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We propose and theoretically and numerically investigate narrowband integrated filters consisting of identical
resonant dielectric ridges on the surface of a single-mode dielectric slab waveguide. The proposed composite
structures operate near a bound state in the continuum (BIC) and enable spectral filtering of transverse-
electric-polarized guided modes propagating in the waveguide. We demonstrate that by proper choice of the
distances between the ridges, flat-top reflectance profiles with steep slopes and virtually no sidelobes can be ob-
tained using just a few ridges. In particular, the structure consisting of two ridges can optically implement the
second-order Butterworth filter, whereas at a larger number of ridges, excellent approximations to higher-order
Butterworth filters can be achieved. Owing to the BIC supported by the ridges constituting the composite struc-
ture, the flat-top reflection band can be made arbitrarily narrow without increasing structure size. In addition to
the filtering properties, the investigated structures support another type of BIC—the Fabry–Perot BIC—arising
when the distances between adjacent ridges meet the Fabry–Perot resonance condition. In the vicinity of the
Fabry–Perot BIC, an effect similar to electromagnetically induced transparency is observed, namely, sharp
transmittance peaks against the background of a wide transmittance dip. © 2019 Chinese Laser Press

https://doi.org/10.1364/PRJ.7.001314

1. INTRODUCTION

Spectral filters that selectively reflect or transmit incident light
are indispensable in various optical devices, including spectrum
analyzers, image sensors, and wavelength demultiplexers. In a
wide class of planar (integrated) optoelectronic systems, spectral
or spatial filtering is performed in a slab waveguide [1–7]. Such
geometry corresponds to the “insulator-on-insulator” platform
and is suitable for the creation of fully integrated optical devices.

In Refs. [1,8–12], planar Bragg gratings (BGs) and phase-
shifted BGs (PSBGs) for spectral filtering of optical radiation
propagating in the waveguide were proposed. A planar BG cor-
responds to a single-mode slab waveguide with a periodically
corrugated surface and acts as a reflection filter centered at
the Bragg wavelength. A change in the waveguide thickness
leads to a change in the effective refractive index of the guided
mode, which makes it possible to encode the required refractive
index distribution analogous to a free-space BG. A planar
PSBG consists of two or more symmetric BGs separated by
phase-shift regions and enables obtaining a narrow transmit-
tance peak at the center of the stopband [1,11,12].

Recently, a promising alternative to a narrowband planar
BG-based filter was proposed [13–17]. It was shown that an

extremely simple resonant structure consisting of a single di-
electric ridge on the surface of a single-mode slab waveguide
supports high-Q resonances associated with the excitation of
the TM-polarized modes of the ridge by the obliquely incident
TE-polarized mode of the waveguide. Moreover, at properly
chosen parameters, the ridge supports bound states in the
continuum (BICs).

Photonic BICs are nonradiating eigenmodes supported by
structures having open scattering channels [18–20]. The leak-
age of BIC energy into the open channels can be prevented by
means of different mechanisms, including symmetry protec-
tion, interaction of several resonators, and interference of sev-
eral resonances in the same cavity [18]. Various photonic
structures were shown to support BICs, including periodic
structures (diffraction gratings, photonic crystal slabs, and
arrays of rods or spheres) [19–27] and waveguide structures
of different configurations [13–17,28]. In the vicinity of a
BIC, the width of the resonance can be made arbitrarily small.
Therefore, the photonic structures supporting BICs are not
only of theoretical, but also of great practical interest due to
their potential applications in lasing, filtering, and sensing
[18,26,27].
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Near a BIC supported by the ridge structure considered in
Refs. [13–17], the reflectance spectrum has a symmetric
Lorentzian line shape, which makes it possible to use the ridge
structure as a narrowband filter operating in reflection. At the
same time, the Lorentzian line shape of the reflectance peak
does not always fit the design requirements. For many practical
applications, achieving a nearly rectangular reflectance spec-
trum with a flat top and steep slopes is highly desirable [11,29].

In the present work, we investigate composite resonant
structures comprising several identical ridges on the surface
of a slab waveguide separated by phase-shift regions. We show
that by proper choice of the widths of the phase-shift regions,
flat-top reflectance profiles with steep slopes can be easily ob-
tained using just a few ridges. Moreover, the width of the re-
flection band near the BICs can be arbitrarily small by choosing
the ridge width. To the best of our knowledge, this work
presents the first theoretical and numerical demonstration of
integrated flat-top filters operating in the near-BIC regime.
In addition to applications in spectral filtering, the proposed
composite structures have another interesting property. At
the distances between the ridges, which satisfy the condition
of the Fabry–Perot resonance, �N − 1�-degenerate BICs of
Fabry–Pérot type arise in the composite structure comprising
N ridges. In the vicinity of these BICs, an effect similar to
electromagnetically induced transparency (EIT) is observed.

