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We have developed a numerical framework that allows estimation of coherence in spatiotemporal and spatio-
spectral domains. Correlation properties of supercontinuum (SC) pulses generated in a bulk medium are inves-
tigated by means of second-order coherence theory of non-stationary fields. The analysis is based on simulations
of individual space–time and space–frequency realizations of pulses emerging from a 5 mm thick sapphire plate,
in the regimes of normal, zero, and anomalous group velocity dispersion. The temporal and spectral coherence
properties are analyzed in the near field (as a function of spatial position at the exit plane of the nonlinear
medium) and as a function of propagation direction (spatial frequency) in the far field. Unlike in fiber-generated
SC, the bulk case features spectacularly high degrees of temporal and spectral coherence in both the spatial and
spatial-frequency domains, with increasing degrees of coherence at higher pump energies. When operating near
the SC generation threshold, the overall degrees of temporal and spectral coherence exhibit an axial dip in the
spatial domain, whereas in the far field, the degree of coherence is highest around the optical axis. © 2019
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1. INTRODUCTION

Nonlinear propagation of a laser pulse in a transparent nonlin-
ear material produces large-scale spectral broadening, termed
supercontinuum (SC) generation [1,2]. SC presents a unique
source of ultrabroadband radiation, which finds numerous ap-
plications in nonlinear optics and photonics. SC generation is
often regarded as a white-light laser; to this end, its coherence
properties are of major importance, especially considering the
generation of diffraction-limited beams with excellent focus-
ability and ultrabroadband pulses that are compressible to
the transform limit, i.e., down to the few optical cycle duration.

SC pulse trains generated in microstructured fibers are rep-
resentative examples of stochastic pulse trains, for which the
temporal and spectral coherence properties are typically partial.
The pioneering studies of spectral coherence of fiber-generated
SC made use of the Dudley–Coen coherence function [3,4],
which is readily measurable but of first order in the sense that
it depends on a single frequency (wavelength) only. A complete
description of the temporal and spectral coherence properties of
pulsed optical fields (up to second order in the classical sense)
requires knowledge of the two-time and two-frequency corre-
lation functions [5], known as the mutual coherence function
(MCF) and the cross-spectral density (CSD) function. These
two-coordinate functions can be constructed by using appro-
priate ensemble averages over temporal and spectral realizations

of individual pulses taken from a pulse train. When evaluated at
a single instant of time, the MCF reduces to the mean temporal
intensity of the pulses, whereas the CSD evaluated at a single
frequency gives the mean power spectrum. By a suitable nor-
malization, the MCF gives the complex degree of coherence of
light between any two instants of time, whereas a normalized
form of the CSD gives the corresponding degree of coherence
of light between two arbitrary frequencies. Knowledge of the
MCF and CSD at a single plane allows one to predict the
spatiotemporal evolution of the light field and to forecast
the outcome of various optical experiments.

In recent years, the two-time and two-frequency coherence
properties of fiber-generated SC pulse trains have been studied
rather extensively using simulated field realizations in various
excitation conditions to construct the appropriate correlation
functions, and the subject is now well understood [6–10].
No such detailed studies have been conducted for SC light gen-
erated in bulk media, which is the topic of the present work. In
the few existing studies of temporal coherence properties of
bulk-generated SC [11,12], coherence was characterized as a
function of the time delay only. While such an approach is ap-
propriate for stationary light, it is inadequate for a full statistical
description of pulsed light.

Simulation of SC field realizations in fibers is relatively
straightforward because of the guided-wave nature of the field
[1,4]. Diffraction effects become prominent in bulk media,
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and, as a result, one should expect that the temporal and spec-
tral coherence of the SC changes also as a function of spatial
position at the exit plane of the medium. Addition of the
diffraction process in SC generation increases the complexity
of calculations considerably. Nevertheless, due to recent increase
in computational power, numerical simulation of individual
fields undergoing SC generation is possible. SC generation in
bulk media appears to be a complex process that involves an in-
tricate coupling between spatial and temporal effects: diffraction,
chromatic dispersion, self-focusing, self-phase modulation, and
multiphoton absorption or ionization. As a result, the laser beam
transforms into a narrow light channel, termed light filament,
while simultaneously the temporal pulse may undergo dramatic
transformations: pulse splitting or compression, pulse-front
steepening, and generation of optical shocks [13]. These trans-
formations together produce broadband radiation with a non-
trivial angular divergence that is accompanied by the generation
of colored conical emission [2,13]. Statistical studies of bulk-
generated SC have uncovered spectral, temporal, and spatial
correlations between SC components, showing that these corre-
lations exhibit complex evolutions as functions of the pump
pulse energy [14–16]. In this paper, we numerically study the
different coherence properties of bulk-generated SC by means
of the mutual coherence and CSD functions.

