the wavefront of an input light. The medium transforms the wavefront
to realize sophisticated computing tasks such as image recognition. At the output, the optical energy is concen-
trated in well-defined locations, which, for example, can be interpreted as the identity of the object in the image.
These computing media can be as small as tens of wavelengths and offer ultra-high computing density. They
exploit subwavelength scatterers to realize complex input/output mapping beyond the capabilities of traditional
nanophotonic devices. © 2019 Chinese Laser Press
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1. INTRODUCTION

Artificial neural networks (ANNs) have shown exciting poten-
tial in a wide range of applications, but they also require ever-
increasing computing power. This has prompted an effort to
search for alternative computing methods that are faster and
more energy efficient. One interesting approach is optical
neural computing [1–7]. This analog computing method
can be passive, with minimal energy consumption, and more
importantly, its intrinsic parallelism can greatly accelerate
computing speed.

Most optical neural computing follows the architecture of
digital ANNs, using a layered feed-forward network, as shown
in Fig. 1(a). Free-space diffraction [4,8] or integrated wave-
guides [1,3,9] are used as the connections between layered
activation units. Similar to digital signals in an ANN, optical
signals pass through optical networks in the forward direction
once (light reflection propagating in the backward direction is
avoided or neglected). However, it is the reflection that provides
the feedback mechanism, which gives rise to rich wave physics.
It holds the key to the miniaturization of optical devices such as
laser cavities [10], photonic crystals [11], metamaterials [12],
and ultracompact beam splitters [13–15]. Here we show that
by leveraging optical reflection, it is possible to go beyond the
paradigm of layered feed-forward networks to realize artificial
neural computing in a continuous and layer-free fashion.
Figure 1(b) shows the proposed nanophotonic neural medium
(NNM). An optical signal enters from the left and the output is
the energy distribution on the right side of the medium.
Computation is performed by a host material, such as SiO2,
with numerous inclusions. The inclusions can be air holes,
or any other material with an index different from that of

the host medium. These inclusions strongly scatter light in
both the forward and backward directions. The scattering
spatially mixes the input light, rendering it a counterpart to
linear matrix multiplication [Fig. 1(c)] in a digital ANN.
The locations and shapes of inclusions are the equivalent of
weight parameters in digital ANNs, and their sizes are typically
subwavelength. The nonlinear operation can be realized via in-
clusions made of dye semiconductors or graphene saturable
absorbers, where they perform distributed nonlinear activation.
These nonlinearities are designed with rectified linear units
(ReLUs) in mind [16], where they allow signals with intensities
above a threshold to pass and block signals with intensities be-
low that threshold. In order to better illustrate this behavior, an
implementation of such a nonlinear material has been shown in
Fig. 1(d) (more details about the nonlinearity can be found in
the supplementary materials section of Ref. [17]). Although the
value for the threshold is chosen arbitrarily here, based on the
properties of the saturable absorber that is used in practice, this
threshold can be calculated using the method explained in
Ref. [1]. This threshold also determines the minimum energy
that we have to use for our device in practice.

2. IMPLEMENTATION

Figure 2 shows an NNM in action, where a two-dimensional
(2D) medium is trained to recognize gray-scale handwritten
digits. The data set contains 5000 different images, represen-
tative ones of which are shown in Fig. 2(a). Each time, one
image, represented by 20 × 20 pixels, is converted to a vector,
and then encoded as the spatial intensity of input light incident
on the left. Inside the NNM, nanostructures create strong
interferences, and light is guided toward one of 10 output
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locations depending on the digit that the image represents,
where the output with the highest share of energy intensity
is categorized as the inferred class. Figure 2(b) shows the fields
created by two different handwritten 2 digits. Because of differ-
ent shapes, the field patterns created by these two images are
quite different, but both lead to the same hot spot at the
output, which correctly identifies the identity information as
the number 2. As another example, Fig. 2(c) shows the case
of two handwritten 8 digits that result in another hot spot.
Here, the field is simulated by solving a nonlinear wave equa-
tion using the finite-difference frequency-domain (FDFD [18])
method. The size of the NNM is 80λ by 20λ, where λ is the
wavelength of light used to carry and process the information.
The average recognition accuracy reaches over 79% for a test set
made up of 1000 images. The limited reported accuracy is due
to the heavy constraints we set during the optimization for fab-
rication concerns. These constraints keep the medium dense,
where it would have been otherwise made up of sparse sections
of air and SiO2. By relaxing these requirements or using larger
medium sizes, accuracy can be further improved.

Nonlinear nanophotonic media can provide ultra-high den-
sity by tapping into sub-wavelength features. In theory, every
atom in this medium can be varied to influence the wave propa-
gation. In practice, a change below 10 nm would be considered
too challenging for fabrication. Even at this scale, the potential

number of weights exceeds 10 billion parameters per square
millimeter for a 2D implementation. This is much greater com-
puting density than both free-space [8,19] and on-chip optical
neural networks [1,3]. In addition, NNM has a few other attrac-
tive features. It has stronger expressive power than layered optical
networks. In fact, layered networks are a subset of NNM, as a
medium can be shaped into connected waveguides as a layered
network. Furthermore, it does not have the issue of diminishing
gradients in deep neural networks. Maxwell’s equations, as the
governing principle, guarantee that the underlying linear oper-
ation is always unitary, which does not have diminishing or ex-
ploding gradients [20]. Lastly, NNMdoes not have to follow any
specific geometry, and thus it can be easily shaped and integrated
into existing vision or communication devices as the first step of
optical preprocessing.

