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Interest in the nonlinear properties of multi-mode optical waveguides has seen a recent resurgence on account of
the large dimensionality afforded by the platform. The large volume of modes in these waveguides provides a new
spatial degree of freedom for phase matching nonlinear optical processes. However, this spatial dimension is
quantized, which narrows the conversion bandwidths of intermodal processes and constrains spectral and tem-
poral tailoring of the light. Here we show that by engineering the relative group velocity within the spatial
dimension, we can tailor the phase-matching bandwidth of intermodal parametric nonlinearities. We demonstrate
group-velocity-tailored parametric nonlinear mixing between higher-order modes in a multi-mode fiber with gain
bandwidths that are more than an order of magnitude larger than that previously thought possible for intermodal
four-wave mixing. As evidence of the technological utility of this methodology, we seed this process to generate
the first high-peak-power wavelength-tunable all-fiber quasi-CW laser in the Ti:sapphire wavelength regime.
More generally, with the combination of intermodal interactions, which dramatically expand the phase-matching
degrees of freedom for nonlinear optics, and intermodal group-velocity engineering, which enables tailoring of the
bandwidth of such interactions, we showcase a platform for nonlinear optics that can be broadband while being
wavelength agnostic. © 2018 Chinese Laser Press

https://doi.org/10.1364/PRJ.7.000001

1. INTRODUCTION

Multi-mode optical fibers provide the ability to guide light
while encoding spatial—in addition to traditional temporal
and spectral—information. Recently, there has been renewed
interest in using this spatial dimension for applications includ-
ing imaging [1], high-capacity telecommunications [2,3], and
high-power laser development [4,5]. Likewise, interest in their
nonlinear optical properties has also grown, leading to many
demonstrations of intermodal supercontinuum generation
[6–8] and other ultrafast nonlinear phenomena [9–11].
Parametric processes that resonantly convert pump light di-
rectly to target frequency bands, for instance four-wave mixing
(FWM), may especially benefit from the large dimensionality
of multi-mode systems, as intermodal interactions drastically
increase the number of possible combinations with which phase
matching is achieved. This increased flexibility is being ex-
plored for applications such as optical signal processing
[12,13], frequency conversion [14], and quantum entangle-
ment [15,16].

There is one main difficulty in harnessing the multi-mode
space, however. As illustrated in the first demonstration
of intermodal nonlinear optics by Stolen et al. in 1974

[17,18]—and repeatedly confirmed by subsequent experimen-
tal investigations to date [19–23]—FWM between different
spatial modes typically exhibits impractically narrow parametric
gain bandwidths. This problem arises because transverse space
in an optical fiber is discretized into modes rather than being
continuous; thus, the modes have discrete phase velocities, and
accordingly only discrete (i.e., narrowband) phase-matched
combinations are typically found. Thus, the spatial degree of
freedom is gained while constraining the two other crucial de-
grees of freedom related to spectral and temporal tailoring of
light. This obviates the utility of intermodal interactions for
most known applications of parametric nonlinear processes,
such as multicasting classical communications signals [24],
tailoring joint-spectral amplitudes for quantum sources [25],
or ultrashort-pulse nonlinear interactions, to name a few
examples.

Here, we demonstrate a solution to this problem by tailoring
not only the phase-matching condition but also the relative
group velocities of interacting modes in a multi-mode optical
fiber. By matching the group velocity of the LP0,4 and LP0,5
modes [Fig. 1(a)] at their respective converted wavelengths,
we upend conventional wisdom that intermodal FWM is
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necessarily narrowband, and report, to the best of our knowl-
edge, the first realization of broadband intermodal parametric
frequency conversion (63 nm at 1553 nm, 17 nm at 791 nm).
Additionally, we seed this process [Fig. 1(b)] to generate a
high-peak-power (∼10 kW) quasi-CW (∼0.6 ns) source of
wavelength-tunable radiation in the Ti:sapphire wavelength
band (786–795 nm). Thus, group-velocity-matched inter-
modal FWM unlocks a degree of freedom that decouples
interaction wavelengths from their respective bandwidths,
while also providing for a power-scalable platform to achieve
nonlinear frequency conversion.