The paper is organized as follows. Relevant measures of
second-order coherence are introduced in Section 2, and
extended to the far zone in Section 3. Section 4 describes
the numerical model for SC generation in bulk, while the
numerical results of SC generation in sapphire are presented
in Section 5 in the ranges of normal, zero, and anomalous
group velocity dispersion. Section 6 contains a systematic study
of coherence properties of bulk-generated SC, and some re-
marks and possible further direction of the work are presented
in Section 7.

2. MEASURES OF SECOND-ORDER
COHERENCE

Let us consider a pulse propagating in the forward z direction
and restrict coherence analysis only in the positive half-space
z > 0. We denote the electric field of a single realization as
E�ρ; t� in the time domain, and as Ẽ�ρ;ω� in the frequency
domain. Here, ρ � �x, y� is taken to denote a lateral position at
the exit plane of the bulk medium, and the two electric fields
are connected by the Fourier relationship

E�ρ; t� �
Z

∞

0

Ẽ�ρ;ω� exp�−iωt�dω: (1)

Note that in the following, all spectral domain quantities
(fields) will be denoted by a tilde. The angular spectrum of
the field is defined as

A�κ; t� � 1

�2π�2
Z

∞

−∞
E�ρ; t� exp�−iκ · ρ�d2ρ (2)

in the time domain, and as

Ã�κ;ω� � 1

�2π�2
Z

∞

−∞
Ẽ�ρ;ω� exp�−iκ · ρ�d2ρ (3)

in the frequency domain. Here, κ � �kx , ky� is the spatial-
frequency vector, and, due to Eq. (1), the quantities A�κ; t�

and Ã�κ;ω� are also connected to each other via a Fourier
relationship.

Second-order coherence functions are defined as ensemble
averages over individual pulse realizations. In the spatial do-
main, the coherence properties of light between two space–time
points �ρ1; t1� and �ρ2; t2� at the exit plane are characterized by
the MCF

Γ�ρ1, ρ2; t1, t2� � hE��ρ1; t1�E�ρ2; t2�i: (4)

Correlations between two space–frequency points �ρ1;ω1�
and �ρ2;ω2� at the exit plane are characterized by the CSD
function

W �ρ1, ρ2;ω1,ω2� � hẼ��ρ1;ω1�Ẽ�ρ2;ω2�i: (5)

In the spatial-frequency domain, one can similarly define the
temporal angular correlation function (TACF)

G�κ1, κ2; t1, t2� � hA��κ1; t1�A�κ2; t2�i (6)

and the spectral angular correlation function (SACF)

T �κ1, κ2;ω1,ω2� � hÃ��κ1;ω1�Ã�κ2;ω2�i: (7)

In Eqs. (4)–(7), the asterisk denotes complex conjugation, and
the angle brackets denote averages of the form

hf �x�i � lim
N→∞

1

N

XN
n�1

f n�x�, (8)

where f n�x� is an individual realization taken from the statis-
tical ensemble. In the spatial domain, we define the temporal
intensity of light as I�ρ; t� � Γ�ρ, ρ; t , t� and the power spec-
trum as S�ρ;ω� � W �ρ, ρ;ω,ω�, i.e., the intensity informa-
tion of the field is given by the diagonal of the correlation
function. Correspondingly, in the spatial-frequency domain,
the temporal intensity is I�κ; t� � G�κ, κ; t , t�, and the power
spectrum is S�κ;ω� � T �κ, κ;ω,ω�. The intensities and spec-
tral densities can be used to normalize the correlation functions,
such that

γ�ρ1, ρ2; t1, t2� �
Γ�ρ1, ρ2; t1, t2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I�ρ1; t1�I�ρ2; t2�

p , (9)

μ�ρ1, ρ2;ω1,ω2� �
W �ρ1, ρ2;ω1,ω2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S�ρ1;ω1�S�ρ2;ω2�

p , (10)

g�κ1, κ2; t1, t2� �
G�κ1, κ2; t1, t2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I�κ1; t1�I�κ2; t2�

p , (11)

ν�κ1, κ2;ω1,ω2� �
T �κ1, κ2;ω1,ω2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S�κ1;ω1�S�κ2;ω2�

p : (12)

These degrees of coherence in various domains are generally
complex-valued, but their absolute values are bounded between
zero and unity. These limits represent incoherence and
complete coherence, respectively, between two points in a four-
dimensional space. Fourier-type relationships between the
coherence functions defined in Eqs. (4)–(7) can be written
straightforwardly using Eqs. (1)–(3).