2. GEOMETRY AND REFLECTANCE SPECTRA
OF A SINGLE RIDGE ON THE SURFACE OF A
SLAB WAVEGUIDE

One of the simplest integrated structures possessing remarkable
resonant properties is a dielectric ridge located on the surface of
a single-mode slab waveguide [Fig. 1(a)]. In our recent works
[13,14], it is shown that in the case of diffraction of an
obliquely incident TE-polarized mode of the waveguide, the
ridge exhibits BICs and high-Q resonances associated with
the excitation of the cross-polarized modes of the ridge.

As an example, Fig. 2 shows the TE-polarized mode reflec-
tance versus the ridge width w and angle of incidence θ. The
plot was calculated using an efficient in-house implementation
of the aperiodic rigorous coupled-wave analysis (aRCWA) tech-
nique [30–32]. The simulations were carried out with the
following parameters: free-space wavelength λ0 � 630 nm; re-
fractive index of the waveguide core layer nf � 3.3212 (GaP),
refractive indices of the superstrate and substrate nu � 1 and
nl � 1.45 (fused silica), respectively; and thickness of the wave-
guide core layer hf � 80 nm and thickness of the waveguide in
the ridge region hr � 110 nm. At these parameters, the wave-
guide is single-mode both outside and inside the ridge region.
Effective refractive indices of the TE- and TM-polarized modes
supported by the waveguide amount to nwg,TE � 2.5913 and
nwg,TM � 1.6327, respectively. In the ridge region (i.e., at the
waveguide thickness hr � 110 nm), effective refractive indices
equal nr,TE � 2.8192 and nr,TM � 2.1867. Let us note that in
the rest of the present work, the chosen free-space wavelength
λ0 � 630 nm is used as the “central” wavelength for all the
designed filters.

The reflectance spectrum shown in Fig. 2 has a pronounced
resonant maximum. As it was shown in Ref. [13], this

resonance is caused by the excitation of a cross-polarized
(“TM-like”) mode of the ridge. It is important to note that
in the chosen range of angles of incidence θ ∈ �51°, 55°�, no
out-of-plane scattering of the incident mode on the ridge
occurs. Moreover, no outgoing (reflected and transmitted)
cross-polarized modes propagate. A detailed description of this
scattering cancellation mechanism is presented in Refs. [13,14].
In this case, at maxima, the reflectance reaches unity. The an-
gular width of the resonant maximum varies from approxi-
mately 0.1° at the boundaries of the considered interval of
the ridge width w ∈ �300, 400� nm to zero at w � 344 nm.
The point at which the resonance disappears (w � 344 nm,
θ � 53.06°) corresponds to a BIC.

Angular and wavelength reflectance spectra in the vicinity of
a BIC have Lorentzian line shapes [13,14]. As an example,

Fig. 1. Geometry of a ridge on a (a) waveguide layer and of a
(b) composite structure consisting of three ridges separated by
phase-shift regions. Red arrows indicate the propagation directions
of the incident wave I , reflected wave R, and transmitted wave T .

Fig. 2. Reflectance of an obliquely incident TE-polarized guided
mode with free-space wavelength λ0 � 630 nm from the ridge versus
ridge width w and angle of incidence θ. The white circle indicates the
BIC position. White dashed lines indicate the ridge widths, at which
the angular spectra in Fig. 3(a) are plotted.
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Fig. 3 shows the reflectance spectra at w � 355 nm,
w � 360 nm, and w � 380 nm. Let us note that these values
are not unique and were chosen to illustrate the possibility of
obtaining resonant peaks with different widths by changing the
ridge width. The angular spectra at the design wavelength
630 nm, which are the cross sections of the reflectance distri-
bution shown in Fig. 2 along the white dashed lines, are shown
in Fig. 3(a). The maximum of the reflectance is reached at the
angles of incidence θ1 � 53.28° (w � 355 nm), θ2 � 53.37°
(w � 360 nm), and θ3 � 53.72° (w � 380 nm); the full
widths at half-maximum (FWHMs) of the peaks amount to
0.0045°, 0.009°, and 0.04°, respectively. Figure 3(b) shows
the wavelength spectra calculated at the corresponding angles
of incidence θi, i � 1, 2, 3. The “spectral” FWHM values of
the reflectance peaks centered at λ � λ0 � 630 nm equal
0.04 nm (w � 355 nm), 0.084 nm (w � 360 nm), and
0.367 nm (w � 380 nm). It is evident from Fig. 3 that the
width of the reflectance peak decreases when approaching
the BIC. Theoretically, in the vicinity of a BIC, it is possible
to obtain a reflectance peak having an arbitrarily small width. In
practical implementation, the minimum achievable peak width
will be limited by structure finiteness and by material and tech-
nological imperfections [17]. Let us mention that the possibil-
ity of obtaining near-BIC transmittance peaks using high-
contrast dielectric gratings was also recently demonstrated
[26,27]. However, the structures considered in Refs. [26,27]
are non-integrated and proposed for narrowband filtering of
free-space radiation.

