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We investigate the properties of spatial solitons in the fractional Schrédinger equation (FSE) with parity-time
(PT)-symmetric lattice potential supported by the focusing of Kerr nonlinearity. Both one- and two-dimensional
solitons can stably propagate in PT-symmetric lattices under noise perturbations. The domains of stability for
both one- and two-dimensional solitons strongly depend on the gain/loss strength of the lattice. In the spatial
domain, the solitons are rigidly modulated by the lattice potential for the weak diffraction in FSE systems. In the
inverse space, due to the periodicity of lattices, the spectra of solitons experience sharp peaks when the values of

wavenumbers are even. The transverse power flows induced by the imaginary part of the lattice are also inves-

tigated, which can preserve the internal energy balances within the solitons.
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1. INTRODUCTION

Fractional quantum mechanics, a promising extension of quan-
tum mechanics, is a fascinating subject and has been widely stud-
ied [1,2]. Laskin formulated the fractional Schrédinger equation
(FSE) to describe the fractional quantum mechanics when the
Brownian trajectories in Feynman path integrals are replaced
by Lévy trajectories [3,4]. Subsequently, the condensed-matter
scheme of space-fractional quantum mechanics was proposed
in a one-dimensional Lévy crystal [5]. In 2015, the first optical
realization of the FSE was achieved in aspherical optical cavities by
Longhi [6], who realized the fractional quantum harmonic oscil-
lator in an aspherical optical cavity, in which dual Airy beams
were generated. Subsequently, the propagation dynamics of
wave packets were reported in FSEs with parabolic potential
[7], Kerr nonlinearity [8], double-barrier potential [9,10], and no
potential involved [11]. In recent years, the nonlinear FSE has
attracted great attention. Some examples, such as the standing-
waves solution [12], quasi-soliton behavior [8], the proof of exist-
ence of a soliton solution [13], and bound states [14], were
mathematically investigated in various forms of the nonlinear frac-
tional Schrédinger equation (NFSE). In particular, the gap soli-
tons and surface gap solitons in the NFSE were reported in the
finite bandgaps of lattices for different Lévy indexes [15,16].
As with fractional quantum mechanics, parity-time (PT) sym-
metry also initially began as an extension of quantum mechanics.
The PT-symmetric Hamiltonians can exhibit a real eigenvalue
spectrum in spite of the fact that they are non-Hermitian
[17,18]. A necessary condition for a Hamiltonian to be PT
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symmetric is the potential function satisfying V' (x) = V*(-x).
In particular, the spectra of a PT-symmetric system possess a
phase transition point above which the spectra become partially
or completely complex and the PT symmetry is broken [19].
Beam propagation in PT-symmetric lattices can show a wide
variety of interesting effects, such as double refraction, power
oscillations, and nonreciprocity [18,20-23]. Particularly, solitons
can stably propagate in PT-symmetric lattices that are described
by the ordinary nonlinear Schrédinger equation (NSE) along
with their associated transverse power flow [24,25].

The combination of the FSE and PT symmetry is an inter-
esting topic. Recently, PT symmetry in the spatial FSE was re-
ported by Zhang er al, who showed that the nondiffracting
propagation and conical diffraction of input beams were found
at the critical point of a PT-symmetric lattice [26]. More re-
cently, Dong ez al. have investigated double-hump solitons
in the 1D NFSE with PT-symmetric potentials, and they found
that the out-of-phase and in-phase solitons can be stable in
focusing media and defocusing media, respectively [27]. Up
to now, neither the combination of PT symmetry and lattice
nor the higher-dimension solitons in the NFSE have been
reported. That is what we will address in this paper.

In this work, we investigate the soliton solutions that exist in
the NESE with PT-symmetric lattice potential for a Lévy index
of @ = 1. Both 1D and 2D solitons in the semi-infinite for-
bidden gaps of lattices can stably propagate long distances
under noise perturbations in the stable ranges of propagation
constants. Combined with the characteristics of PT-symmetric
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lattice potentials, we study the spatial domain and inverse space
distributions of solitons. The imaginary part of the lattice in-
duces the transverse power flow that flows from gain to loss
regions within the solitons. The existence ranges of stable sol-
itons are also investigated by linear stability analysis.

2. ONE-DIMENSIONAL SOLITONS

The self-focusing Kerr nonlinear FSE is written as

2\ a/2
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where a is the Lévy index (1 < a < 2), and V() is the periodic
PT-symmetric potential. Physically, Re{V(x)} is associated
with index guiding, while Im{V'(x)} represents the gain or loss
distribution of the optical medium. For the sake of universality,
we consider the potential function of the form V(x) =
Alcos®(x) + iV, sin(2x)] with amplitude A = 1 and a param-
eter V; to be varied. Clearly, the period of the potential is
D =gn. When a =2, Eq. (1) recovers the ordinary NSE.
In this work, we explore the limiting case of @ = 1.

