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Non-Hermitian characteristics accompany any photonic device incorporating spatial domains of gain and loss.
In this work, a one-dimensional beam-forming array playing the role of the active part is disturbed from the
scattering losses produced by an obstacle in its vicinity. It is found that the placement of the radiating elements
leading to perfect beam shaping is practically not affected by the presence of that jammer. A trial-and-error inverse
technique of identifying the features of the obstacle is presented based on the difference between the beam target
pattern and the actual one. Such a difference is an analytic function of the position, size, and texture of the object,
empowering the designer to find the feeding fields for the lasers giving a perfect beam forming. In this way, an
optimal beam-shaping equilibrium is re-established by effectively cloaking the object and nullifying its jamming
effect. © 2018 Chinese Laser Press

OCIS codes: (140.3300) Laser beam shaping; (160.3918) Metamaterials; (230.3205) Invisibility cloaks.
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1. INTRODUCTION

Collective operation of laser waveguides in arrays and networks
is the backbone of several state-of-the-art applications and
recent advances in photonics and lightwave technologies.
One-dimensional laser phased arrays characterized by strong
nonlinearity and non-Hermiticity have been experimentally in-
vestigated in Ref. [1], where the effect of various symmetries on
multimode emission and edge-mode lasing has been identified
(free-space wavelength λ0 ≅ 1.59 μm). In two dimensions, net-
works of optical nanoantennas have been found able to support
functionalities beyond conventional focusing and steering use-
ful in three-dimensional holography and biomedical testing [2]
(λ0 ≅ 1.55 μm). Of course, the major application of such
structures remains efficient beam shaping, which can be elec-
tronically controlled based on hybrid prototypes of dielectric
waveguides and metallic nanoemitters [3] (λ0 ≅ 1.57 μm)
and provides grating lobe-free steering for light detection
and ranging [4] (λ0 ≅ 1.55 μm).

Regarding beam forming in similar THz applications, an
inverse problem for the excitations of an array of emitters
has been lately formulated [5]. Inspired by long established
level-set methods for computing moving fronts [6], new limits
for the radiation of emitters [7] and the recent inverse-design
paradigm shift in photonic design [8], the optimal arrangement
of the cavity lasers is considered. It has been reported [5] that
the distance between two consecutive radiating elements
should fall within an approximate value range, so that the
aggregate far-field response mimics perfectly a specific target

pattern. In particular, it is found that the waveguides should
not be placed too close to each other, or they will act as one
source unable to create a directive collective pattern.
Additionally, they cannot be very distant from each other
because each emitter should talk with the neighboring ones to
give a combined response instead of a sum of isolated and
uncorrelated radiation patterns.

Forward and inverse problems such as the aforementioned
ones have appeared for various bands of operational frequen-
cies. In radio engineering, e.g., clusters of radiators have been
traditionally used for optimal beam forming and, most impor-
tantly, adaptive techniques are employed to avoid the jamming
of the collective radiation pattern due to several causes.
Indicatively, signal processing methods that allow the system
to fully adapt to a complex spatio-temporal environment con-
taining jammers are presented in Ref. [9]. Furthermore, filter-
ing techniques that suppress the perturbation of the
information signal from interference sources by selecting the
suitable transmitting array [10] or alleviate the harming effects
of array imperfections [11] are also known and available.
Alternatives to these historical signal cancellation [12]
approaches are the modern cloaking techniques that allow an
object to interact minimally with the background field.
Similarly, the jamming effect of an obstacle can be mitigated
with use of passive dielectric coats [13,14] or periodic metallic
flanges that guide the incident field around it [15]. More easily,
an object that jams the signal from the source can vanish by
neutralizing its scattering field with active components
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such as electric/magnetic currents [16] or non-foster meta-
surfaces [17].

In this paper, we pair the structure of a beam-shaping laser
array with a near-field obstacle that jams the formed radiation
pattern. The cluster of emitters is identical to that of Ref. [5],
where their optimal excitations for the best beam forming are
computed. In the presence of the obstacle, the new effective
current feeds leading to a perfect result are determined by
solving the corresponding boundary value problem. The per-
missible range for the distance between the laser waveguides
remains the same as in the obstacle-free analysis [5], since
the object is passive and acts as a secondary source. The con-
sidered system combines gain (lasers) with loss (obstacle) and
clearly constitutes a non-Hermitian photonic configuration
[18–23]. Note that losses are not referring only to that part
of energy that is converted into thermal form due to the
passivity of the obstacle; we can define effective scattering losses
describing the jamming created by the object that destroys an
already established equilibrium. More specifically, in a working
beam-forming device, an object appears and harms the proper
response, behaving as an effective lossy part; to remedy that
situation, we re-adjust the active part and cloak the obstacle
by producing an aggregate response identical to the desired
target pattern.