3. THEORETICAL MODEL DESCRIBING THE
SPECTRA OF A COMPOSITE STRUCTURE
COMPRISING SEVERAL RIDGES

Lorentzian shape of the reflectance spectra shown in Fig. 3
makes it possible to use the ridge as an angular or as a frequency

filter. However, a rectangular reflectance peak with a flat top,
steep slopes, and low sidebands would be more suitable for
many practical applications [11,29]. In what follows, we dem-
onstrate that composite structures comprising several ridges on
the surface of a slab waveguide, which operate in the near-BIC
regime, enable obtaining narrow flat-top reflectance peaks with
steep slopes. In this case, the BICs supported by the ridges
allow one to make the width of the flat-top reflection band
arbitrarily small by choosing the ridge width.

Geometry of the proposed composite structure is shown in
Fig. 1(b). For illustrative purposes, the structure consisting of
three ridges is depicted. We assume that the ridges constituting
the composite structure are identical, whereas the widths of the
phase-shift regions separating the ridges may, in general, be
different.

To analyze the composite structures, it is convenient to
describe the optical properties of a single ridge at a fixed angle
of incidence θ by the scattering matrix [32–34]

S1�λ� �
�
t1�λ� r1�λ�
r1�λ� t1�λ�

�
, (1)

where r1�λ� and t1�λ� are the complex reflection and transmis-
sion coefficients, respectively, which are considered as functions
of the wavelength. For Lorentzian resonances (see Fig. 3), these
coefficients can be approximated by the following expressions:

r1�λ� � exp�iφ� iImλp
λ − λp

,

t1�λ� � exp�iφ� λ − Reλp
λ − λp

, (2)

where the pole λp is the complex wavelength of the eigenmode
supported by the ridge. This form of the reflection and
transmission coefficients ensures the unitarity of the scattering
matrix of Eq. (1). According to Eq. (2), the reflectance
R1�λ� � jr1�λ�j2 � 1 − jt1�λ�j2 reaches unity at λ � λ0 �
Reλp. The width of the resonance is determined by the imagi-
nary part of the pole λp. Indeed, from Eq. (2), it is easy to ob-
tain that the FWHMof the resonant reflectance peak R�λ� (and
of the resonant transmittance dip T �λ� � jt1�λ�j2) amounts to
Δ � 2jImλpj. Note that Eq. (2) remains valid in the vicinity of
a BIC. If the BIC condition is strictly satisfied (i.e., Imλp � 0),
the resonance disappears (see Fig. 2), the reflection coefficient
r1�λ� vanishes, and the magnitude of the transmission
coefficient becomes unity: jt1�λ�j � 1.

A. Two-Ridge Composite Structures
Let us now consider a composite structure consisting of two
ridges described by identical scattering matrices defined by
Eq. (1) and separated by a phase-shift region with the width
l 1. At a fixed angle of incidence θ0, the scattering matrix of
the composite structure can be expressed through the matrix
S1�λ� as [32,35]

S2�λ� � S1�λ� � L�l 1� � S1�λ�, (3)

where the symbol � denotes the Redheffer star product [32],
and L�l1� is the scattering matrix describing the phase-shift
region:

L�l 1� � exp�iψ�l 1��I: (4)

Fig. 3. (a) Angular and (b) wavelength ridge reflectance spectra at
w � 355 nm (solid blue lines), w � 360 nm (dashed red lines), and
w � 380 nm (dotted yellow lines). The angular spectra are calculated
at the fixed free-space wavelength of 630 nm and are the cross sections
of the reflectance distribution in Fig. 2 along the white dashed lines.
The wavelength spectra are calculated at the angles of incidence
θ1 � 53.28° (w � 355 nm), θ2 � 53.37° (w � 360 nm), and
θ3 � 53.72° (w � 380 nm), at which the resonant peaks are centered
at λ � λ0 � 630 nm.
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Here, ψ�l 1� is the phase shift acquired by the mode upon
propagation through the phase-shift region, and I is the
2 × 2 identity matrix. For simplicity, in Eq. (4), we assume that
the dependence of the phase shift on the wavelength can be
neglected, so that this phase shift can be approximated as

ψ�l1� � kxl 1 � k0nwg,TE cos θ0 · l 1, (5)

where kx � k0nwg,TE cos θ0 is the x component of the wave
vector of the incident TE-polarized guided mode,
k0 � 2π∕λ0 is the wavenumber, and nwg,TE is the effective re-
fractive index of the incident TE-polarized mode. Note that the
made assumption is valid when we consider a narrow wave-
length range around the resonant wavelength λ0 � Reλp.