2. INTERMODAL PHASE MATCHING

FWM (Fig. 1) requires that the energy of the photons (propor-
tional to their respective frequencies) and their momenta

(proportional to the propagation constant β) be conserved
[Figs. 1(c) and 1(d), pump is denoted by “p,” Stokes by “s,”
and anti-Stokes by “as”]. The parameter β is related to the
effective refractive index neff , by β � 2πneff∕λ, and thus the
phase-matching condition for FWM is given by

Δβ� 2π

λp
n�j�eff �λp��

2π

λp
n�k�eff �λp�−

2π

λs
n�l�eff �λs�−

2π

λas
n�m�eff �λas�≈0,

(1)

where λ is the wavelength; the super-scripts “j” through “m”
correspond to the modes of each component of the pump,
the Stokes field, and the anti-Stokes field, respectively; and the
small offset due to self-phase modulation has been neglected
[26]. It can be shown that for cases where the neff of all four
fields lies on a straight line (when plotted versus wavelength) at

Fig. 1. (a) Intensity profiles of the pump modes LP0,4 and LP0,5. (b) Schematic representation of intermodal parametric frequency conversion of
the pump (green pulse) to the anti-Stokes (blue pulse) and Stokes (red pulse) waves along the length of the fiber. Schematic representation of
(c) energy conservation and (d) phase matching for four-wave mixing. (e) Phase matching in the effective refractive index picture: solutions exist
where the straight, dashed lines intersect the neff curves for different modes (solid lines), where integer “m” denotes radial mode order. (f ) Parametric
gain for typical intermodal processes (black line) and a group-velocity-tailored process (purple line), offset for clarity; the purple line in (e) is tangent
to the neff curves for an extended wavelength range leading to broadband parametric gain.
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corresponding wavelengths that conserve energy, the waves are
necessarily phase-matched (see the derivation in Supplement 1,
section S.4 of Ref. [22]). This concept is illustrated in Fig. 1(e),
which shows two exemplary phase-matching possibilities. The
black dashed line corresponds to a typical intermodal case
where two wavelength- and mode-degenerate pump photons
couple to anti-Stokes and Stokes photons in adjacent mode or-
ders. The line intersects the neff curves of the anti-Stokes,
pump, and Stokes modes (solid red, green, and blue lines, re-
spectively), leading to phase matching. Here we see the utility
of the multi-mode space, in that more modes provide more
avenues for phase matching. However, the slope of the
phase-matching line is such that intersection points occur only
for discrete sets of wavelengths, and thus the resulting paramet-
ric gain [black line in Fig. 1(f )] is intrinsically narrowband.

The purple dashed line in Fig. 1(e) depicts the neff phase-
matching picture for a group-velocity-tailored intermodal pro-
cess. The pump laser is equally partitioned between two modes,
and thus the phase-matching line lies between their respective
neff curves [solid blue and green lines in Fig. 1(e)] at the pump
wavelength. By adjusting the pump wavelength, we can pre-
cisely energy-match the pump to the anti-Stokes and Stokes
wavelengths such that the neff curves of the respective interact-
ing modes are tangential to the phase-matching line. This
condition is equivalent to the two modes being group-
index-matched, and thus group-velocity-matched, at their re-
spective anti-Stokes and Stokes wavelengths, and automatically
yields broad gain bandwidths [purple line, Fig. 1(f )].

To explicitly derive the relationship between group velocity
and bandwidth, we start by assuming the waves are phase- and
energy-matched for a given set of frequencies such that Δβ �
βj�ωp� � βk�ωp� − βj�ωs� − βk�ωas� � 0 [where “j” and “k”
are the indices of the two interacting modes, and
β � ωneff �ω�∕c��. To determine bandwidth, we assess phase
matching for a small frequency detuning Δω of the anti-
Stokes and Stokes waves from the nominally phase-matched
condition (note that the detuning is opposite in sign for the
Stokes and anti-Stokes waves in order to conserve energy).
We expand to the first order to approximate the frequency
dependence [20,21],

Δβ � βj�ωp� � βk�ωp� −
�
βj�ωas� � Δω

dβj
dω

����
ωas

�

−

�
βk�ωs� − Δω

dβk
dω

����
ωs

�
: (2)

The zeroth-order terms cancel as the waves are nominally
phase-matched, yielding

Δβ � Δω
�
dβk
dω

����
ωs

−
dβj
dω

����
ωas

�
: (3)

For the case where the derivatives of β for modes “j” and “k”
evaluated at ωas and ωs are equal, the modes are phase matched
(i.e., Δβ � 0) for arbitrary bandwidth (higher-order terms are
required to accurately predict the bandwidth). Group velocity
is given by vg � �dβ∕dω�−1; therefore, matching the group
velocities of the Stokes and anti-Stokes modes at their respective
frequencies (wavelengths) maximizes the phase-matched
bandwidth.

