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We apply the notion of discrete supersymmetry based on matrix factorization to quantum systems consisting of
coupled bosonic oscillators to construct isospectral bosonic quantum networks. By using the algebra that arises
due to the indistinguishability of bosonic particles, we write down the Schrödinger equations for these oscillators
in the different boson-number sectors. By doing so, we obtain, for every partner quantum network, a system of
coupled differential equations that can be emulated by classical light propagation in optical waveguide arrays.
This mathematical scheme allows us to build quasi-two-dimensional optical arrays that are either isospectral or
share only a subset of their spectrum after deliberately omitting some chosen eigenstates from the spectrum. As an
example, we use this technique (which we call bosonic discrete supersymmetry or BD-SUSY) to design two
optical, silica-based waveguide arrays consisting of six and three elements, respectively, with overlapping
eigenspectrum. © 2019 Chinese Laser Press
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1. INTRODUCTION

Supersymmetry (SUSY) was first proposed in the context of
high energy physics to relate fermionic and bosonic particles
[1–3]. Later, SUSY was introduced in quantum mechanics
[4–6]. By using the mathematical analogy between the single
particle Schrödinger and the electromagnetic wave equation,
the SUSY notion was recently extended to the field of photon-
ics [7,8] with possible applications in optical communications
[9], building new metamaterials [10], optical circuits [11],
Bragg gratings [12], and mode selection [13], to mention a
few examples. From a technological perspective, implementing
continuous supersymmetry requires precise control of the
refractive index profile at a subwavelength scale. Additionally,
it may also require refractive index values beyond those ob-
tained by current photonic material systems. To overcome
these difficulties, a discrete version of SUSY (D-SUSY) that re-
lies on matrix factorization schemes can be used [9,14]. In this
case, a waveguide (or resonator) array described by a matrix
Hamiltonian obtained by using coupled mode formalism
can be used to construct a supersymmetric partner array that
exhibits the same spectrum or a chosen subset of it [9,14]. The
advantage of D-SUSY is that the supersymmetric partner array
can be implemented by using the standard photonic materials.
The tuning parameters here are the width/height of the wave-
guides as well as their separations, which can be well-controlled
during the fabrication processes. This technique, together with

non-Hermitian engineering, was recently used to propose
[15,16] and later demonstrate [17] a universal solution for a
long-standing problem in laser engineering, namely to build
on-chip phase-locked laser arrays [17,18]. In most of these
works, however, the D-SUSY construction was one-dimensional.
The reason is that the various factorization techniques (i.e.
Cholesky or QR [19]) preserve the structure of the original
matrix only if it is tridiagonal. Within the next-neighbor
approximation, tridiagonal matrices describe one-dimensional
arrays. On the other hand, if the array is two-dimensional, then
it is described by a more complex matrix structure. In this
case, matrix factorization techniques introduce new long-range
couplings which are not easy to implement using planar
photonic technology. To alleviate some of these difficulties,
recent works proposed a different route to D-SUSY based
on Householder algorithm [16,20], which in effect reduces
the array dimensionality.

Here we introduce a new approach towards building two-
dimensional supersymmetric photonic structures. Essentially,
we apply the notion of D-SUSY not directly to the classical
array but to a quantum version made of one-dimensional
coupled bosonic oscillators. By applying D-SUSY to this
quantum array, we obtain a supersymmetric quantum array
that shares the same eigenvalues but different eigenvectors.
By properly shifting the eigenvalues of the original array,
one can also eliminate some chosen eigenvalues from the
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SUSY array. The next step is to use the Schrödinger equation in
order to expand the associated Hamiltonians in the relevant
boson-number sectors. By doing so, we obtain a system of
coupled differential equations for every partner quantum net-
work. These classical equations can be emulated by light propa-
gation in optical waveguide arrays [21,22]. Interestingly, when
an M -boson sector is considered in a quantum array having
more than two oscillators, then the resultant optical arrays
are two-dimensional for M > 1. This powerful mathematical
tool (which we call bosonic discrete SUSY, or BD-SUSY for
short) thus opens the door for engineering a wide range of two-
dimensional geometries with well-specified spectral relations—
a task that is not possible using conventional D-SUSY method.

