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Magnetic localized surface plasmon modes are supported on metallic spiral structures. Coupling mechanisms for
these metamaterial resonators, which are the joint action of magnetic and electric coupling, are studied. Based on
the strong coupling, spoof magnetic plasmon modes propagating in the backward direction are proposed along a
chain of subwavelength resonators. The theoretical analysis, numerical simulations, and experiments are in good
agreement. The proposed novel route for achieving negative-index waveguiding has potential applications in
integrated devices and circuits. © 2019 Chinese Laser Press
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1. INTRODUCTION

Texturing closed surfaces was proposed to support spoof local-
ized surface plasmons (LSPs) at the subwavelength scale [1].
This concept has attracted considerable interest because of
its ability to emulate optical frequency LSPs at much lower
frequencies. Recently, the prospect has been substantially ex-
tended with the demonstration of spoof LSP modes supported
by ultrathin and flexible metal films. [2]. This metamaterial
approach opens novel routes to bringing most of the advantages
associated with conditional LSPs from microwave to far-infra-
red frequencies, such as transport [3,4], sensors [5], and wave
control [6,7]. One of the interesting things is that a new con-
cept of magnetic localized surface plasmons is supported on
metallic spiral structures (MSSs) at a deep-subwavelength scale
[8]. Furthermore, the near-field coupling of MSS resonators is
studied. Zhang and colleagues studied the coupling mecha-
nism in stacked MSSs theoretically and experimentally
[9,10]. As mentioned in Ref. [11], the hybridization between
adjacent MSSs that supports spoof LSP was investigated at
microwave frequencies. In this case, the hybrid electric spoof
plasmon modes can be manipulated to produce enormous field
enhancement.

In negative-index materials, the wave propagates in the op-
posite direction between its phase velocity and group velocities,
which is termed a backward electromagnetic (EM) wave [12].
It has attracted considerable interest in the past decade in the
context of metamaterials [13,14] and plasmonic structures
[15–19]. The backward wave is an important property of

negative-index materials and has many application potentials,
such as perfect lenses [20,21], hyperlenses [22,23], EM cloak-
ing, advanced antenna design, and accelerator applications
[24,25]. Backward waves have also been effectively realized in
left-handed transmission lines [26,27] and many novel EM
components or antenna concepts [28].

In this paper, we introduce a new design of plasmonic meta-
material to transport backward spoof magnetic plasmon modes
by a coupling mechanism. First, we make an investigation on
the coupling mechanism in two MSS dimers by theory,
numerical calculations, and experiments. Second, we extend
these MSS dimers to MSS chains by arranging multiple par-
ticles in a line. Theoretical analysis, simulation, and measure-
ment are employed to verify that a one-dimensional chain of
MSSs can support the propagation of spoof magnetic plasmon
modes in a deep-subwavelength scale as expected. Third, we
explore the anti-parallel phase and group velocities. We believe
these results propose a flexible method to construct subwave-
length backward wave waveguides, and they are expected to be
helpful in the development of metamaterials and nanophotonic
devices.

2. SPOOF MAGNETIC LOCALIZED SURFACE
PLASMON RESONANCE

The inset of Fig. 1(a) presents the geometry of a single MSS.
The MSS structure can be characterized by four spiral arms
with width w � 1 mm. The outer radius R � 12.34 mm,
the inner radius r � 1 mm, and the spacing of neighboring
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arms a � 1 mm. By using a standard printed circuit board
fabrication, a 0.035 mm thick MSS is printed on a 0.5 mm
thick F4b dielectric substrate, which has a relative permittivity
ε � 2.5 with a loss tangent of 0.001. When introducing an
external magnetic field perpendicular to the substrate, the ex-
cited magnetic field is recorded by a probe placed 1 mm above
the center of the particle. Numerical simulations are performed
based on a commercial software package CST Microwave
Studio. The result is plotted in Fig. 1(a) as a function of fre-
quency. At about 1.872 GHz, the magnetic field reaches the
peak, indicating that a large magnetic resonance is excited in
the MSS. The current is plotted in Fig. 1(b). It shows a circu-
lating current that forms magnetic resonance along the z axis.
The magnetic field at the x � 0 plane is shown in Fig. 1(c), in
which the H-field lines circulate around the disk, as in a mag-
netic dipole. The electric field at the x � 0 plane is shown
in Fig. 1(d). Similar results have been reported by previous
works [8,11], and the mode was termed magnetic spoof
LSP resonance. In fact, there exist electric modes in the
MSS at lower frequencies. In this work, we only investigate
the coupling of the magnetic resonant modes in the MSSs.