In this work, we restrict our attention to temporal and
spectral coherence properties of SC light at a single spatial point
ρ1 � ρ2 � ρ, or at a single spatial frequency κ1 � κ2 � κ.
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In other words, we do not consider the two-point spatial or
angular coherence properties of the pulse train but concentrate
on its spatial and spatial-frequency auto-correlation functions.
We make direct use of the definitions in Eqs. (4)–(7) by
inserting simulated pulse realizations into them, instead of
using the relationships between the different correlation func-
tions to determine one from another. It is nevertheless instruc-
tive to insert Eq. (2) into Eq. (6), and Eq. (3) into Eq. (7),
which yields

G�κ1, κ2; t1, t2� �
1

�2π�4
ZZ

∞

−∞
Γ�ρ1, ρ2; t1, t2�

× exp�i�κ1 · ρ1 − κ2 · ρ2��dρ1dρ2 (13)

and

T �κ1, κ2;ω1,ω2� �
1

�2π�4
ZZ

∞

−∞
W �ρ1, ρ2;ω1,ω2�

× exp�i�κ1 · ρ1 − κ2 · ρ2��dρ1dρ2: (14)

If we write κ1 � κ2 � κ, this relation shows that the spectral
coherence properties of the field at any single spatial frequency
depend on the spectral and spatial coherence properties of the
field at all spatial points across the exit plane of the bulk
medium. Similarly, the temporal coherence properties of the
pulse train at any single spatial frequency depend on the spatial
and temporal coherence of the field at all points in the exit
plane. Corresponding conclusions in the time domain can
be drawn from Eq. (13).

The position-dependent overall degrees of temporal and
spectral coherence, γ̄�ρ� and μ̄�ρ�, are defined, respectively,
as [17–19]

γ̄2�ρ� �
RR

∞
−∞ jΓ�ρ, ρ; t1, t2�j2dt1dt2RR
∞
−∞ I�ρ; t1�I�ρ; t2�dt1dt2

(15)

and

μ̄2�ρ� �
RR

∞
0 jW �ρ, ρ;ω1,ω2�j2dω1dω2RR
∞
0 S�ρ;ω1�S�ρ;ω2�dω1dω2

: (16)

Correspondingly, the single-spatial-frequency angular degrees
of temporal and spectral coherence, ḡ�κ� and ν̄�κ�, are defined,
respectively, as

ḡ2�κ� �
RR

∞
−∞ jG�κ, κ; t1, t2�j2dt1dt2RR∞
−∞ I�κ; t1�I�κ; t2�dt1dt2

(17)

and

ν̄2�κ� �
RR∞

0 jT �κ, κ;ω1,ω2�j2dω1dω2RR∞
0 S�κ;ω1�S�κ;ω2�dω1dω2

: (18)

It is straightforward to show that γ̄�ρ� � μ̄�ρ� for any ρ and
ḡ�κ� � ν̄�κ� for any κ.

Measuring the two-time and two-frequency correlation
functions of SC light directly is a rather difficult task. In prin-
ciple one could measure individual pulse realizations and con-
struct the MCF and CSD function using the basic definitions
in Eqs. (4) and (5), but such measurements are complicated
because of the complex temporal and spectral structures
of the pulses [20]. The use of time-resolved Michelson
interferometry has also been proposed [21,22] but not yet fully
demonstrated. In the case of fiber SC, most of the information

on second-order coherence properties has indeed been retrieved
by somewhat indirect techniques [10].

3. PROPAGATION INTO THE FAR ZONE

The term angular in TACF and SACF is perhaps somewhat
deceptive, as these functions (evaluated at a single spatial fre-
quency κ) do not describe temporal and spectral correlations in
a fixed physical propagation direction directly. To illustrate why
this is the case, we employ the spherical polar angles θ and ϕ, so
that the wave vector k in the direction of unit vector

ŝ � �sx , sy, sz� � �σ̂, sz� � �sin θ cos ϕ, sin θ sin ϕ, cos θ�
(19)

is given by

k � �kx , ky, kz� � �κ, kz� � kŝ, (20)

where k � jkj � ω∕c, and c is the speed of light in vacuum.
From Eq. (20), it is clear that in addition to being dependent
on physical propagation angles, the spatial frequencies also
change as a function of ω. We can express the position vector
in the far zone in a similar manner, so that

r � �x, y, z� � �ρ, z� � r ŝ, (21)

and we consider propagation of light into the positive half-space
z > 0, and more specifically, to the far zone where propagation
distance z is much larger than the Rayleigh range zR � kw2

0∕2,
with w0 being the effective radius of the beam at the exit plane.
The spectral electric field at a position r in the far zone is given
by (see, e.g., Eq. (3.2-88) in Ref. [23])

Ẽ �∞��r;ω� � −i2πkszÃ�kσ̂;ω�
exp�ikr�

r
, (22)

where Ã�kσ̂;ω� is the frequency-domain angular spectrum de-
fined in Eq. (3), evaluated at spatial frequencies κ � ωσ̂∕c.