Using the definition of the Redheffer star product [32], one
can easily obtain the scattering matrix of the composite
structure in the following form:

S2�λ��
�
t2�λ� r2�λ�
r2�λ� t2�λ�

�

� 1

1−exp�2iψ�r21
×
�

exp�iψ�t21 r1�1−exp�2iψ��r21 − t21��
r1�1−exp�2iψ��r21 − t21�� exp�iψ�t21

�
:

(6)

By substituting Eq. (2) into Eq. (6), we obtain the following
resonant approximations of the reflection and transmission
coefficients of the composite structure:

r2�λ� � γr,2
λ − λz,1

�λ − λp,1��λ − λp,2�
,

t2�λ� � γt ,2
�λ − Reλp�2

�λ − λp,1��λ − λp,2�
,

(7)

where

λz,1 � Reλp � tan�ψ�l 1� � φ�Imλp, (8)

λp,1,2 � Reλp � i�1	 σ�Imλp, (9)

where γt ,2 � exp�iψ�l1� � 2iφ�, γr,2 � 2iγt,2 cos�ψ�l1� �
φ�Imλp, and σ � exp�iψ�l1� � iφ�. According to
Eqs. (7)–(9), the composite structure consisting of two ridges
supports two eigenmodes. These eigenmodes have the complex
wavelengths defined by Eq. (9), which are the poles of the re-
flection and transmission coefficients. Also, the reflection coef-
ficient has a real-valued zero λ � λz,1 defined by Eq. (8),
whereas the transmission coefficient has a real-valued second-
order zero at λ � Reλp.

It is interesting to discuss the behavior of Eq. (7) in the case
when the two ridges constituting the composite structure
support a BIC (λp ∈ R). In this case, the imaginary part
Imλp in Eqs. (8) and (9) vanishes, and the following equalities
take place: λp,1 � λp,2 � λz,1 � Reλp � λp. Therefore, taking
into account the expression for γr,2, the two poles in both frac-
tions in Eq. (7) are canceled out by the zeros. Therefore, the
considered composite structure supports two BICs having

the same wavelength λp, or, in other words, a doubly de-
generate BIC.

It is evident from Eq. (7) that in the general case
(Imλp > 0), the expressions for the reflection and transmission
coefficients r2�λ� and t2�λ� have a significantly more complex
form than the corresponding coefficients r1�λ� and t1�λ� of a
single ridge. This gives more flexibility for the control of the
resonant peak shape. In particular, under the condition

ψ�l1� � φ � π�m − 1∕2�, m ∈ N, (10)

where the phase shift ψ�l1� is defined by Eq. (5) and φ is the
phase of the reflection coefficient r1�λ0� [Eq. (2)], the coeffi-
cients r2�λ� and t2�λ� take the form

r2�λ� �
2 exp�iφ�

1 − ��λ − λp�∕Imλp�2
,

t2�λ� � �−1�mi exp�iφ� �λ − Reλp�∕Imλp
1 − ��λ − λp�∕Imλp�2

: (11)

It is important to note that the expression for r2�λ� in Eq. (11)
coincides with the transfer function of the second-order
Butterworth filter and, compared to r1�λ�, provides a much
more rectangular shape of the reflectance peak.

B. Multiple-Ridge Composite Structures
Similarly, one can obtain the reflection and transmission coef-
ficients of the composite structure consisting of three
equally spaced ridges. Indeed, by calculating S3�λ� �
S2�λ� � L�l1� � S1�λ�, we obtain the reflection and transmis-
sion coefficients of the composite structure in the form

r3�λ� � γr,3
�λ − λz,1��λ − λz,2�

�λ − λp,1��λ − λp,2��λ − λp,3�
,

t3�λ� � γt ,3
�λ − Reλp�3

�λ − λp,1��λ − λp,2��λ − λp,3�
, (12)

where

λz,1,2 � Reλp � i
1 − σ2

1	 σ � σ2
Imλp, (13)

λp,1 � Reλp � i�1 − σ2�Imλp,

λp,2,3 � λp � i
σ

2

�
σ 	

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8� σ2

p �
Imλp, (14)

where σ � exp�iψ�l1� � iφ�, γr,3 � i exp�iφ�f1�
2σ3 cos�ψ�l1� � φ�gImλp, and γt ,3 � exp�2iψ�l 1� � 3iφ�.
According to Eqs. (12)–(14), the reflection and transmission
coefficients of the composite structure comprising three ridges
have three poles [three eigenmodes with the complex
wavelengths defined by Eq. (14)]. The reflection coefficient
has two complex-valued zeros defined by Eq. (13), whereas
the transmission coefficient has a third-order zero λ � Reλp.