2. RESULTS AND DISCUSSION

In order to demonstrate the power of this new technique, we
consider a system of one-dimensional three coupled bosonic
oscillators (extension to larger systems is mathematically straight-
forward; though, it can lead to challenges in implementations):

Ĥ � ℏβo
X3
n�1

â†nân � ℏκ
X2
n�1

â†nân�1 �H:c:, (1)

where βo (we use this symbol in anticipation of the implementa-
tion using waveguide arrays where βo will play the role of the
propagation constant of isolated channels) and κ are the on-site
energy and next neighbor coupling, respectively, andH.c. denotes
the Hermitian conjugate. Equivalently, the system in Eq. (1) can
be expressed using the Heisenberg equation of motions for the
operators ân, idân∕dz � − 1

ℏ �Ĥ, ân� (again, we used the distance
z instead of time t to relate these equations directly to waveguide
structures [21,22]):

i
d~̂a
dz

� H~̂a, H �
2
4
βo κ 0
κ βo κ
0 κ βo

3
5, (2)

where ~̂a � �â1, â2, â3�T . We can now perform D-SUSY map-
ping on the matrix M as follows:

QR � H − βSI ,

HS � RQ � βSI , (3)

where Q and R are the matrices obtained from the QR decom-
position, I is a unitary matrix, and βS is a constant. It is easy to
verify that the matrices H and HS are isospectral. Importantly,
the matrix HS is tridiagonal and symmetric. Consequently, one
can construct a one-dimensional quantum network that is iso-
spectral with that of Ĥ via the Hamiltonian:

ĤS � ℏ
X3
n�1

HS
n,nâ†nân � ℏ

X2
n�1

HS
n,n�1â

†
nân�1 �H:c: (4)

In other words, the diagonal forms of both Ĥ and ĤS are given by

Ĥ � ℏ
X3
n�1

λnÂ
†
nÂn,

ĤS � ℏ
X3
n�1

λnB̂
†
nB̂n, (5)

where �λn − βo� ∈ f0, � ffiffiffi
2

p
κg are the eigenvalues of the matrix

H and alsoHS . The operators Â and B̂ are related to â by linear

transformations defined by the eigenvectors of the matrices H
and HS , respectively.

Let us now assume that the bosonic networks described by
Ĥ are populated byM bosons. They can be distributed accord-
ing to jm1,m2,m3i (indicating mn bosons in site n) where
M �m1�m2�m3. These states can be arranged in any order
and expressed in terms of one index, say m � 1, 2,…,w, where
w � 1

2 �M � 2��M � 1� [23]. The general wavefunction can
be thus written as jψi � Pw

m�1 cmjmi. Similarly, for ĤS,

Fig. 1. Summary of our proposed approach. A discrete SUSY trans-
formation is applied to a set of N coupled quantum oscillators (for
demonstration, we take N � 3). The resultant partner network made
of N − 1 elements exhibits a subset of the spectrum of the original
system. By populating both quantum networks with multiple bosons
(2 bosons in the example shown here), we can construct classical arrays
that exhibit partial spectral overlap.

Fig. 2. Optical implementation of the SUSY arrays example shown
in Fig. 1 using a waveguide platform. The left panel shows the original
array while right panel shows the BD-SUSY partner obtained as de-
scribed in the text. The waveguides are all identical, having an elliptic
geometry withmain/minor diameters of 12 and 6 μm, respectively. The
core and cladding refractive indices are taken to be ncore � 1.461 and
nclad � 1.46, respectively [24,25]. Each waveguide supports only one
optical mode for each polarization direction. Finally, the distances
shown in panel (a) are: d 1 � 23.765 μm, d 2 � 18.275 μm, and
d 3 � 16.190 μm. These design parameters result in the following
coupling coefficients: κ12 � 14.143 m−1, κ23 � 13.141 m−1, and
κ24 � 10.000 m−1. The second order nearest next neighbor coupling
is found to be below 10% of the above values. Similarly, in panel
(b) we have: d 4 � 22.425 μm and κ12 � 20.012 m−1. Note that
we list the above values with high precision as per our numerical
simulations; however, in practice the weakly guiding nature of the
structure provides reasonable robustness against fabrication tolerance.
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we obtain jψSi � Pw
m�1 c

S
mjmSi. By substituting Ĥ and ĤS

back in and projecting on the states jmi and jmSi, respectively,
we obtain two different sets of coupled ordinary differential
equations (ODEs): one for the coefficients cm and another
for cSm. Each of these coupled ODEs can be emulated by a
classical waveguide array.

Particularly, for concreteness, we will consider an example
withM � 2. Additionally, we will use this example to illustrate
how one can build a partner network after eliminating some of
the eigenvalues. To do so, we make the choice βs � βo. As a
result, we find that

HS �

2
64

βo
ffiffiffi
2

p
κ 0ffiffiffi

2
p

κ βo 0

0 0 βo

3
75: (6)

We can thus consider only the 2 × 2 block diagonal, which is
equivalent to omitting the state with eigenvalue βo:

ĤS
R � ℏβo�â†1â1 � â†2â2� �

ffiffiffi
2

p
ℏκâ†1â2 �H:c: (7)

The subscript R indicates that this is a reduced Hamiltonian,
which has the diagonal form:

ĤS
R � ℏ

X2
n�1

μnB̂†
nB̂n, (8)

here �μn − β0� ∈ f� ffiffiffi
2

p
κg. Figure 1 shows the corresponding

classical networks of these quantum oscillators when populated
with two bosons. In this case, the main and partner arrays have
eigenvalues that correspond to their optical super modes
given by �βm − βo� ∈ f0, � ffiffiffi

2
p

κ, �2
ffiffiffi
2

p
κg and �βSm − βo� ∈

f0, �2
ffiffiffi
2

p
κg, respectively. In other words, the partner array

shares all the eigenvalues of the main array except � ffiffiffi
2

p
κ.