The CSD function at a spatial point r in the far zone, which
is the true measure of far-zone spectral coherence properties of
the field, is defined in analogy with Eq. (5) as

W �∞��r, r;ω1,ω2� � hẼ �∞���r;ω1�Ẽ �∞��r;ω2�i: (23)

On inserting from Eq. (22), we have

W �∞��r, r;ω1,ω2� � �2πsz�2
ω1ω2

c2
T �k1σ̂, k2σ̂;ω1,ω2�

×
exp�i�k2 − k1�r�

r2
, (24)

where T �k1σ̂, k2σ̂;ω1,ω2� is the SACF given by Eq. (7),
evaluated at two different frequencies ω1 � k1c and ω2 �
k2c, towards the same propagation direction σ̂1 � σ̂2 � σ̂.
The spectral density in the far zone is given by

W �∞��r, r;ω,ω� � S�∞��r;ω� �
�
2πksz
r

�
2

S�kσ̂;ω�, (25)

and the complex degree of spectral coherence at a point r in the
far zone has the form

μ�∞��r, r;ω1,ω2� �
T �k1σ̂, k2σ̂;ω1,ω2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S�k1σ̂;ω1�S�k2σ̂;ω2�

p : (26)

The effective degree of spectral coherence at point r, μ̄�∞��r�, is
defined in analogy with Eq. (16), and it appears to have no
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simple relation to the spatial-frequency-domain effective degree
of spectral coherence ν̄�κ�.

The relationship between the MCF in the far zone and the
TACF defined in Eq. (6) is even less transparent. The temporal
field at position r in the far zone is

E �∞��r; t� �
Z

∞

0

Ẽ �∞��r;ω� exp�−iωt�dω, (27)

which is analogous to Eq. (1). On inserting from Eq. (22),
we have

E �∞��r; t� � −
i2πsz
rc

Z
∞

0

ωÃ�kσ;ω� × exp�−iω�t − r∕c��dω,

(28)

where t − r∕c represents retarded time. The single-point MCF
in the far zone, defined as

Γ�∞��r, r; t1, t2� � hE �∞���r; t1�E �∞��r; t2�i, (29)

then takes on the form

Γ�∞��r, r; t1, t2� �
�
2πsz
rc

�
2
ZZ

∞

0

T �k1σ̂, k2σ̂;ω1,ω2�

× ω1ω2 exp�ir�k2 − k1��
× exp�i�ω1t1 − ω2t2��dω1dω2: (30)

To evaluate Γ�∞��r, r; t1, t2� from the time-domain realizations
E�ρ, t�, one should first construct the SACF, express it as a
function of spatial frequencies �k1σ̂, k2σ̂�, and then apply
Eq. (30). The temporal intensity I �∞��r, t� and the complex
degree of temporal coherence γ̄�∞��r, r; t1, t2� at a point r in
the far zone can then be evaluated, as well as the effective degree
of temporal coherence γ̄�∞��r�. Again, there seems to be no sim-
ple relationship between γ̄�∞��r� and ḡ�κ�.

For sufficiently narrowband fields, one may approximate
k1 � k2 � k0 in T �k1σ̂, k2σ̂;ω1,ω2� and also write
ω1ω2 ≈ ω2

0 in Eqs. (24) and (30). Then the relationship be-
tween the far-zone CSD function and MCF and the angular
correlation functions are simplified, and Eq. (30) becomes

Γ�∞��r, r; t1, t2� �
�
2πszk0

r

�
2

G�k0σ̂, k0σ̂; t1, t2�: (31)

The relations simplify also for broadband fields provided that
they are (at least approximately) cross-spectrally pure [24] in
the far zone, in the sense that

T �k1σ̂1, k2σ̂2;ω1,ω2� � T σ�k0σ̂1, k0σ̂2�T ω�ω1,ω2�: (32)

However, in our case, SC-generated pulses do not satisfy this
condition, as their far-zone diffraction patterns appear
distinctly colored.

4. NUMERICAL SIMULATION METHOD

In order to numerically investigate second-order coherence
measures, we had to produce a statistically reasonable number
of individual spatiotemporal electric field distributions at the
exit plane of the nonlinear crystal. We chose a 5 mm thick sap-
phire crystal as a nonlinear material for SC generation. Sapphire
is a widely used nonlinear material, which serves for generation
of highly stable and reproducible SC spectra in the visible and
near-IR spectral ranges; see, e.g., Refs. [2] and [25].