In the general case of a composite structure consisting of N
ridges, the reflection and transmission coefficients of such a
composite structure have N poles (N eigenmodes with the
complex wavelengths λp,m) and can be described by the
following expressions:
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rN �λ� � γr,N

QN−1
m�1�λ − λz,m�QN
m�1�λ − λp,m�

,

tN �λ� � γt ,N
�λ − Reλp�NQN
m�1�λ − λp,m�

: (15)

Let us note that the reflection coefficient rN �λ� has N − 1 com-
plex-valued zeros λz,m, whereas the transmission coefficient
tN �λ� has a real-valued zero λ � Reλp of the order N . If the
ridges constituting the composite structure support a BIC,
λp is real, and, as one can show similarly to the two-ridge struc-
ture discussed above, λp,m � λz,m � λp, therefore, all the poles
in Eq. (15) get canceled out by the zeros. This means that N
independent BICs having the same frequency coexist in the
structure comprising N ridges. Such BICs can be referred to
as N -degenerate. Detuning from the BIC condition lifts the
degeneracy, which results in N distinct poles (resonances)
and N − 1 complex-valued zeros λz,m of the reflection coeffi-
cient. These zeros and poles of the reflection and transmission
coefficients are functions of the widths l i, i � 1,…,N of the
phase-shift regions separating the ridges. In the following
section, we will show that optimization with respect to these
parameters enables obtaining a nearly rectangular reflectance
peak with a flat top, steep slopes, and no sidelobes.

Let us also emphasize that the theoretical results obtained in
this section are not specific for the considered ridge structures
and can be applied to any composite structure comprising
Lorentzian-line-shaped resonators separated by phase-shift
layers.

4. NUMERICAL INVESTIGATION AND
OPTIMIZATION OF COMPOSITE STRUCTURES

In Section 3, it is shown that if the condition of Eq. (10) is
met, the complex reflection coefficient of the composite
structure consisting of two ridges coincides with the transfer
function of the second-order Butterworth filter, which provides
a more rectangular shape of the resonance than that of a single
ridge. Unfortunately, this effect is not preserved at a larger
number of ridges N > 2. For example, Fig. 4 shows the rig-
orously calculated transmittance and reflectance spectra of
the composite structures consisting of N � 2, N � 4, and
N � 6 ridges. The spectra were calculated at the angle of in-
cidence θ � 53.72°, ridge width w � 380 nm, and a fixed dis-
tance between the ridges l � 948 nm satisfying the condition
of Eq. (10) at m � 3. For comparison, the dashed lines in
Fig. 4 show the spectra of a single ridge. At N � 2
[Fig. 4(a)], the spectra are with high accuracy described by
the expressions R2�λ� � jr2�λ�j2 and T 2�λ� � 1 − jr2�λ�j2,
where r2�λ� is the transfer function of the second-order
Butterworth filter defined by Eq. (11). With an increase in
N , the central parts (reflectance peak and transmittance dip)
of the spectra become closer to a rectangle, but the sidelobes
(two at N � 4 and four at N � 6) arise. These sidelobes
emerge due to the appearance of additional zeros of the reflec-
tion and transmission coefficients.

The shape of the spectra can be altered by changing the
widths l j of the phase-shift regions separating the ridges.
Indeed, in the general case, the zeros and poles in Eq. (15)

describing the reflection and transmission coefficients of a
composite structure comprising N ridges are functions of
the variables l j, j � 1,…,N − 1. Considering l j as optimiza-
tion parameters, one can try to obtain the reflectance and trans-
mittance spectra with a required shape. Let us define the
desired shape of the reflectance spectrum RN �ω� � jrN �ω�j2
by the function

RBW,N �λ� �
1

1� ��λ − λ0�∕σ�2N
, (16)

which describes a peak with a smoothed rectangular shape
having the width 2σ and no sidelobes. Note that Eq. (16)
generalizes Eq. (11) and corresponds to the squared modulus
of the transfer function of the Butterworth filter of the order N
[36]. The function defined by Eq. (16) can be referred to as
Butterworth line shape, which becomes the conventional
Lorentzian line shape at N � 1.

Let us demonstrate the possibility of tailoring the shape of
the resonant reflectance peak (transmittance dip) of the
composite structures at N � 4 and N � 6. The distances l j
were optimized using the conjugate gradient method in order
to obtain reflectance spectra described by the functions
RBW,4�λ� (at N � 4) and RBW,6�λ� (at N � 6) at
2σ � 1 nm. The used σ value corresponds to the reflectance
peak width of a single ridge at the 0.1 level (Fig. 3). As a result
of the optimization, the following widths of the phase-shift re-
gions were found: l 1 � l 3 � 1278 nm and l2 � 1395 nm at
N � 4 and l 1 � l 5 � 1486 nm, l2 � l4 � 1383 nm, and
l 3 � 1485 nm at N � 6. The reflectance and transmittance
spectra of the composite structures calculated at the obtained
values of l j are shown in Fig. 5. The calculated spectra are very
close to the functions T BW,N �λ� and RBW,N �λ� at both N � 4
[Fig. 5(a)] and N � 6 [Fig. 5(b)]. Let us note that by further
increasing the number of ridges constituting the composite
structure, one can obtain steeper reflectance spectra corre-
sponding to the Butterworth line shapes at greater N values.