Phase matching in single-mode fibers (SMFs) can also be
similarly graphically analyzed and serves to illustrate the unique
design space enabled by the group-velocity-tailored intermodal
FWM we discuss here. For SMFs, the availability of only one
curve [Fig. 1(e)] implies that phase-matching wavelengths
as well as bandwidths need to be controlled only by tailoring
this single curve. Such tailoring, also called group-velocity
dispersion engineering, has been revolutionized with the advent
of photonic crystal designs [27], but restricts the design free-
dom to two canonical parametric gain profiles: (1) broadband
gain at wavelengths adjacent to the pump laser or (2) narrow-
band gain at wavelengths far from the pump [28–30]. In con-
trast, the group-velocity-tailored intermodal FWM platform we
describe here faces no such bandwidth-versus-wavelength
constraints.

3. EXPERIMENT AND RESULTS

Light from a home-built pulsed ytterbium-doped fiber laser
(λ � 1040–1050 nm, τ � 1 ns, 5 kHz repetition rate,
∼70 kW peak power) is coupled into a 2 m segment of
step-index multi-mode test fiber (50 μm core diameter,
numerical aperture NA � 0.22, Thorlabs FG050LGA). We
simulate the electric fields, effective indices, group velocities,
and dispersion of the modes in the test fiber using a home-built
scalar eigenmode solver operating on a measurement of the
fiber’s refractive index profile. We excite pump modes in the
fiber using a binary phase plate programmed on a spatial light
modulator [Fig. 2(a), Hamamatsu X10468] [31,32]. The phase
plate is designed to match the phase reversals of the LP0,5 mode
but stretched larger than the optimum size for pure LP0,5 ex-
citation, resulting in coupling to both the LP0,4 and LP0,5
modes [Fig. 2(b)]. To ensure equal coupling to the LP0,4
and LP0,5 modes, we experimentally optimize phase plate
stretching by maximizing spontaneous parametric fluorescence
at the anti-Stokes wavelength, finding an optimum stretching
factor of 12%. Simulations of the overlap between the electric
field of the beam immediately after the SLM and each mode of
the test fiber indicate that ∼81% of the power coupled to the
fiber resides in an equal (within 1%) superposition of the target
LP0,4 and LP0,5 modes [Fig. 2(c)] [31].

The wavelength of the pump is chosen such that the group
velocity [Fig. 2(d)] of the LP0,4 mode at the anti-Stokes wave-
length (7XX nm) is matched to that of the LP0,5 mode at the
Stokes wavelength (15XX nm). The corresponding simulated
parametric gain curve shows broadband gain [Fig. 2(e)]
centered at the group-velocity-matched wavelengths.

When only the pump laser is coupled into the fiber, the
resultant spontaneous parametric fluorescence spectrum reveals
the spectral dependence of the gain, and hence the phase-
matched wavelengths and bandwidths. Figure 3(a) shows the
measured parametric gain as a function of pump wavelength.
Initially, there are two sets of gain peaks on the anti-Stokes
and Stokes sides of the pump, respectively (purple curve,
λ � 1046.2 nm). As the pump wavelength increases, the
peaks move together and merge, and subsequently the gain de-
creases. This can be understood with the intuition provided
by Fig. 1(e). Small changes in the pump wavelength change
the energy-matching requirements, and accordingly change the
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slope of the phase-matching line. For short pump wavelengths,
the slope is larger and the line intersects the neff curves twice
on either side of the pump, resulting in two sets of gain peaks.
At longer pump wavelengths, the slope decreases, lying tangent
to the neff curves and merging the gain peaks into one broad-
band region. If the slope decreases further, it no longer inter-
sects the curves; phase matching is not preserved, and thus the
gain disappears.