Before finding the soliton solutions of Eq. (1), we first ex-
plore the linear properties of the periodic potential in the FSE.
The solution of Eq. (1) without the Kerr nonlinear term can be
written in the form w(z,x) = ¢,(x) exp(ifiz + ikx), where
¢ (x) is the Bloch mode, and f is the propagation constant.
The photonic band structure can be obtained by the plane-
wave expansion method. Since the potential V' (x) is z-periodic,
according to the Floquet—Bloch theorem, ¢, is spadially peri-
odic for ¢h;(x) = ¢(x + D). The potential V(x) and Bloch
mode ¢, can be expanded into a series of plane waves: ¢, =
> A, exp(iK,x) and V(x) =3, B, exp(iK,x) with
K, =2mn/D, where A, = [P dy(x)exp(-iK,x)dx/D
and B,, = [P V(x)exp(-iK ,x)dx/D. Substitution of these
series into the linear version of Eq. (1) yields the linear eigen-
value problem

S A8, - lk+ KA, = BA,, @

which is an eigenvalue problem in matrix form. The band
structure for the linear version of Eq. (1) can be obtained
for certain a. For PT-symmetric lattice potentials, the band
spectrum can be purely real, as the system is operated below
the phase transition point. Here, the phase transition point
is V! = 0.5, and the first two bands for V; below and above
the threshold value V" are shown in Fig. 1. With the increase
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Fig. 1. (a) Photonic band structure for FSE with PT-symmetric
periodic potential, when V,; = 0.4 (red line) and 0.55 (blue line).
(b) Imaginary parts of the band structure for V; = 0.55.

of V,, the band gap becomes narrower and disappears at the
threshold value. When V; > V", complex eigenvalues appear
in the first two bands of the band structure. The dynamic pro-
cess of the band structure with a periodic PT potential is quite
similar to those in the ordinary Schrédinger equation reported
previously [20,23,24]. However, there is a remarkable differ-
ence in that the first band is almost linear around £ = 0,
especially since all the bands become completely linear at
the phase transition point [26]. The linear bands mean
diffraction-free propagation of the beam due to the zero
second-order derivative around £ = 0.

Now we focus on the stationary soliton solutions to Eq. (1).
They can be obtained from Eq. (1) in the form of w(z,x) =
¢(x) exp(ifz), in which ¢(x) is a complex function that de-
scribes the soliton shape, and f is the corresponding real propa-
gation constant. The stationary soliton solutions were obtained
through the squared operator method (SOM) described in
Ref. [28]. This method consists of the iterative calculation
of the solitary waves using the expression ¢+ = ) -
IMALIM Lop™]dz,  where Lo = —(-d?/dx?)*/2 +
V(x) + |¢|* - B, and Ly¢p = 0 for the exact soliton solutions.
L1(6¢) = Lo(¢p + 6¢) is the result of linearizing £, by as-
suming a small perturbation 8¢ < ¢. The acceleration oper-
ator M = [¢c + (-d?/dx?)*/?] is introduced to speed up the
convergence, in which ¢ is a positive constant.

When the soliton solutions are obtained, the highest con-
cern is their stability, that is, whether they are stable against
small perturbations. Therefore, we perturb the soliton solutions
as w(x, z) = eP[Pp(x) + v(x)e®® + w*(x)e*'?], where |v],
|w| < |¢| are the perturbation functions, and A indicates
the perturbation growth rate. By substituting the perturbed sol-
utions into Eq. (1) and linearizing, we obtain the linear eigen-
value problem

(o 2)(0)=)

where £ = -(-d?/dx?)*/? + 2|¢|> + V(x) - B. This eigen-
value problem can be solved by the Fourier collocation method
or the Newton-conjugate-gradient method [29]. If eigenvalues
A with positive real parts exist, the solitons are linearly unstable;
otherwise, they are stable.