3. TRANSPORT OF SPOOF MAGNETIC
PLASMON MODES

Before discussing the proposed waveguiding structures, we first
study an MSS dimer with separation g � 1 mm in Fig. 2(a).
An excitation source is placed beside these MSS dimer meta-
materials, and a probe is placed 1 mm above the center of the
left particle to detect the distribution of near electric field Ez .
Note that the sources are dipole in the simulation and monop-
ole in the experiment. Although the excitation methods are dif-
ferent, the excited modes are the same. The simulated near-field

response spectra of the dimer structure are shown in Fig. 2(c).
For the dimer system (red line), there are apparently two ob-
servable resonances (ω−�1.849GHz and ω��1.895GHz),
which are split from the resonance ω0 of the single MSS due
to the coupling effect. To verify the above phenomenon, a
prototype of the single MSS particle and dimer is fabricated
and measured as shown in Fig. 2(b). The near-field perfor-
mances of the proposed structures are measured by the Agilent
vector network analyzer. Figure 2(d) gives the measured near-
field response spectra results, in which good agreements are
observed between the simulations and measurements. There
are still some deviations between the simulated and measured
results. Actually, the numerical simulation results are obtained
under ideal conditions. Some machining errors and mechanical
errors are also not considered in the simulation.

To understand these spectral characteristics, the simulated
instantaneous electric field in the plane 1 mm above the
structure at the relevant resonances is shown in the inset of
Fig. 2(c). Apparently, two magnetic dipoles are excited and
coupled transversely. Comparing the two modes, the phase dif-
ference between the left and right MSSs in the dimer configu-
ration is Δφ � π at the lower resonance frequency (ω−) and
Δφ � 0 at the higher resonance frequency (ω�). This phe-
nomenon can be interpreted as plasmon hybridization
[29–31] between the two MSSs due to their close proximity
[11]. Furthermore, the experimental measurement of field dis-
tributions is carried out to demonstrate the bonding and anti-
bonding modes of the MSS dimers. The experimental
configuration is similar to the simulations above. As shown
in Fig. 2(d), the measured fields agree with the numerical
results very well.

To better understand the underlying physics of the cou-
plings, we develop a theoretical analysis based on Lagrangian

Fig. 1. (a) Magnetic field amplitude intensity detected at the center of the resonators; the inset is a schematic illustration of the metallic spiral
structure. (b) Current distribution at z � 0, (c) magnetic field at x � 0, (d) electric field at x � 0.
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formalism. We start from a single MSS and then expand it to
coupled MSS dimer systems. The MSS can be regarded as an
equivalent LC circuit. It consists of four spiral arms with
inductance L and gaps between neighboring spiral arms with
capacitance C . The resonance frequency ω0 of a single circuit
is �LC�−1∕2. If we define the charge accumulated in the MSS as

Q , the Lagrangian of an MSS can be written as Γ � L _Q2

2 − Q2

2C,

in which L _Q2

2 refers to kinetic energy from the inductances L

and Q2

2C is the electrostatic energy stored in the capacitors.
Here, we can transfer the form of 1

C as Lω2
0. Therefore, the

Lagrangian of the MSS dimer systems is a combination of
two individual MSSs with the additional electric and magnetic
coupling terms as follows:

Γ � 1

2
L� _Q2

1 � _Q2
2� −

1

2
Lω2

0�Q2
1 � Q2

2� �Mm
_Q1

_Q2

�Meω
2
0Q1Q2, (1)

where Qm is the total oscillation charge in the mth MSS,
the interaction term Mm

_Q1
_Q2 is due to magneto-inductive

coupling, and Meω
2
0Q1Q2 represents the electro-inductive

interactions between the two MSSs.
If we define that the Ohmic dissipation is neglected in the

dimer, the Euler–Lagrange equation can be written as

d

dt

�
∂Γ
∂ _Qm

�
−

∂Γ
∂Qm

� 0 �m � 1, 2�: (2)

Substituting Eq. (1) into Eq. (2), we get the coupled equation

LQ̈1 � Lω2
0Q1 �MmQ̈2 −Meω

2
0Q2 � 0: (3)

Equation (3) yields solutions in the form of harmonic
oscillations Qm � Am exp�iwt�. By solving Eq. (3), the eigen-
frequencies of the MSS dimer systems can be obtained as8<

:
ω− � ω0

ffiffiffiffiffiffiffiffi
1�κe
1−κm

q
Q1 � −Q2,

ω� � ω0

ffiffiffiffiffiffiffiffiffi
1−κe
1�κm

q
Q1 � Q2,

(4)

where ω0 is the resonance frequency of the single MSS. Here,
κm � Mm∕L and κe � Me∕L are the normalized coefficients of
the magnetic and electric couplings for the MSS dimer, respec-
tively. Since we have already obtained the eigen-frequencies of
the two coupled cases from the above simulated analysis, the
corresponding coefficients are estimated to be κm � −0.0061
and κe � −0.0184. It is evident that the electric coupling
strength is larger than the magnetic coupling strength, which
means electric interaction dominates in the MSS dimer system.