Fig. 4. Transmittance (black) and reflectance (red) spectra of
composite structures consisting of (a) N � 2, (b) N � 4, and
(c) N � 6 ridges at the ridge width w � 380 nm and the distance
between the ridges l � 948 nm (solid lines). Dashed lines show
the spectra of a single ridge.
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However, here we restrict our consideration to structures
consisting of no more than six ridges, since this value provides
a good peak quality [Fig. 5(b)] while maintaining a reasonable
lateral footprint of the structure (approximately 9.5 μm).

Let us now consider an important advantage of the proposed
composite filters operating in the near-BIC regime, which
consists of the possibility of generating a near-rectangular
reflectance peak with an essentially subnanometer width.
The width of the resonance of a single ridge decreases when
approaching a BIC and finally vanishes (Fig. 3). Therefore,
in the vicinity of a BIC, it is theoretically possible to obtain
a Lorentzian reflectance peak with an arbitrarily small width.
Let us recall that the width of the flat-top peak of the composite
structure is very close to the width of the initial Lorentzian peak
(at the 0.1 level). That means that by tuning the width of the
ridges constituting the composite structure, one can engineer a
very narrow peak having a flat-top (rectangular) shape described
by Eq. (16). Let us demonstrate this possibility. In the example
considered above (θ � θ3 � 53.72°, w � 380 nm), the width
of the initial Lorentzian-shaped reflectance peak at the 0.1 level
amounts toΔ ≈ 1 nm (Figs. 3 and 5). At the angle of incidence
θ � θ2 � 53.37° and the ridge width w � 360 nm, the width
of the peak (Fig. 3) decreases by approximately five times to
Δ ≈ 0.2 nm. Figure 6 shows the spectra of the composite struc-
tures constructed using this “high-Q” ridge with the width
w � 360 nm and consisting of N � 2, N � 4, and N � 6
ridges. In the structure with N � 2, the width of the phase-
shift region between the ridges l � 948 nm satisfies the con-
dition of Eq. (10). In this case, the reflectance spectrum is very
close to the squared modulus of the second-order Butterworth
filter. In the cases of N � 4 and N � 6, the widths l j of the
phase-shift regions were optimized in order to obtain the spec-
tra with the Butterworth line shapes described by the functions
RBW,4�λ� and RBW,6�λ�, respectively. The following l j values
were obtained: l1 � l3 � 1285 nm and l 2 � 1410 nm at
N � 4 and l 1 � l5 � 1286 nm, l2 � l 4 � 1405 nm, and
l 3 � 1282 nm at N � 6. Figure 6 shows that the obtained
spectra indeed contain smoothed rectangular reflectance peaks
with the width of about 0.2 nm, i.e., approximately five times
narrower than in Fig. 5 (note the different wavelength ranges
shown in Figs. 5 and 6). By further approaching the BIC

located at w � 344 nm, θ � 53.06°, one can further decrease
the width of the resonant peak provided by the resonant struc-
ture. It is important to note that, in contrast to many conven-
tional structures providing narrow reflectance or transmittance
peaks [1,7,8,11], a decrease in the peak width does not lead to
an increase in the structure size.

5. FABRY–PEROT BOUND STATES IN THE
CONTINUUM IN THE COMPOSITE STRUCTURE

In addition to the possibility of obtaining a nearly rectangular
reflectance peak with a flat top, steep slopes, and virtually no
sidebands, the studied composite structures possess one more
remarkable property. Before discussing it, let us recall that the
single ridge on the surface of the waveguide used as the building
block of the proposed composite structures supports BIC,
which is caused by the interaction of TE- and TM-polarized
modes in the ridge region [13]. Surprisingly, even when the
width of the ridges constituting the considered composite filters
is detuned from the BIC condition, the composite structure can
by itself support BICs, albeit of a different type. Indeed, let us
show that if the distances between the ridges satisfy the
Fabry–Perot resonance condition

ψ�l i� � φ � πm, m ∈ N, (17)

the so-called Fabry–Perot BICs are formed in the composite
structure [18,19,37]. Let us recall that in Eq. (17), ψ�l i� is
the phase shift acquired by the mode upon propagation
through the phase-shift region and defined by Eq. (5), and
φ is the phase of the reflection coefficient r1�λ0� in Eq. (2).