The single-pulse nonlinear propagation in bulk material was
numerically simulated by solving a unidirectional nonparaxial
propagation equation for the pulse envelope Ã�κ,ω; z�, in the
frequency domain assuming rotational symmetry [26]:

∂Ã�κ,ω; z�
∂z

� i
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2�ω� − κ2
p

− k�ω0� − kg�ω0�
�
× Ã�κ,ω; z�

� i
ω

2n�ω�c ϵ
−1
0

�
P̃�κ,ω; z� � i

J̃�κ,ω; z�
ω

�
: (33)

Here, ϵ0 is the vacuum permittivity, k�ω� � kn�ω� denotes the
dispersion relation of the medium, and n�ω� is the refractive
index calculated from the Sellmeier equation [27].
Additionally, kg�ω� � kng�ω�, where ng�ω� is the group index.

The nonlinear polarization P�ρ, t ; z� and current source
J�ρ, t; z� terms were computed in the space–time domain, with

ϵ−10 P�ρ, t ; z� � 2n0n2jE�ρ, t; z�j2E�ρ, t ; z�, (34)

ϵ−10 J�ρ, t; z� � n0c
�
σB�1� iω0τc�ρe

� Ug
W �ρ, t ; z�
jE�ρ, t ; z�j2

�
1 −

ρe
ρnt

��
E�ρ, t ; z�,

(35)

where n0 � n�ω0� and n2 are the linear and nonlinear refrac-
tive indices, respectively, σB is the cross section for inverse
Bremsstrahlung, τc � 1 fs is the effective electron collision
time, ρnt � 2.35 × 1022 cm−3 is the density of neutral mole-
cules, and ρe is the density of free electrons in the conduction
band.

The intensity-dependent photoionization rateW was calcu-
lated from Keldysh’s theory with electron–hole mass ratio
m� � 1 and assuming the band gap of sapphire to be
Ug � 9.9 eV [27]. Finally, free-electron generation was
simulated using a rate equation describing the evolution of
the density of electrons in the conduction band:

∂ρe
∂t

�
�
1 −

ρe
ρnt

�
×
�
W �ρ, z; t� � σB

U g
jE�ρ, z; t�j2ρe

�
−
ρe
τrec

,

(36)

where the terms on the right-hand side stand for photoioniza-
tion, avalanche ionization, and recombination, respectively,
with τrec � 100 ps as the free-electron recombination
time [28].

The numerical simulations were performed with 30 μm full
width at half-maximum (FWHM) diameter and 100 fs
FWHM duration input pulses having central wavelengths of
800 nm, 1300 nm, and 2000 nm, at varying pump pulse en-
ergy levels. These wavelengths were chosen to investigate co-
herence in three different dispersion regimes around the
central wavelength of normal, zero, and anomalous group
velocity dispersion, respectively. The relevant parameters of
sapphire for these particular wavelengths are presented in
Table 1.

In the following numerical simulations, we start from a
transform-limited pulse and add one photon per frequency
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noise as is commonly applied in numerical simulations of SC
generation in fibers [1,30], and additionally introduce 0.5%
normally distributed energy fluctuations to mimic intrinsic
laser pulse energy fluctuations. The seed for the random number
generator is the same for different pulse ensembles (datasets) so
as to reduce the impact of different noise fluctuations on coher-
ence measures. The main impact on coherence measures comes
from the energy fluctuations, while the one photon per mode
noise does not produce any noticeable impact. The numerical
grid size and discretization are the same for all the pulses.

5. SIMULATION RESULTS

Temporal dynamics and spectral broadening around the
threshold of SC generation in a bulk medium are very sensitive
to energy fluctuations of the incident pulse [31]. This is illus-
trated in Fig. 1, which shows the evolutions (in logarithmic
scale) of on-axis intensity profiles and spectra at the output
plane of the sapphire sample versus the pump pulse energy.

It is noteworthy how narrow the energy intervals are where
dramatic changes in the temporal and spectral domains occur.
In Fig. 1, the left column shows the on-axis temporal pulse
intensity profiles normalized to the maximum of each energy
slice, whereas the right column represents the axial spectral dis-
tributions (in logarithmic scale) for the same pulses. Pulse split-
ting in the temporal domain is observed in the cases of normal
and zero dispersion, while the pulse undergoes spatiotemporal
compression in the case of anomalous dispersion. The pulse
splitting or compression events are accompanied with abrupt
spectral broadening, which marks the onset of SC generation.
The threshold energies needed to generate SC in these condi-
tions are 0.28 μJ, 0.56 μJ, and 1.175 μJ for pulses with central
wavelengths of 800 nm, 1300 nm, and 2000 nm, respectively.
In Fig. 1, it is clear that in the vicinity of the SC generation
threshold, the temporal and spectral profiles of output pulses
change a lot by a small change in input pulse energy.