Furthermore, we extend this MSS dimer to a chain of MSS
resonators. Such chains can be utilized as a waveguide, similar
to previous coupled resonator optical waveguides (CROWs)
[32,33]. The diameter of the MSS is about 25 mm, which
is far smaller than the operating wavelength (∼160 mm).
Because of the subwavelength size and confinement in the
transverse dimension, it can be regarded as a subwavelength
waveguide based on the coupling between magnetic resonan-
ces. The magnetic resonance and interaction model described
above can also be employed to investigate an infinite chain of
MSSs. Indeed, if we regard MSS resonators as an ideal magnetic
dipoles model, which constitutes a one-dimensional array and
assumes that only the nearest neighbor units can interact with
each other, the Lagrangian of the chain system can be written as
follows:

Fig. 2. Simulation and measurement setups of the MSS dimers are shown in (a) and (b), respectively. The near-field response spectra for a single
MSS (black line) and MSS dimer (red line) in (c) simulations and (d) measurements. The insets correspond to the electric field maps for the split
higher and lower modes, respectively.
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Substituting Eq. (5) into the Euler–Lagrangian equations, we
can get the following equation for the MSSs chains:

LQ̈m �MmQ̈m�1 �MmQ̈m−1 −Meω
2
0Qm�1 � Lω2

0Qm

−Meω
2
0Qm−1 � 0: (6)

The general solution of Eq. (6) corresponds to a travelling wave
Qm�t� � A0 exp�iωt − imkd�, where ω and k are the angular
frequency and wave vector, respectively, and d is the period
of the MSS chains. By substituting Qm�t� into Eq. (6), the
relationships for dispersion can be solved as follows:

ω � ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2κe cos �kd �
1� 2κm cos �kd �

s
, (7)

where ω0 is the resonance frequency of the individual MSS.
Pictures of the dispersion property with period d � 25.68 mm
(black line) are shown in Fig. 3.

To demonstrate the validity of the predictions in another
way, coupled mode theory is also applied. We describe the
coupled MSS dimer system as follows:(

− da1
dt � iω0a1 � iκω0a2,

− da2
dt � iω0a2 � iκω0a1,

(8)

where a1 and a2 represent resonance fields in each MSS reso-
nator, and ω0 is the magnetic resonance frequency in a single
MSS. By solving the eigen-value problem in Eq. (7), the
normalized orthogonal eigen-solutions of � a1 a2 �T are
� 1 −1 �T and � 1 1 �T , corresponding to the antiparallel mag-
netic dipole moments mode and the parallel magnetic dipole
moments, respectively. We can solve the corresponding ei-
gen-frequencies as ω1−1 � ω0 − κω0 and ω11 � ω0 � κω0.

After substituting ω0�1.872GHz, ω1−1�1.849GHz, and
ω11 � 1.895 GHz, we can obtain the coupling factor as
κ � ω11−ω1−1

2ω0
� 0.0123. Here the MSSs chain is similar to pre-

vious CROWs [3,32]. Therefore, the intrinsic dispersion
relation can be obtained as ω � ω0�1� 2κ cos�kd��, where
k is the wave vector and d is the period of the waveguide.
Apparently, the magnitude of κ determines the coupling
strength, and the sign affects the relation between the wavevec-
tor and frequencies. We plot the dispersion curves of an infinite
chain of MSSs with symbols in Fig. 3. As expected, the disper-
sion curve is overlapping with the line from the Lagrangian
analytical mode, illustrating that our analysis is efficient.

To further prove the validity of our theory, we use the finite
element method (Software HFSS) to perform numerical sim-
ulations. In the simulation, the perfectly matched layer (PML)
boundaries are defined in the x direction and z direction.
Master and slave boundaries are then applied in the y direction.
The phase difference is defined and is used for sweeping. By
eigen-mode analysis, the dispersion relation is obtained, as
shown in Fig. 3. We found that the simulated result has a
similar dispersion with two theoretical models. The operating
frequency band of the simulation has a 0.02 GHz (about 1%
of resonance frequency) shift. This is because our theoretical
calculations are based on CST’s results. The two softwares in-
volve two different computational techniques, which are the
finite integration technique (FIT) and finite element method
(FEM). Beyond that, the theory analysis only calculated the
coupling between nearest neighbor units. However, the simu-
lation considered the effects from all particles. As a result, we
found that analytical and numerical estimated dispersion is
divided into two parts by the light line. The part below the
light line indicates that the infinite MSS chain has transmission
band and confinement capacity.