In order to maximize bandwidth, we operate at a pump
wavelength of 1047.6 nm, where the line is slightly above
the tangent point [see Fig. 1(e) for reference]. The two gain
peaks have not completely merged, resulting in the character-
istic dip in the center of the gain bandwidth. The measured
gain [Fig. 3(b)] exhibits broadband regions (10 dB bandwidths
of 63 nm at 1553 nm and 17 nm at 791 nm) in agreement with
the simulations [Fig. 2(e)]. The measured image of the beam
at the pump wavelength [inset in Fig. 3(b)] does not resemble
the profile of a single LP0,m mode and exhibits rings with poor
visibility, a hallmark of the intended superposition of modes.
In contrast, the measured mode images at the anti-Stokes and
Stokes wavelengths [inset in Fig. 3(b)] clearly correspond to the
LP0,4 and LP0,5 modes, indicating wavelength conversion from
the desired FWM process.

Next we introduce a low-power erbium-doped fiber laser
coupled into the LP0,5 mode of the test fiber and tune its wave-
length across the Stokes gain band (15XX nm) [33]. This laser
seeds the FWM process, causing transfer of power from the
pump to the Stokes and anti-Stokes waves. Figure 4 shows mea-
sured output spectra for the system as a function of seed wave-
length, indicating conversion of 1048 nm pump photons to the
Ti:sapphire spectral region (786–795 nm) while maintaining
the narrow spectral linewidth of the seed laser. Temporal pro-
files of the output pulses are shown in Figs. 5(a)–5(c). The
center of the pump pulse undergoes depletion in the presence
of the seed as the power is converted to the Stokes and anti-
Stokes wavelengths [Fig. 5(a)]. In total, 34%� 3% of the
pump power is depleted, with further depletion limited by the
leading and trailing edges of the pump pulse, whose intensity is

not sufficient to drive the nonlinear process (as is commonly
observed in any nonlinear process with pump pulses that are
not temporally rectangular in shape). As a result, the output
pulse widths for the Stokes and anti-Stokes pulses are narrowed
to ∼0.6 ns full width at half-maximum [Figs. 5(b) and 5(c)].
The conversion efficiency is 21%� 2% for the anti-Stokes
wave and 10%� 2% for the Stokes wave. The discrepancy be-
tween the conversion efficiencies is because FWM preserves
the photon number. Thus, the anti-Stokes photons, which are
roughly twice as energetic as the Stokes photons, constitute the
majority of the output power. Normalizing for photon energy,

Fig. 3. (a) Spontaneous four-wave mixing spectra as a function
of pump wavelength; each spectrum offset by 50 dB for clarity.
(b) Zoom-in of the bandwidth-optimized spontaneous spectrum
(λp � 1047.6 nm) with mode images inset.

Fig. 2. (a) Setup schematic for intermodal four-wave mixing experiments. SLM, spatial light modulator; OSA, optical spectrum analyzer.
(b) Simulated electric field profiles of the LP0,4 (blue line) and LP0,5 (red line) modes plotted alongside the phase profile of a LP0,5 binary phase
plate stretched by∼12% (green line, right axis). (c) Simulations of the relative power coupled to each mode of the test fiber for a phase plate stretched
by 12%. (d) Simulated group velocity for the LP0,4 and LP0,5 modes. (e) Simulated parametric gain for group-velocity-matched four-wave mixing
pumped with LP0,4 and LP0,5.
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the photon-to-photon transfer efficiencies from the pump
to the anti-Stokes and Stokes wavelengths are in agreement
(16%� 2% and 15%� 2%, respectively), as expected.

While the conversion efficiency is somewhat limited by the
leading and trailing edges, the instantaneous depletion at the
center of the pump pulse is as high as 71% [purple markers
in Fig. 5(d)]. Efficient conversion of the peak of the pump pulse
results in high peak powers of 11.2 kW for the anti-Stokes pulse
[Fig. 5(b)] and 6 kW for the Stokes pulse [Fig. 5(c)], corre-
sponding to ∼48 dB of peak parametric gain at the seed

wavelength [brown markers in Fig. 5(d)]. Instantaneous pump
depletion remains high across the full seed tuning range [purple
markers in Fig. 5(d)], resulting in ∼10 kW peak-power quasi-
CW operation for all measured anti-Stokes pulses [Fig. 5(e)]. At
the edges of the tuning range, we see no significant degradation
of the system performance [Figs. 5(d) and 5(e)], implying that
operation across the full ∼17 nm bandwidth predicted by the
spontaneous parametric fluorescence [Fig. 3(b)] would have
been possible had we not been limited by the tunability of
the seed source available in the laboratory.