First, let us consider the structure comprising two ridges.
The reflection and transmission coefficients of this structure
are described by Eqs. (7)–(9). If the condition of Eq. (17) is
met, one of the poles in Eq. (9) becomes real and coincides
with the real-valued transmittance zero. To be specific, let
Imλp,1 � 0. In this case, the integer m in Eq. (17) is even,
and λp,2 � Reλp � 2iImλp. The eigenmode of the composite

Fig. 5. Transmittance (black) and reflectance (red) spectra of the
optimized composite structures consisting of (a) N � 4 and
(b) N � 6 ridges at w � 380 nm (solid lines). Dashed lines show
the spectra of a single ridge.

Fig. 6. Transmittance (black) and reflectance (red) spectra of the
optimized composite structures consisting of (a) N � 2, (b) N � 4,
and (c) N � 6 ridges at w � 360 nm (solid lines). Dashed lines
show the spectra of a single ridge.
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structure with the wavelength λ � Reλp is a BIC [18,19,37].
The considered structure consisting of two ridges has only two
scattering channels corresponding to the reflected and transmit-
ted TE-polarized modes. In the case of a BIC, the leakage to
these channels is prevented due to the Fabry–Perot resonance
formed between the ridges under the condition of Eq. (17).

Next, let us consider a composite structure comprising three
ridges. The spectra of this structure are described by
Eqs. (12)–(14). Under the condition of Eq. (17), the poles de-
fined by Eq. (14) (the complex wavelengths of the eigenmodes
of the structure) take the form

λp,1 � λp,2 � Reλp, λp,3 � Reλp � 3iImλp: (18)

Therefore, if the condition of Eq. (17) is met, the poles λp,1 and
λp,2 become real and coincide with the real-valued zeros of the
reflection and transmission coefficients. This means that
two equal-wavelength BICs (or, in other words, a double-
degenerate BIC) are formed in the composite structure
containing three ridges.

In a composite structure consisting of N ridges, the reflec-
tion and transmission coefficients defined by Eq. (15) have N
poles. By induction, it can be shown that, under the condition
of Eq. (17), N − 1 poles become real, coinciding with the real-
valued zeros of the reflection and transmission coefficients. In
this case, (N − 1)-degenerate BICs are formed in the composite
structure. One can show that the only remaining pole will have
an imaginary part N times greater than the imaginary part of
the pole λp of the reflection and transmission coefficients of the
single ridge: λp,N � Reλp � NiImλp. Let us note that the field
of the N − 1 degenerate BICs is localized between each pair of
adjacent ridges, as opposed to the N degenerate BICs discussed
in Section 3, the field of which is localized inside each ridge.

Let us note that the formation of the Fabry–Perot BICs in a
composite structure consisting of two resonators is well known
[18,19,37]. At the same time, to the best of our knowledge, the
formation of (N − 1)-degenerate BICs in a composite structure
consisting of N resonant ridges (or other resonators) has not
been previously studied.

In order to confirm the formation of the Fabry–Perot BICs,
we calculated the reflectance RN �l , λ� � jrN �l , λ�j2 and the
transmittance TN �l , λ� � jtN �l , λ�j2 of several composite
structures versus the wavelength and the distance l between
the ridges. The calculation was carried out at the fixed angle
of incidence θ � 53.72° and the ridge width w � 380 nm.
Figure 7 shows the reflectance and transmittance of the
composite structures consisting of two, three, and four ridges.
Vertical dashed lines show the width of the phase-shift regions
l � lFP � 970.2 nm, which satisfies the Fabry–Perot reso-
nance condition of Eq. (17) at m � 4. Horizontal dashed lines
show the resonant wavelength of the single ridge λ0 � 630 nm.
In the vicinity of the intersection of these lines, resonant fea-
tures (reflectance minima and transmittance maxima) are
clearly visible. When approaching the intersection, the width
of the resonant features decreases (the quality factor of the res-
onances increases). It is important to note that N − 1 sharp
transmittance peaks occur against the background of a relatively
wide transmittance dip caused by the multiple zeros of the
transmission coefficient tN �λ� defined by Eq. (15). This effect
is similar to the EIT effect and, in the considered case, is asso-
ciated with the presence of N − 1 complex-valued zeros in the
reflection coefficient rN �λ�. At the vertical dashed lines, the
resonant features vanish, which confirms the formation of
the BICs. Let us note that according to the presented theoreti-
cal description, the number of the vanishing resonant features

Fig. 7. Reflectance RN �l , λ� � jrN �l , λ�j2 (top) and transmittance TN �l , λ� � jtN �l , λ�j2 (bottom) of the composite structures consisting of
(a), (d) N � 2, (b), (e) N � 3, and (c), (f ) N � 4 ridges versus the distance between the ridges l and free-space wavelength. Vertical dashed
lines show the distance lFP � 970.2 nm corresponding to the Fabry–Perot resonance.
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(and the number of the emerging EIT peaks) is one less than
the number of the ridges N , which constitute the composite
structure.