Inspired by the above results, we constructed a chain that
consists of 40 MSS particles. Numerical simulations are still
performed using the commercial solver (CST). A dipole beside
the left side of the chain was defined as the excitation source
so the magnetic field can excite the magnetic resonance in the
MSS chain. The magnetic fields in the planes z � 1 mm and
y � 0 are plotted in Figs. 4(b) and 4(c) at 1.86 GHz. It is
shown that the magnetic resonances were excited in the MSSs
in the direction perpendicular to the chain, which forms
coupled magnetic resonance modes and propagation. Unlike
the surface plasmon resonances in metal nanoparticles and
spoof surface plasmons in structured metamaterials, this spoof
plasmonic behavior is a magnetic induction method. We call
such coupling of external electromagnetic waves with a strong
magnetic response “magnetic plasmons” (MPs)

From the dispersion relations in Fig. 3, we observe an in-
crease in deviation of the dispersion curve with respect to the
light line as frequency decreases, which implies a stronger field
confinement. To show the sub-wavelength property, we also
investigate the magnetic field amplitudes along the z axis at
the center of the seventh MSS at 1.84, 1.86, and
1.88 GHz. The magnetic fields clearly decay exponentially
along the z direction. The field is confined in the space ranging
from z � −25 mm to 25 mm, which is smaller than the
wavelength in free space (160 nm). The strong confinement

Fig. 3. Dispersion diagrams of infinite chains of metallic spiral
structures based on Lagrangian analytical mode (black line), coupled
mode theory (red symbols), and numerical simulation (square sym-
bols). The blue dash line is the dispersion of the light in free space.

Research Article Vol. 7, No. 3 / March 2019 / Photonics Research 277



illustrates the typical features of magnetic plasmon modes.
Figure 5(b) shows the field distributions of 1.84 and 1.88 GHz
in the cross section perpendicular to the y axis [red dash line
in Fig. 4(a)]. The local field is confined in a small region.
Moreover, as the frequency decreases from 1.88 to 1.84 GHz,
confinement tightens and field enhancement increases, which
is consistent with the dispersion relation.

Figure 6 depicts the magnetic field distributions along an
observation line [blue line in Fig. 4(a), about 7.5λ long] lying
1 mm above along the MSS chain for several specific frequen-
cies. The field intensity and propagating length are consistent
with previous estimations of dispersion. At 1.88 GHz, the
propagating length is short because the dispersion is close to
the light, resulting in weak confinement and radiation loss.
As the frequency decreases from 1.88 to 1.86 GHz, the
deviation of the dispersion with the light increases. Then
the field confinement increases and results in a longer transmis-
sion distance and higher intensity. At 1.86 GHz, we get the best
performance in transmission. The propagation efficiency was as
high as 90% when traveling 400 mm and about 50% in the
range of 1000 mm. However, when the frequency reaches

1.84 GHz, tighter confinement generates more loss and brings
bad effects to the transmission. At 1.82 GHz, there is no energy
transportation in the chain because it is out of the transmis-
sion band.

To demonstrate the transport of the proposed spoof mag-
netic plasmon modes in subwavelength scales, we constructed a
chain that consists of 10 MSS particles to measure the trans-
mission spectra, as shown in Fig. 7. We found a transmission
band from 1.84 to 1.88 GHz, which is consistent with the
magnetic distributions in Fig. 6 and the dispersion in Fig. 3.
We also simulated the transmission spectra (red line) of this
MSS chain, whose frequency range matches well with the mea-
sured results. Figure 7(c) presents the simulated amplitude of
electric field Ez in the plane 1 mm above the structure. The
pattern shows that magnetic dipole modes propagate along
the MSS chain. Because of the mismatching at the end of
the waveguide, the standing wave leads to some fluctuations
in field distribution, which also appear in the transmission line
in Fig. 6. We also measured and illustrated the field distribu-
tion along this chain in Fig. 7(d). The experimental results
match well with the simulation, whose mode profiles do not

Fig. 4. (a) Geometry of MSS chain. The red dash line indicates the observed cross section. The blue line indicates the observation line. The
magnetic fields in the z � 1 mm plane and y � 0 plane are presented in (b) and (c), respectively.