We first consider solitary waves in the semi-infinite gap
under unbroken PT symmetry for V; < 0.5. We numerically
construct the localized solutions by SOM. Figure 2(a) shows a
typical field profile of such a soliton. Compared to the ordinary
NSE in Ref. [24], the NFSE here has soliton solutions enduring
stronger modulation induced by lattice potentials, which is
caused by the weak diffraction of FSE that is discussed in the
diffraction relation of the lattice above. Figure 2(b) displays the
corresponding soliton profile of |p(k)| in the inverse space,
which is obtained by the Fourier transform of ¢(x). Apparently,
the spectral distribution is not symmetric with respect to
k =0, and the peak values occur when the value of # is even.
Such a phenomenon has been explained before through analyz-
ing the coupling strength induced by the PT-symmetric poten-
tial in the inverse space [26]. The soliton solutions can exist
with real propagation constants in spite of the existence of gain
and loss, that is, because there are transverse power flows within
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Fig. 2. (a) Soliton field profile (real part: blue line, imaginary part:
red line) for # = 0.8. (b) The spectral distribution |$(#)| in the inverse
space. (c) Transverse power flow (red line) of the soliton. (d) Spectrum
of the linearization operator for the soliton solution in (a). (¢) Stable
propagation perturbed with weak noise. The light gray line in (a) and
(d) represents the scaled real part of the potential. For all cases,
Vi,=04and A= 1.

them, which are quantified as the transverse power-flow density
S = (i/2) (P - p*@.). Figure 2(c) displays the transverse
power-flow density profile in the solitons. Obviously, the power
flow is positive around the centers of waveguides, while it be-
comes negative in the regions between channels. This means that
the direction of power flow is changed, and the energy always
flows from gain to loss regions. On the other hand, the soliton
stability is also examined by linear stability analysis on the basis
of Eq. (3). Figure 2(d) shows the spectrum of the linearization
operator for the soliton solution in Fig. 2(a). Perturbation growth
rate A has the largest real part Re{4},,, = 0, which means that
the soliton solution in Fig. 2(a) is stable. In order to check
the soliton stability, we conduct the propagation dynamics of
solitons under weak perturbations. The stable solitons can repair
and keep their shape under perturbations, as they do in com-
plex systems [30]. A stable evolution is shown in Fig. 2(e) when
V; = 0.4 and f = 0.8. In the initial condition, the stationary
soliton solution is perturbed by white Gaussian noise, and the
noise power is valued as 0.01.

It is worth noting that soliton solutions are also found
when the PT symmetry is broken, which is shown in Fig. 3(a).
This is because part of the band structure s still real, even above
the phase transition point, which is illustrated in Fig. 1. The
Floquet—Bloch decomposition of the solitons is primarily occu-
pied by the eigenmodes with real eigenvalues that are located
around # = 0. Moreover, in a nonlinear system, the nonline-
arity can transform some eigenvalues of the band structure from
complex to real [31]. This effect is conducive to the existence
of solitons with real propagation constants in broken PT
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Fig. 3. (a) Soliton field profile (real part: blue line, imaginary part:
red line). The light gray line denotes the real part of the potential.
(b) The perturbation growth rate profile for the soliton solution in
(a). (c) Unstable PT soliton propagation perturbed with weak noise.
In all cases, V; = 0.55 and § = 0.8.
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Fig.4. (a) Domains of stability on the plane (3, V;) for 1D solitons.
Solitons are stable in the blue region. The red line denotes the lower
edge of the semi-infinite forbidden gap. (b) The maximum real part of
perturbation growth rate versus §§ for V; = 0.4 and 4 = 1.

symmetry. However, the linear stability analysis reveals that the
solitons in such a system are not stable. For the soliton solution
in Fig. 3(a), the corresponding values of perturbation growth
rates are displayed in Fig. 3(b), and the maximal real part of 4 is
Re{A}max = 0.14. The propagation dynamics of the perturbed
soliton can also confirm this instability, as shown in Fig. 3(c).
The perturbation is a white Gaussian noise with power of 0.01.

The entire existence domain of stable 1D solitons is per-
formed in the (f, V;) plane, as shown in Fig. 4(a). With
the increase of V;, the stability domain is at first gradually nar-
rowed and then drastically shrinks when V; > 0.45. It com-
pletely disappears when V; > 0.467, which is slightly below
the symmetry breaking point V% = 0.5. The lower border
of the stability domain is slightly decreased with the increase
of V;, and the variation of the stability domain is mainly de-
termined by its upper border. From the results in Fig. 4(a), we
can see that the stability domain of the solitons gets narrower
with the increase of loss/gain strength in PT-symmetric lattices.
A typical dependence of Re{4} ., on the propagation constant
p is shown in Fig. 4(b) for V; = 0.4. The typical normalized
decay distance for unstable soliton solutions can be approxi-
mately valued as z ~ 1/Re{A},.x. The plot confirms that a
linear stability analysis predicts stable 1D-soliton solutions



.
878  Vol. 6, No. 9 / September 2018 / Photonics Research S Research Article

[i.e., with Re{l},,.,, = 0] that can be examined by the direct
propagation of the perturbed solutions.