The key difference from SC generation in fibers is the ability
of the beam to self-focus during propagation in the material,
which effectively generates many additional transverse modes
especially in the nonlinear focus. The evolution of the beam
radius upon propagation through the crystal is shown in
Fig. 2 with pump energies of 0.282 μJ, 0.569 μJ, and
1.175 μJ for wavelengths of 800 nm, 1300 nm, and 2000 nm,
respectively. These energies were chosen such that they are

slightly above the threshold of SC generation and produce a non-
linear focus slightly before the output face of the crystal. Figure 2
also demonstrates that beams undergo a considerable shrinking
before generating SC. Notice a somewhat different evolution of
the beam radius [half width at half-maximum (HWHM)] in the
case of anomalous dispersion (2000 nm), which is due to en-
hanced plasma absorption and defocusing, as the cross section
of inverse Bremstanglung is larger for longer wavelengths.

In Fig. 3, we present the spatiotemporal intensity distribu-
tions and angle-wavelength spectral density distributions at the
output plane of the crystal for the same input pulse conditions as
in Fig. 2. The left column shows pulse intensity profiles as func-
tions of radial distance and time, whereas the right column
illustrates the resulting angle-resolved SC spectra. The
non-trivial distributions of energy in spatiotemporal and an-
gle-wavelength domains are evident and exhibit characteristic
features of filamentation [2]. In what follows, these distributions
are used to examine the second-order coherence properties by
means of the correlation functions introduced in Section 2.

6. APPLICATION OF SECOND-ORDER
COHERENCE MEASURES ON NUMERICAL
SIMULATION RESULTS

To examine the coherence properties of the wave packets, we
have produced three datasets, each containing 100 realizations

Fig. 1. Evolution of the output pulse intensity and spectral density
at the center of the beam as a function of pump pulse energy. (a), (c),
(e) Temporal intensity and (b), (d), (f ) spectral density. Here (a),
(b) correspond to 800 nm, (c), (d) to 1300 nm, and (e), (f ) to
2000 nm pump pulses.

Table 1. Relevant Linear and Nonlinear Parameters of
Sapphire Crystal at the Wavelengths of Interesta

λ (μm) 800 1300 2000

n0 1.76 1.75 1.73
g (fs2∕mm) �58.1 �1.8 −121.8
K 7 11 16
n2 (×10−16 cm2∕W) 3.11 2.89 2.7
σB (×10−22 m2) 9.2 19.6 32.4

an0 and g are the linear refractive indices and the GVD coefficient,
respectively; data from Ref. [27]. K � hEg∕ℏω0i � 1 is the order of
multiphoton absorption, where Eg � 9.9 eV is the bandgap of sapphire,
and ℏω0 is the photon energy. n2 is the nonlinear refractive index; data
from Ref. [29].
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of nonlinear propagation, for input pulses with energies at the
vicinity of the SC generation threshold for each pump wave-
length (800 nm, 1300 nm, and 2000 nm). In the first dataset,
most of the pulses did not produce SC (the average energy
being slightly below the SC generation threshold). The second
dataset contained almost equal fractions of pulses with energies
that do or do not generate SC (the average energy coincides

with SC generation threshold). In the third dataset, a vast
majority of the pulses generated SC (the average energy being
slightly above the SC generation threshold).

Figure 4 illustrates the correlation properties of a single data-
set when SC was generated by 2000 nm pump pulses having
energy slightly above the SC generation threshold. In Figs. 4(a)
and 4(b), we demonstrate the absolute value of the single-point
degree of temporal coherence γ�ρ, ρ, t1, t2� defined in Eq. (9) at
the exit plane of the bulk medium for two points in space:
Fig. 4(a) represents the center (ρ � 0) and Fig. 4(b) the periph-
ery of the beam (ρ � 18 μm). A cross-like modulation of tem-
poral coherence evident in Fig. 4(a) represents lack of
coherence at the steep front of the trailing part of the pulse;
in this space–time region, pulse-to-pulse fluctuations are most
prominent. In view of Fig. 4(b), the temporal coherence degree
at the peripheral part of the beam is virtually perfect. The over-
all spatial degree of temporal coherence γ̄�ρ� given by Eq. (15)
is equal to 0.67 in the center part of the beam and 0.99 in the
peripheral part. Therefore, loss of coherence occurs only within
a small space–time volume close to the beam center.