Fig. 4. Full experimental spectra as a function of seed wavelength (1535–1570 nm) showing conversion to the Ti:sapphire band (786–795 nm)
with representative experimental mode images shown as inset; each spectrum offset by 70 dB for clarity.

Fig. 5. Experimentally measured pump profiles for the (a) pump (pump alone shown as a solid black line; pump combined with seed shown as a
dotted purple line), (b) anti-Stokes, and (c) Stokes wavelengths for a 1545 nm wavelength seed. (d) Peak pump depletion (purple markers, left axis)
and peak Stokes gain (brown markers, right axis) as a function of seed wavelength. (e) Peak power (anti-Stokes shown with blue markers; Stokes
shown with red markers).
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To the best of our knowledge, these results represent the
first demonstration of an ∼10 kW peak-power wavelength-
tunable fiber source operating in the 7XX nm wavelength
regime. Additionally, the bandwidth supported by this system
would enable conversion of pulses as short as ∼40 fs. Hence,
this represents the first all-fiber alternative to the ubiquitous
Ti:sapphire laser that is the mainstay of many optics and pho-
tonics applications today.

4. DISCUSSION, SUMMARY, AND
CONCLUSIONS

We have shown that by employing group-velocity matching
between the LP0,4 and LP0,5 modes of a multi-mode fiber,
we can overturn the decades-old conception that intermodal
parametric interactions must be impractically narrowband
and demonstrate a system that is wideband as well as broad-
band—a combination not afforded by single-mode nonlinear
guided waves. This is possible because, unlike single-mode
waveguides, in systems with spatial diversity, phase matching
(related to the propagation constant of light) is decoupled from
bandwidth (related to the spectral gradient of the propagation).
Indeed, the ubiquity of this concept is not restricted to the spe-
cific mode combinations we used in our experiments. Rather, as
Table 1 illustrates, other processes with similar spectral and
modal degeneracies can result in a wide variety of spectral
ranges in which broadband intermodal nonlinear interactions
can be obtained, simply by choice of mode order. More gen-
erally, we expect this phenomenon to hold true for modes with
entirely different symmetries, and waveguide design may enable
group-velocity-matched parametric nonlinearities in platforms
other than fibers, such as on-chip waveguides.

Technologically, employing group-velocity engineering to
multi-mode nonlinear optics reveals two benefits: (1) by ena-
bling bandwidth tailoring independent of phase-matching con-
straints, it facilitates control over the spectral distribution of the
nonlinear response agnostic of the wavelength of operation,
thereby addressing applications such as multi-mode multicast-
ing and factorable or non-factorable quantum state generation,
and (2) by decoupling the phase-matching condition and
bandwidth from mode area, tunable frequency-converted
sources become power scalable in an all-fiber schematic. As
such, intermodal group-velocity engineering promises advances
in controlling, exploiting, or managing optical nonlinearities in
multi-mode optical systems, in analogy to the revolutionary
advances in single-mode nonlinear optics made possible by
dispersion engineering afforded by photonic crystal designs.

Funding. Air Force Office of Scientific Research (AFOSR)
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(N00014-17-1-2519).
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1. T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure

fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
2. R. J. Essiambre, R. Ryf, N. K. Fontaine, and S. Randel,

“Breakthroughs in photonics 2012: space-division multiplexing in mul-
timode and multicore fibers for high-capacity optical communication,”
IEEE Photon. J. 5, 0701307 (2013).

3. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E.
Willner, and S. Ramachandran, “Terabit-scale orbital angular momen-
tum mode division multiplexing in fibers,” Science 340, 1545–1548
(2013).

4. J. W. Nicholson, J. M. Fini, A. M. DeSantolo, X. Liu, K. Feder, P. S.
Westbrook, V. R. Supradeepa, E. Monberg, F. DiMarcello, R. Ortiz, C.
Headley, and D. J. DiGiovanni, “Scaling the effective area of higher-
order-mode erbium-doped fiber amplifiers,” Opt. Express 20, 24575–
24584 (2012).

5. S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S.
Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode
fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2,
429–448 (2008).