3. TWO-DIMENSIONAL SOLITONS

Finally, we extend the analysis to the two-dimensional NFSE
with PT symmetry. The 2D NFSE can be written as

02 02 a2
i;—ayzl— (—ﬁ _W> w+ Vyw +lylw =0 (4)

The PT-symmetric potential has the form V(x,y) =
Afcos’x + cos’y + iV [sin(2x) + sin(2y)]}, which satisfies
V(x,y9) = V*(-x, —y). The 2D band structure is displayed
in Fig. 5() for A=4 and V;=0.2. As in the one-
dimensional case, the diffraction relation of the first band is
almost linear around the band center, as shown in the inset
of Fig. 5(a). The phase transition point is V% = 0.5; above
this point the first two bands merge together, and complex
eigenvalues occur in the surrounding region of the first
Brillouin zone.

A 2D-soliton solution with a propagation constant in the
semi-infinite gap is depicted in Fig. 5(b). We can see that
the soliton intensity is mainly distributed in multiple cells.
This distribution is more extensive relative to the single-cell
distribution of solitons in the ordinary NSE [24,32]. The linear
stability suggests that the soliton in Fig. 5(b) is stable for
Re{A} e = 0. Figure 5(c) shows the profile of the soliton
in the inverse space. The spectrum is asymmetric with respect
to k. = 0 or k, = 0, and sharp peaks are exhibited at special
locations where both £, and £, are even for the 7 period of the
lattice. The reason for this feature is similar to that of the one-
dimensional case. For the existence of gain and loss, the trans-
verse power flow is required to maintain the energy balance
within the soliton. The power flow is quantified by the
Poynting vector 8 = (i/2)(¢pVp* - ¢p*V¢p), which is vividly
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Fig. 5. (a) Band structure of a 2D-PT potential for Eq. (4) in linear
form. The inset displays the band structure in the reduced Brillouin
zone. (b) The profile of a 2D soliton when # = 5.55. (c) The spectral
profile |B(k,, k)| in the inverse space. (d) Transverse power flow (in-
dicated by arrows) for the soliton in (b) within one cell. “L” and “G”
indicate the loss and gain regions, respectively. For all cases, A = 4 and

V,=02.
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Fig.6. (a) Domains of stability on the plane (3, V;) for 2D solitons.
Solitons are stable in the blue region. The red line denotes the lower
edge of the semi-infinite forbidden gap. (b) Real part of perturbation
growth rate versus ff for A = 4 and V; = 0.2.

depicted in Fig. 5(d). Obviously, the energy inside the soliton
flows from the gain region to the loss region.

The stability property of 2D-soliton solutions is also inves-
tigated by exploring their stability domains. As in the 1D case,
the linear stability analysis of 2D solitons is performed, and the
2D form of Eq. (3) can be obtained. For the 2D version of
Eq. (3), limited by the computer memory, the standard matrix
eigenvalue solvers are only appropriate for a small number of
transverse points. As a result, such a procedure cannot guaran-
tee sufficient accuracy. Instead, here we use the iteration
method put forward in Ref. [33] and obtain the eigenvalues
with maximum real parts and the corresponding eigenfunctions
of L. Figure 6(a) displays the existence domain of a stable 2D
soliton in the (f, V) plane. The stability domain shrinks
quickly with the increase of V; and completely disappears when
V; > 0.215. Both the upper and lower cutoffs decrease with
the increase of V;. The lower cutoff of the stability domain
and the lower edge of the semi-infinite forbidden gap of the
lattice have almost the same variation tendency with the var-
iable V. Specifically, the dependence of Re{},,,, on the propa-
gation constant f is characterized in Fig. 6(b) for V; = 0.2.
The stability domain is # € [5.54, 5.59], where the perturba-
tion growth rate satisfies Re{},,,, = 0. All results obtained
by the linear stability analysis can be confirmed by direct
evolution of the perturbed soliton solutions.

4. CONCLUSION

We have studied one- and two-dimensional solitons in a new
system of the NFSE in PT-symmetric lattices for a Lévy index
of @ = 1. In real space, the solitons endure strong modulations
induced by the lattice potential for the weak diffraction of the
ESE. In the inverse space, the spectra experience sharp peaks at
even-value wavenumbers due to the 7 period of the lattice. As
the model becomes non-Hamiltonian, strong internal power
flows emerge to substantially modify the soliton shapes, and
the power flows always stream from gain regions to loss regions.
When the PT symmetry is broken, soliton solutions still exist in
spite of the fact that they are unstable. We show that the soliton
parameters and the corresponding stability domains are domi-
nated by the strength of the gains/losses of the PT-symmetric
lattice. Therefore, the PT-symmetric lattices can act as effective
tools to control the shapes, domains of existence, and stability
domains of solitary waves in NFSE systems.
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