3. TRAINING PROCESS

We now discuss the training of NNM. Although one could
envision in situ training of NNM using tunable optical materi-
als [3], here we focus on training in the digital domain and use
NNM only for inference. The underlying dynamics of the
NNM are governed by the nonlinear Maxwell’s equations,
which, in the frequency domain, can be written as

L�r,E �r��E �r� � −iωJ �r�, (1)

where L�r,E �r�� � �∇×∇×�∕μ − ω2ε�r,E �r��, and μ and ε are the
permeability and permittivity. J is the current source density
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Fig. 1. (a) Conventional ANN architecture where the information
propagates only in the forward direction (depicted by the green line
that goes through the nodes from input to output); (b) proposed
NNM. Passive neural computing is performed by light passing
through the nanostructured medium with both linear and nonlinear
scatterers. (c) Full-wave simulation of light scattered by nanostruc-
tures, which spatially redistribute the optical energy in different direc-
tions. (d) The behavior of the implementation of such a nonlinear
material in one dimension. The output intensity of light with wave-
length λ, passing through the designed nonlinear material with a
thickness of λ∕2. It is a nonlinear function of the incident wave in-
tensity. This material is used as nonlinear activation, as indicated by
light blue color.
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Fig. 2. (a) NNM trained to recognize handwritten digits. The input
wave encodes the image as the intensity distribution. On the right side
of the NNM, the optical energy concentrates to different locations
depending on the image’s classification labels. (b) Two samples of
the digit 2 and their optical fields inside the NNM. As can be seen,
although the field distributions differ for the images of the same digit,
they are classified as the same digit. (c) The same as (b) but for two
samples of the digit 8. Also, in both (b) and (c), the boundaries of the
trained medium have been shown with black borderlines (see
Visualization 1).

824 Vol. 7, No. 8 / August 2019 / Photonics Research Research Article

https://doi.org/10.6084/m9.figshare.8076272


that represents the spatial profile of the input light and is only
nonzero on the left side of the medium. Waveguide modes or
plane waves can also be used as the input, which are also imple-
mented as current sources in numerical simulation. For a
classification problem, the probability of the ith class label is
given by hi��Rdr jE �r�j2Ri�r��∕�

P
10
i�1

R
dr jE �r�j2Ri�r��, which

represents the percentage of energy at the ith receiver relative
to the total optical energy that reaches all receivers. Here the
profile function Ri�r� defines the location of receivers and is
only nonzero at the position of the ith receiver. The training
is performed by optimizing the dielectric constant ε�r,E� similar
to how weight parameters are trained in traditional neural net-
works. The cost function C is defined by the cross entropy
between the output vector h and the ground truth y:

C � −
X10
i�1

yi log�hi� � �1 − yi� log�1 − hi�: (2)

The ground truth y is a one-hot vector. Digit 8 is represented as
y � �0, 0, 0, 0, 0, 0, 0, 0, 1, 0�, for instance. The gradient of
the cost function with respect to the dielectric constant ε
can be calculated point by point. For example, one could assess
the effect of changing ε at one spatial point; the change is only
kept if the loss function decreases. This method has achieved
remarkable success in simple photonic devices [13]. However,
each gradient calculation requires solving full-wave nonlinear
Maxwell’s equations. It is prohibitively costly for NNM, which
could easily have millions of gradients. Here, we use the adjoint
state method (ASM) to compute all gradients in one step:

dC
dε�r�

� −2ω2 Realfλ�r�E �r�g: (3)

Here λ�r� is a Lagrangian multiplier, which is the solution to the
adjoint equation [Eq. (4)], in which the electric field E �r� is
obtained by solving Eq. (1). The adjoint equation here is
slightly more involved than what is generally used in inverse
design; this is due to the fact that nonlinear behavior is included
in our dynamics. A similar derivation for a nonlinear adjoint
equation is done in Ref. [21]:

∂C
∂E �r�

� λ�r�

�
L�r,E �r�� �

∂L�r,E �r��
∂E �r�

E �r�

�
� λ�r�

�∂L�r,E �r��
∂E �r�

E �r�

�

� 0: (4)

The training process, as illustrated in Fig. 3(a), minimizes the
summation of the cost functions C for all training instances
through stochastic gradient descent (SGD). The process starts
with one input image as the light source, for which we solve the
nonlinear Maxwell’s equations in an iterative process [pink
block in Fig. 3(a)]. The initial field is set to be random
E0�r�, which allows us to calculate the dielectric constant
ε�r,E0�r��. Then FDFD simulation is used to solve Eq. (1),
and the resulting electric field E1�r� is then used to update
the dielectric constant. This iteration continues until the field
converges. The next step is to compute the gradient based on
Eq. (3). Once the structural change is updated, the training of
this instance is finished.