In Figs. 4(c) and 4(d), we plot the absolute value of the
single-spatial-frequency degree of spectral coherence
ν�κ, κ,ω1,ω2� defined in Eq. (12) at κ � 0 (on the optical
axis) and off-axis position κ � 300 mm−1. For convenience,
the results are plotted as functions of λ1 � 2πc∕ω1 and
λ2 � 2πc∕ω2. The on-axis spectral coherence is high around
the pump wavelength and decreases towards both longer
and shorter wavelengths. However, the overall angular degree
of spectral coherence ν̄�κ� defined in Eq. (18) is 0.99 in the on-
axis case, since the spectral amplitude of the pulses is significant
only in the high-coherence region. In the off-axis case, the
pulses are significantly wider in the spectral domain and asym-
metric due to new spectral components generated via self-phase

Fig. 2. Evolutions of beam radius over propagation distance for
pulses with central wavelengths of 800 nm (blue), 1300 nm (green),
and 2000 nm (red), having input energies of 0.282 μJ, 0.569 μJ, and
1.175 μJ, respectively.

Fig. 3. (a), (c), (e) Spatiotemporal intensity profiles of the pulses at
the exit plane of a crystal and (b), (d), (f ) corresponding spatial fre-
quency-resolved spectra. Subplots (a), (b) correspond to 800 nm, (c),
(d) to 1300 nm, and (e), (f ) to 2000 nm pump wavelengths, having
input energies of 0.282 μJ, 0.569 μJ, and 1.175 μJ, respectively.

(a) (b)

(c) (d)

Fig. 4. Absolute values of normalized degrees of coherence. Spatial
degrees of temporal coherence at (a) ρ � 0 and (b) ρ � 0.018 mm.
Angular degrees of spectral coherence at (c) κ � 0 and
(d) κ � 300 mm−1. Red curves show temporal pulse amplitude pro-
files in (a) and (b), and spectral amplitude profiles in (c) and (d).
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modulation, self-steepening, and plasma generation that even-
tually lead to SC. These are more prone to energy instability,
which leads to a reduced overall degree of coher-
ence ν̄�κ� � 0.72.

To gain more insight into the spatial and angular degrees of
temporal and spectral coherence, we now turn our attention to
the behavior of the overall degrees of coherence defined in
Eqs. (15)–(18). The use of these quantities in the spatial
and spatial-frequency domains reduces four-dimensional corre-
lation functions to one-dimensional line plots (because of rota-
tional symmetry). In Fig. 5, the red curves show the overall
degrees of coherence as functions of spatial position in
Fig. 5(a) and spatial frequency in Fig. 5(b) for the output pulses
generated at nine pumping conditions in the vicinity of the SC
generation threshold. The blue curves show the normalized
time-integrated pulse intensity distributions (fluence) in
Fig. 5(a) and frequency-integrated spectral intensity distribu-
tions in Fig. 5(b).

The dependence of the coherence measures on the radial
spatial coordinate in Fig. 5(a) indicates that the lowest coher-
ence occurs systematically at the center of the beam, where the
fluence is highest. On the other hand, as seen in Fig. 5(b), the
angular coherence is systematically highest in the axial region
and decreases for off-axis components. These observations
are in agreement with the trends already seen in Fig. 4 and
can be explained as follows. The SC, having a broader spectrum
at large spatial frequencies, is produced mainly at the center of a
self-focused beam, where dramatic temporal transformations
(splitting or compression) of the pulses take place.

Therefore, this small spatiotemporal volume is most sensitive
to small energy fluctuations between the incident pulses.
This is particularly evident near the SC generation threshold,
where the nonlinear propagation of the pulse ends just when
SC is generated. In this situation, the generated spectral com-
ponents are not spread far enough to affect coherence outside of
the beam center.

In our analysis, we have deliberately chosen excitation con-
ditions near the SC generation threshold for the output pulses
to exhibit largest fluctuations in spatiotemporal and angle-
wavelength domains, resulting in the drop of coherence at
the beam center and at large spatial frequencies. We have also
carried out additional numerical simulations for higher pump
energies (well above the SC generation threshold but without
filament refocusing or secondary pulse splitting) and computed
the coherence measures for these data sets. These results are
presented in the Appendix, and they demonstrate almost com-
plete coherence regardless of the dispersion at the pump wave-
length. This is in stark contrast to the SC generation in fibers,
where an increase in pump power generally results in a dramatic
loss of coherence [7]. To be precise, the increase in power may
result in coherence enhancement in also fibers under particular
operating conditions, as reported in an all-normal dispersion
regime [32]. However, numerical simulations suggest that
the coherence is lost again due to polarization noise [33].