6. B. Zwan, S. Legge, J. Holdsworth, and B. King, “Spatio-spectral analy-
sis of supercontinuum generation in higher order electromagnetic
modes of photonic crystal fiber,” Opt. Express 21, 834–839 (2013).

7. Y. Chen, Z. Chen, W. J. Wadsworth, and T. A. Birks, “Nonlinear
optics in the LP02 higher-order mode of a fiber,” Opt. Express 21,
17786–17799 (2013).

8. S. O. Konorov, E. E. Serebrannikov, A. M. Zheltikov, P. Zhou, A.
Tarasevitch, and D. von der Linde, “Mode-controlled colors from
microstructure fibers,” Opt. Express 12, 730–735 (2004).

9. L. Rishøj, B. Tai, P. Kristensen, and S. Ramachandran, “Discovery
of soliton self-mode conversion in multimode optical fibers,”
arXiv:1805.06037.

10. L. G. Wright, D. N. Christodoulides, and F. W.Wise, “Controllable spa-
tiotemporal nonlinear effects in multimode fibres,” Nat. Photonics 9,
306–310 (2015).

11. K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G.
Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in mul-
timode fibres,” Nat. Photonics 11, 237–241 (2017).

12. M. Schnack, T. Hellwig, and K. Fallnich, “Ultrafast, all-optical control of
modal phases in a few-mode fiber for all-optical switching,” Opt. Lett.
41, 5588–5591 (2016).

13. M. Ma and L. R. Chen, “Harnessing mode-selective nonlinear optics
for on-chip multi-channel all-optical signal processing,” APL Photon.
1, 086104 (2016).

14. J. Demas, G. Prabhakar, T. He, and S. Ramachandran, “Wavelength-
agile high-power sources via four-wave mixing in higher-order
modes,” Opt. Express 25, 7455–7464 (2017).

15. D. Cruz-Delgado, R. Ramirez-Alarcon, E. Ortiz-Ricardo, J. Monroy-
Ruz, F. Dominguez-Serna, H. Cruz-Ramirez, K. Garay-Palmett,
and A. B. U’Ren, “Fiber-based photon-pair source capable of hybrid
entanglement in frequency and transverse mode, controllably
scalable to higher dimensions,” Sci. Rep. 6, 27377 (2016).

16. K. Rottwitt, J. G. Koefoed, and E. N. Christensen, “Photon-pair
sources based on intermodal four-wave mixing in few-mode fibers,”
Fibers 6, 32–34 (2018).

17. R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-
wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24,
308–310 (1974).

18. R. H. Stolen, “Phase-matched-stimulated four-photon mixing in silica-
fiber waveguides,” IEEE J. Quantum Electron. 11, 100–103 (1975).

19. J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-
Nielsen, and D. Jakobsen, “Intermodal four-wave mixing in a
higher-order-mode fiber,” Appl. Phys. Lett. 101, 161106 (2012).

20. R. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach,
A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental

Table 1. Additional Simulated Broadband FWM
Processes

Pump
Modes

Pump
Wavelength

Stokes
Bandwidth

Anti-Stokes
Bandwidth

LP0,1 � LP0,2 1194 nm 1519–1624 nm 943–984 nm
LP0,2 � LP0,3 1142 nm 1548–1644 nm 874–904 nm
LP0,3 � LP0,4 1093 nm 1533–1623 nm 823–849 nm
LP0,4 � LP0,5

a 1048 nm 1502–1586 nm 779–801 nm
LP0,5 � LP0,6 1001 nm 1469–1552 nm 739–759 nm

aCorresponds to simulations of the experiments shown here.

6 Vol. 7, No. 1 / January 2019 / Photonics Research Research Article

https://doi.org/10.1038/ncomms2024
https://doi.org/10.1109/JPHOT.2013.2253091
https://doi.org/10.1126/science.1237861
https://doi.org/10.1126/science.1237861
https://doi.org/10.1364/OE.20.024575
https://doi.org/10.1364/OE.20.024575
https://doi.org/10.1002/lpor.200810016
https://doi.org/10.1002/lpor.200810016
https://doi.org/10.1364/OE.21.000834
https://doi.org/10.1364/OE.21.017786
https://doi.org/10.1364/OE.21.017786
https://doi.org/10.1364/OPEX.12.000730
https://doi.org/10.1038/nphoton.2015.61
https://doi.org/10.1038/nphoton.2015.61
https://doi.org/10.1038/nphoton.2017.32
https://doi.org/10.1364/OL.41.005588
https://doi.org/10.1364/OL.41.005588
https://doi.org/10.1063/1.4967205
https://doi.org/10.1063/1.4967205
https://doi.org/10.1364/OE.25.007455
https://doi.org/10.1038/srep27377
https://doi.org/10.3390/fib6020032
https://doi.org/10.1063/1.1655195
https://doi.org/10.1063/1.1655195
https://doi.org/10.1109/JQE.1975.1068571
https://doi.org/10.1063/1.4759038