The above process is repeated again, but for the next
different image in the training queue, instead of the same

image. This gradient descent process is stochastic, which is
quite different from the typical use of ASM in nanophotonics
[14,15], where gradient descent is performed repeatedly for
very few inputs until the loss function converges. In these tradi-
tional optimizations, the device needs to function for only those
few specific inputs. If such processes were used here, the
medium would do extremely well for particular images but fail
to generalize and recognize other images.

The gradient descent process treats the dielectric constant as
a continuous variable, but in practice, its value is discrete, de-
pending on the material used at the location. For example, in
the case of a medium with SiO2 host material and linear air
inclusions, the dielectric constants can either be 2.16 or 1.
Discrete variables remain effective for neural computing
[22]. Here, we need to take special care to further constrain
the optimization process. This is done by using a level-set func-
tion [23], where each of the two materials (host material and
the linear inclusion material) is assigned to each of the two
levels in the level-set function ϕ�r� similar to Refs. [14,15]:
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Fig. 3. (a) Training starts by encoding an image as a vector of cur-
rent source densities in the FDFD simulation. This step is followed by
an iterative process to solve for the electric field in a nonlinear medium.
Next, we use the ASM to calculate the gradient, which is then used to
update the level-set function and consequently, the medium itself.
Here we use mini-batch SGD (explained in the supplementary mate-
rials section of Ref. [17]). In training with mini-batches, we sum the
cost functions calculated for different images in the same batch and
compute the gradients. (b)–(d) show an NNM in training after 1,
33, and 66 training iterations, respectively. (After iteration 66, the
medium has already seen each of the training samples at least once,
since we are using batches of 100 images.) At each step, the boundary
between the host material and the inclusions is shown, along with the
field distribution for the same randomly selected digit 8. Also, the
accuracy of the medium on the test set can be seen for that particular
stage in training.
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ε�r� �
�
εSiO2

ϕ�r� < 0
εAir ϕ�r� > 0

: (5)

The training starts with randomly distributed inclusions, both
linear and nonlinear, throughout the host medium. The boun-
daries between two materials evolve in the training. Specifically,
the level-set function is updated by -v�r�j∇ϕj, where v�r� is the
gradient calculated by ASM, and j∇ϕj indicates the boundary
between the two constituent materials. Therefore, at each step,
this method essentially decides whether any point on the boun-
dary should be switched from one material to the other.
Nonlinear sections perform the activation function, and their
location and shape are fixed in this optimization. They could
also be optimized, which would be equivalent to optimizing
structural hyperparameters in layered neural networks [24–26].

As a specific example, we now discuss the training of the 2D
medium shown in Fig. 2. The structural evolution is shown in
Figs. 3(b)–3(d) during the training. We start by randomly seed-
ing the domain with dense but small inclusions. As the training
progresses, the inclusions move and merge, eventually converg-
ing. The recognition accuracy for both the training and test
groups improves during this process.

Next, we show another example based on a three-
dimensional (3D) medium, whose size is 4λ × 4λ × 6λ. The
inputs can be an image projected on the top surface of the
medium. For example, we use a plane wave to illuminate a
mask with its opening shaped into a handwritten digit as shown
in Fig. 4 (Visualization 2 shows how the energy distribution on
the output evolves as a handwritten digit gradually emerges as
the input). Fabricating 3D inclusions is generally difficult, but
it is much easier to tune the permittivity of materials using di-
rect laser writing [27]. Thus, here we allow the dielectric con-
stant to vary continuously. To save on computational resources,
we allow 5% variation. In experimental realization, a smaller
variation range can always be compensated for by using larger
media. The 3D trained NNM had an accuracy of about 84%
for the test set; the confusion matrix is shown in Fig. 4(b).

The better performance in comparison with the 2D implemen-
tation is due to a higher degree of freedom we allow the dielec-
tric constant to have.

4. CONCLUSION

Here we show that the wave dynamics in Maxwell’s equations is
capable of performing highly sophisticated computing. There is
an intricate connection between differential equations that gov-
erns many physical phenomena and neural computing (see
more discussion in supplementary materials), which could
be further explored. From the perspective of optics, the func-
tions of most nanophotonic devices can be described as mode
mapping [28]. In traditional nanophotonic devices, mode map-
ping mostly occurs between eigenmodes. For example, a polari-
zation beam splitter [13] maps each polarization eigenmode to
a spatial eigenmode. Here, we introduce a class of nanopho-
tonic media that can perform complex and nonlinear mode
mapping equivalent to artificial neural computing. The neural
computing media shown here have an appearance of disorder
media. It would be also interesting to see how disorder media,
which support rich physics such as Anderson localization, could
provide a new platform for neural computing. Combined with
ultrahigh computing density, NNM could be used in a wide
range of information devices as the analog preprocessing unit.
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