Fig. 5. (a) Magnetic field distributions along the z axis; (b) magnetic field distributions on the cross sections of the MSS chain at 1.84 and
1.88 GHz.
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Fig. 6. Magnetic field distributions along the MSS chain at different frequencies.

Fig. 7. (a) Simulation and experimental setup, (b) simulated and measured transmission spectra for the metamaterial resonator waveguides that
consist of 10 MSSs, (c) simulated and (d) experimental amplitude of electric field Ez above the waveguide.
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have obvious change during energy transportation. Note that
there is some discrepancy in the magnitudes of simulation
and measurement results. This is because in the measurement
setup, the parameters (size, material, volume, etc.) of the probe
we used may vary from the ideal probe in the simulation.
Besides, fixing the probe exactly at 1 mm above the surface
of the prototype is very difficult in the experiment, a factor that
also affects the magnitudes of the measurement results. All
the above factors will cause variance of the amplitude but will
not affect the profiles of the transport magnetic modes, as we
can see in the figures.

The parametric study is very important for understanding
and application of this waveguide. The effect of geometric
parameters of the discrete MSS is contained in the simulation
process [8], so we focus on the separation between MSSs.
The effects of the gap on the resonant frequencies of the
MSS dimers are shown in Fig. 8(a). When the gap size is gra-
dually increased from 0.5 to 10 mm, the splitting of the bond-
ing and antibonding modes decreases as the mutual coupling
decreases. The increase of the separation not only leads to the
approach of all the resonance peaks as expected, but also re-
sults in the intensity reduction of the resonance modes.
Figure 8(b) explores the dependence on g of the resonant fre-
quency of the MSS dimers. Figure 8(c) depicts the dispersions
for the MSS chains with different gaps, which are solved by
analytical models. The direct comparison among the four lines
indicates that the MSS chain has a wider transmission band-
width as the gap decreases. As anticipated, the comparison of
transmission in Fig. 8(d) evidences that the bandwidth with
g � 1 mm is extended to triple the width with g � 10 mm.

In addition, the propagating intensity increases to more than
4 times, because a bigger wave number with g � 10 mm in
such frequency bands leads to tighter confinement and
more loss.

4. BACKWARD PROPAGATION OF SPOOF
MAGNETIC PLASMON MODES

Besides energy transportation, it is apparent that the dispersion
of the magnetic plasmons in the MSS chains shows anti-parallel
phase and group velocities, which means a backward wave in a
negative-index waveguide. To demonstrate our predictions,
Fig. 9 presents the simulated instantaneous magnetic field in
the plane 1 mm above the chain, in which the red and blue
colors indicate positive and negative values, respectively. We
found that the phase difference between two MSS disks
(kd ) is 4π∕5 at 1.84 GHz, 2π∕3 at 1.85 GHz, and 4π∕7
at 1.86 GHz in simulations. This is to say that the wave vector
decreases as the frequency increases, indicating a backward
wave. The backward spoof magnetic plasmon wave supported
in the MSS chain at 1.86 GHz is also demonstrated by the
simulated movie (see Visualization 1). This kind of subwave-
length negative-index waveguide may be used efficiently in
microwave applications, such as a new type of forward wave
directional coupler [19,34], leaky-wave antennas with beam
scanning capability [35], backward phase-matching [36], and
power dividers. In addition, the MSS chain might be extended
to novel 2D (or even 3D), a real negative-index material, with
their full set of extraordinary properties, such as reversal of
Snell’s law, Doppler effect, and Cerenkov radiation.

Fig. 8. (a) Simulation of transmission spectra for adjacent MSSs with varying gap size from 10 to 0.5 mm. (b) Resonance frequency
of two modes as a function of gap size. (c) Dispersion relation with different gap sizes. (d) Transmissions of MSS chains with different
gap sizes.

280 Vol. 7, No. 3 / March 2019 / Photonics Research Research Article

https://doi.org/10.6084/m9.figshare.7527770


5. SUMMARY

In conclusion, we have proposed and studied subwavelength
MSS chains, which support spoof magnetic plasmon trans-
mission. The numerical simulations, theoretical analysis, and
the measurements demonstrate that the surface wave can be
confined in a subwavelength scale. Moreover, backward waves
have been observed. Although all our work was carried out in
the microwave frequency band, the proposed structures and
results can be extended to higher frequencies. We believe that
such subwavelength spoof magnetic plasmon waveguides have
very promising applications in subwavelength devices and
systems.
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