investigation of inter-modal four-wave mixing in few-mode fibers,”
IEEE Photon. Technol. Lett. 25, 539–542 (2013).

21. S. M. M. Friis, I. Begleris, Y. Jung, K. Rottwitt, P. Petropoulos, D. J.
Richardson, P. Horak, and F. Parmigiani, “Inter-modal four-wave mix-
ing study in a two-mode fiber,”Opt. Express 24, 30338–30348 (2016).

22. J. Demas, P. Steinvurzel, B. Tai, L. Rishøj, Y. Chen, and S.
Ramachandran, “Intermodal nonlinear mixing with Bessel beams in
optical fiber,” Optica 2, 14–17 (2015).

23. H. Pourbeyram, E. Nazemosadat, and A. Mafi, “Detailed investigation
of intermodal four-wave mixing in SMF-28: blue-red generation from
green,” Opt. Express 23, 14487–14500 (2015).

24. C.-S. Bres, A. O. J. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic,
“Wavelength multicasting of 320-Gb/s channel in self-seeded para-
metric amplifier,” IEEE Photon. Technol. Lett. 21, 1002–1004 (2009).

25. B. Fang, O. Cohen, M. Liscidini, J. E. Sipe, and V. O. Lorenz, “Fast
and highly resolved capture of the joint spectral density of photon
pairs,” Optica 1, 281–284 (2014).

26. G. P. Agrawal, Nonlinear Fiber Optics (Elsevier, 2005).
27. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J.

Wadsworth, and P. St. J. Russell, “Anomalous dispersion in a pho-
tonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).

28. D. Nodop, C. Jauregui, D. Schimpf, J. Limpert, and A. Tünnermann,
“Efficient high-power generation of visible and mid-infrared light by
degenerate four-wave-mixing in a large-mode-area photonic-crystal
fiber,” Opt. Lett. 34, 3499–3501 (2009).

29. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist,
“Fiber-based optical parametric amplifiers and their applications,”
IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).

30. P. Steinvurzel, J. Demas, B. Tai, Y. Chen, L. Yan, and S.
Ramachandran, “Broadband parametric wavelength conversion at
1 μm with large mode area fibers,” Opt. Lett. 39, 743–746 (2014).

31. J. Demas, L. Rishøj, and S. Ramachandran, “Free-space beam
shaping for precise control and conversion of modes in optical fiber,”
Opt. Express 23, 28531–28545 (2015).

32. J. Demas, G. Prabhakar, T. He, and S. Ramachandran, “Broadband
and Wideband parametric gain via intermodal four-wave mixing in
optical fiber,” in Conference on Lasers and Electro-Optics (CLEO)
(2017), paper SM3M.1.

33. J. Demas, L. Rishøj, X. Liu, G. Prabhakar, and S. Ramachandran,
“High-power, wavelength-tunable NIR all-fiber lasers via intermodal
four-wave mixing,” in Conference on Lasers and Electro-Optics
(CLEO) (2017), paper JTh5A.8.

Research Article Vol. 7, No. 1 / January 2019 / Photonics Research 7

https://doi.org/10.1109/LPT.2013.2242881
https://doi.org/10.1364/OE.24.030338
https://doi.org/10.1364/OPTICA.2.000014
https://doi.org/10.1364/OE.23.014487
https://doi.org/10.1109/LPT.2009.2021152
https://doi.org/10.1364/OPTICA.1.000281
https://doi.org/10.1109/68.853507
https://doi.org/10.1364/OL.34.003499
https://doi.org/10.1109/JSTQE.2002.1016354
https://doi.org/10.1364/OL.39.000743
https://doi.org/10.1364/OE.23.028531

	XML ID funding