As an additional illustration of the BIC formation and the
EIT effect, let us consider the transmittance spectra of a
composite structure consisting of three ridges (Fig. 8). The
spectra were calculated at the phase-shift region width
l � lFP � 970.2 nm corresponding to the BIC condition of
Eq. (17), and at the “offset” widths l � lFP � 5 nm �
975.2 nm and l � lFP � 10 nm � 980.2 nm. At l � lFP,
the transmittance spectrum has a smooth dip centered at
λ � λ0 � 630 nm. This agrees with Eq. (18), according to
which the transmission coefficient has a single pole
λp,3 � Reλp � 3iImλp. If we violate the BIC condition by in-
creasing the distance between the ridges by, e.g., δ � 5 nm,
two sharp peaks occur in the transmittance spectra at the wave-
lengths greater than the central wavelength λ0 (see the red curve
in Fig. 8). These peaks correspond to the EIT effect and are
associated with the zeros of the reflection coefficient defined
by Eq. (13). At δ � 10 nm, the EIT peaks become wider
and experience a further red shift (see the yellow curve in
Fig. 8). It is interesting to note that the different widths of
the EIT peaks follow from the expression for the poles of
the transmission coefficient [Eq. (14)]. Indeed, the widths of
the EIT peaks are determined by the magnitudes of the imagi-
nary parts of the poles λp,i, i � 1, 2. From Eq. (14), it is easy to
obtain that near the BIC [in the vicinity of the point l � lFP
satisfying the condition of Eq. (17)], the imaginary parts of the
poles λp,i are quadratic with respect to the “offset”magnitude δ:

Imλp,i�δ� � αiδ
2 � O�δ3�, i � 1, 2, (19)

where α1 � 2 and α2 � 2∕27. Since α1∕α2 � 27, the EIT
peak corresponding to the pole λp,2 should have an order-of-
magnitude smaller width, which agrees with the spectra shown
in Figs. 7(e) and 8.

6. CONCLUSION

In the present work, we investigated resonant optical properties
of composite structures consisting of N identical ridges on the
surface of a slab waveguide separated by phase-shift regions.
The single ridge used as the building block of the proposed
composite structures supports BICs and high-Q resonances
having a Lorentzian line shape. Using the scattering matrix for-
malism, we obtained resonant approximations of the reflection

and transmission coefficients of the composite structure.
According to the derived expressions, in the case when the
ridges constituting the composite structure support BICs,
the composite structure supports N -degenerate BICs, whereas
the detuning from the BIC condition allows one to obtain flat-
top reflection filters. In particular, we demonstrated that at
N � 2, the reflection coefficient coincides with the transfer
function of the second-order Butterworth filter. It was shown
that by optimizing the widths of the phase-shift regions at
N > 2, one can obtain a flat-top reflectance peak with steep
slopes using just a few ridges. In our opinion, the proposed
composite structure has a simpler geometry and is more
compact than the planar filters based on integrated BGs.

To the best of our knowledge, this work presents the first
theoretical and numerical demonstration of integrated flat-top
filters operating in the near-BIC regime. An important advan-
tage of the proposed structure consists of the fact that the flat-
top reflectance peak can be made arbitrarily narrow by choosing
the width of the ridges in the vicinity of a BIC supported by a
single ridge. In this case, the corresponding composite structure
can be considered as a perturbation of the composite structure
supporting an N -degenerate BIC. In contrast to many conven-
tional structures providing narrow reflectance or transmittance
peaks, a decrease in the peak width does not lead to an increase
in the structure size.

In addition to the spectral filtering applications, the consid-
ered composite structures possess one more remarkable optical
property, namely, the formation of BICs having a different
origin than that of the BICs supported by the initial ridge.
At the distances between the adjacent ridges satisfying the
Fabry–Perot condition, �N − 1�-degenerate Fabry–Perot BICs
arise in the composite structure comprisingN ridges. In the vicin-
ity of the formed BICs, an effect very similar to the EIT effect is
observed. In the present case, the EIT peaks can be explained by
the presence of N − 1 zeros of the reflection coefficient.

The obtained results may find application in the design of
optical filters, sensors, and the devices for transformation of
optical signals. In particular, the proposed composite structures
can be used for higher-order differentiation of optical signals
propagating in the slab waveguide. In addition, the theoretical
results presented in Section 3 and concerning the description of
the resonant properties of the composite structures are not spe-
cific for the considered ridge structures and can be extended to
other composite structures comprising Lorentzian-line-shaped
resonators separated by phase-shift layers.
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