Importantly, by inspecting Eq. (7), we note that the waveguides
in the main and partner arrays are identical, which simplify the
implementation significantly.

Figure 2 plots a realistic implementation of these networks
in silica-glass-based waveguide systems. The design parameters
along with the resultant coupling coefficients are all listed in the
figure caption.

Figure 3 depicts the eigenmodes and eigenvalues associated
with the photonic networks in Fig. 2 as obtained by full-
wave finite element simulations. These results clearly illustrate
the partial spectral overlap as predicted exactly by the
discrete model.

Finally, we also study the evolutionary dynamics of light in
these waveguide arrays when a small coupling (κ � 1 m−1) is
introduced between the rightmost waveguide of the main array

Fig. 3. Eigenmode structure of the waveguide arrays shown in
Figs. 2(a) and 2(b) are depicted in the left and right panels, respectively
(obtained by full-wave finite element simulations). The figures also
indicate the values of the associated propagation constants as measured
from the isolated waveguide value, i.e., Δβ � βm − βo (in units of
m−1), where βm,o are the propagation constants of array mode m
and the isolated waveguide mode, correspondingly. As anticipated
from the coupled mode analysis, modes ② and ⑤ in the main array
have no partner modes in the BD-SUSY partner array. Moreover,
mode ② of the partner array corresponds to two degenerate states
in the main array. These results confirm the feasibility of our approach
for building quasi-2D supersymmetric optical systems.

Fig. 4. Light propagation dynamics in a waveguide array formed by
introducing a weak coupling between the main structure and its part-
ner, as shown in (a)–(e). When mode ① of the main array is excited, we
observe an efficient optical power transfer to the partner array after a
propagation distance corresponding to z � 4π (in units of meter). On
the other hand, if mode ② of the main array is excited, no appreciable
power transfer to the partner array is observed (not shown here). The
power transfer efficiency between the modes is illustrated in (f ) where
near perfect transfer is observed. The blue and red lines are the total
power in the main and pattern arrays, respectively.
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and the leftmost channel of the partner array. Figures 4(a)–4(e)
plot the optical intensity profiles at different propagation cross
sections when only mode ① of the main array is excited (i.e.,
there is zero input in the partner array). Clearly, at a distance
that corresponds to a full period (which in the current design
corresponds to z � 4π in units of meter), the total power is
transferred to mode ① of the partner array with an efficiency
∼100% as can be seen from Fig. 4(f ). On the other hand, when
mode ② of the main array is excited, we observe almost no
power transfer to the partner array, as expected to due to
the phase mismatch (see Fig. 3). Importantly, we note that sim-
ilar designs with scaled parameters can be implemented using
shorter structures [26] or even in resonators where propagation
distance is replaced by time.

3. CONCLUSIONS

In conclusion, to the best of our knowledge, we have intro-
duced a new approach for engineering two-dimensional optical
arrays that exhibit complete or partial spectral overlap. Our
method relies on the bosonic algebra of coupled quantum
oscillators, essentially applying the D-SUSY to the correspond-
ing Heisenberg equation of motions followed by expanding the
relevant Hamiltonians in their Fock space. The resultant ODEs
can be then emulated by classical waveguide arrays. When
considering a certain boson sector that has more than one
photon, this technique gives rise to optical arrays that have
two-dimensional connectivities (i.e., are not represented by
tridiagonal matrices). We have demonstrated our technique
by designing two different arrays having six and three wave-
guides, with the spectrum of the latter being a subset of
that of the former. We have also presented an implementation
for these structures based on waveguide arrays in glass plat-
forms. Our full-wave simulations using the finite element
method and coupled mode theory confirm our theoretical
predictions. Finally, we emphasize that our technique can in
principle be applied to any 1D network structure in order
to obtain a quasi 2D SUSY partner. However, implementing
more complex arrangements using optical platforms maybe
challenging, mainly due to the geometric restrictions imposed
by the waveguides (or resonators). In this regard, a platform
that can be of potential interest is superconducting circuits
which was shown recently to provide more degrees of freedom
for implementing hyperbolic lattices [27]. We will investigate
how D-SUSY can benefit from this promising platform in
future work.
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