It is necessary to emphasize that the coherence measures
vary depending on whether we consider real propagation/
diffraction angles or spatial frequencies, as was discussed in
Section 3. The real angles are more physical, whereas the spatial
frequencies are mathematically more convenient. In the discus-
sion above we have chosen to consider spatial frequencies. To
compare the two approaches, we show the spectral intensities at
some hand-picked spatial frequencies κ�ω0� and propagation
angles θ (corresponding to the spatial frequency at pump wave-
length ω0) for SC generation with 1300 nm pulses. The results
are presented in Fig. 6, where the plots (top to bottom) com-
pare spectral intensities at spatial frequencies of 26 mm−1,
150 mm−1, and 300 mm−1 (blue), and at corresponding physi-
cal propagation angles θ of 0.32 deg, 1.78 deg, and 3.6 deg
(red) in ascending order. As expected, the spectral density
difference between a particular real propagation angle and cor-
responding spatial frequency becomes prominent for higher
propagation angles. Although the spectral density distributions
exhibit substantial differences in this higher propagation angle
region, the effects on coherence are minor, as shown in Fig. 7.

We have checked the angular correlation functions at some
specific spatial frequencies and corresponding real diffraction
angles. We present the comparison in Fig. 7. Here, the hori-
zontal axis represents the real diffraction angle, and the vertical
axis represents the overall degree of coherence. From the com-
parison, we can conclude that, though the spectral intensities
may differ in fine detail, the overall degree of coherence stays
almost the same in both representations even at large diffraction
angles. This justifies our use of the spatial-frequency analysis
approach.

(a) (b)

Fig. 5. Overall degrees of coherence at the exit plane, plotted as
functions of spatial position ρ (left, red) and spatial frequency κ (right,
red) together with the corresponding normalized field intensity distri-
bution (blue) integrated over time (F t) and integrated over wave-
lengths (F s). The pump wavelength is 800 nm for the upper row,
where we have considered pump energies just below the threshold
at 0.277 μJ (solid), at threshold 0.280 μJ (dashed), and just above
threshold 0.282 μJ (dotted). Similarly, for the 1300 nm pump wave-
length in the middle row, the energies are 0.565 μJ (solid), 0.567 μJ
(dashed), and 0.569 μJ (dotted), and at 2000 nm in the bottom row,
they are 1.173 μJ (solid), 1.175 μJ (dashed), and 1.18 μJ (dotted).
Note that the horizontal axes in the left column have different scales.
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7. CONCLUSION

In conclusion, we developed a numerical framework to estimate
coherence in spatiotemporal and spatiospectral domains. We
numerically studied the spatiotemporal and angle-wavelength
coherence properties of bulk-generated SC by employing
second-order correlation functions. The analysis is based on
simulations of individual space–time and space–frequency real-
izations of pulses emerging from a 5 mm thick sapphire plate,
using 100 fs pulses with carrier wavelengths of 800 nm,
1300 nm, and 2000 nm that fall into the ranges of normal,
zero, and anomalous group velocity dispersion of sapphire, re-
spectively, and using pump pulse energies around the respective

SC generation thresholds. We have demonstrated that SC gen-
eration near the threshold is unstable, where small variations of
input energy can drastically change the outcome. It was found
that the lowest coherence occurs at the center of the beam and
at the largest spatial frequencies. We have also discussed the
angular frequency and diffraction angle differences in estimat-
ing coherence. In the future, we expect to verify these results
experimentally, and also to provide more detailed studies on the
effects of pulse length on the temporal and spectral coherence
properties of SC. On the theoretical side, we also plan to
analyze the spatial coherence of bulk-generated SC, the signifi-
cance of space–frequency and space–time coupling, and topics
such as the degree of cross-spectral purity of SC radiation.

APPENDIX A

Figure 8 presents the field intensity distributions integrated
over time (F t) and overall degrees of coherence μ�ρ� as func-
tions of spatial position for pump wavelengths of 800 nm,
1300 nm, and 2000 nm and for pump energies set well above
their individual SC generation thresholds.

Fig. 7. Comparison between the overall degree of coherence as a
function of spatial frequency (νκ, blue line), and as a function of real
diffraction angle (νθ, red crosses) calculated from the spatial frequency
component at 1300 nm.

(a)

(b)

(c)

Fig. 6. Comparison between the spectral density distributions taken
at particular spatial frequencies κρ (blue) and at corresponding real
diffraction angles θ (red). Pump wavelength is 1300 nm.
(a) θ � 0.32°, κρ � 26 mm−1. (b) θ � 1.78°, κρ � 150 mm−1.
(c) θ � 3.60°, κρ � 300 mm−1.

Fig. 8. Overall degrees of temporal coherence calculated for pump
energies well above the SC generation threshold: 0.31 μJ at 800 nm,
0.65 μJ at 1300 nm, and 1.25 μJ at 2000 nm. The notations are the
same as in Fig. 5.
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