This paper is organized as follows. In Section 2, we present
the configuration and state the assumption for the two-
dimensional variation. To this end, we rigorously impose
the boundary conditions to obtain a linear system whose sol-
ution is the local output fields of the lasers giving an optimal
beam forming in the presence of the obstacle. In Section 3, we
define the value ranges for the input parameters and our basic
observable metric, which is the error of the obstacle-free solu-
tion. Furthermore, we present the possibility of finding some
(or even all) objects’ features from the variations of that metric
and demonstrate the effectiveness of our method if one has
exact knowledge of the size, the texture, and the position of
the obstacle. Finally, in Section 4, we summarize the proposed
methodology and briefly mention our future plans on
non-Hermitian engineering for structures of the same class.

2. PROBLEM STATEMENT

Let us consider an array of multiple laser emitters radiating into
free space �ε0, μ0� as that depicted in Fig. 1, where the used
Cartesian �x, y, z� and cylindrical �r,φ, z� coordinate systems
are also defined. Referring to the z � 0 plane, we regard
�2M � 1� laser waveguides of common finite length along
y axis defined by a perfect and an imperfect mirror (at
y � 0) and equispaced along x axis. These cavities are properly
fed to develop a z-polarized electric field at their ends, with
complex phasors denoted by Fm for m � −M ,…,M, which
gets diffused into vacuum half space y > 0 [24]. A cylindrical
obstacle of radius b and filled with material of relative complex
permittivity ε, is positioned along axis �x, y� � �xb, yb� and
jams the collectively produced field of the waveguides [15].
We assume that the output fields Fm do not significantly alter
in the presence of the obstacle, despite the formed external
cavity, which may influence the intrinsic behavior of the lasers.
Indeed, the size of the cylinder 2b is usually chosen much

smaller than the length 2ML of the radiating aperture and thus
may affect only a minute number of elements. Furthermore,
according to feedback literature [25,26], there are ways to mit-
igate the effect of outer mirrors on the characteristics (intensity
threshold) of the formed external cavity laser. The distance
between two consecutive cavities equals L, and the transversal
size of each of them equals 2a. The suppressed time depend-
ence is of harmonic form: e�jωt .

A major assumption of this study is that the phasor of
the electric field remains constant across the entire zone
fjx − mLj < a, y � 0g equal to Fm; it simplifies substantially
the considered problem by making it two dimensional (field
distributions independent from z). In other words, the struc-
ture and excitation are taken unaltered along z axis and, thus,
the system’s response is the same regardless of the observation
plane, as long as it is parallel to the xy one. Such a reduction is
not unrealistic, since one may consider identical (with respect
to structure, texture, and feed) sets of waveguides as those
existing on z � 0 plane to be positioned along parallel planes
covering a distance along z axis equal to W . In this way, an
illusion of z independence is created, which gets more success-
ful for increasing W . In particular, our analysis would be
exactly valid for the entire space ifW → ∞ and would describe
qualitatively the spatial distributions only for xy plane
for W → 0.

The background (z-directed) electric field, in the absence of
the obstacle, is written as an aggregation of the outputs of the
�2M � 1� emitters [5]

Eback�x, y� �
XM
m�−M

Fm

H �2�
0 �k0a�

H �2�
0

�
k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x − mL�2 � y2

q �
,

(1)

where k0 � ω
ffiffiffiffiffiffiffiffiffi
ε0μ0

p � 2π∕λ0 is the free-space wavenumber,
and H �2�

u is the Hankel function of u-th order and second type.
The quantity λ0 is the free-space wavelength. The quantity
H �2�

0 �k0a� is used for normalization purposes, since the outputs
of the lasers are considered as constant throughout the cross
section of the ends of the waveguides. Therefore, Eq. (1) is suit-
able only for points external to the laser cavities, since there is
no actual field singularity in the interior of them. In other
words, we assume that the waves are the outcome of point
sources only outside of the lasers that produce them. This field
is scattered by the obstacle, and the signal that perturbs the
background distribution can be expressed as

Fig. 1. Schematic of the regarded configuration. The aggregate field
of an active laser array is perturbed by a passive cylindrical obstacle.

A44 Vol. 6, No. 8 / August 2018 / Photonics Research Research Article



E scat�R,Φ� �
XU
u�−U

CuH
�2�
u �k0R�ejuΦ, (2)

where �R,Φ, z� is the cylindrical coordinate system centralized
along the axis of the cylindrical scatterer and Cu unknown com-
plex coefficients for u � −U ,…,U . The number U is chosen
large enough for the sum of Eq. (2) to converge; presumably,
U should be higher for optically larger obstacles.

By imposing the necessary boundary conditions [27] around
the circular interface R � b, one can determine the parameters
Cu as follows:

Cu � Bu

XM
m�−M

FmH
�2�
u �k0Rm�e−juΦm , (3)

where BuH
�2�
0 �k0a� � −

ffiffi
ε

p
J 0u�kb�Ju�k0b�−Ju�kb�J 0u�k0b�ffiffi

ε
p

J 0u�kb�H �2�
u �k0b�−Ju�kb�H �2� 0

u �k0b�
for

u � −U ,…,U , and Ju is the Bessel function of u-th order.

The notations Rm �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�xb − mL�2 � y2b

q
and Φm for m �

−M ,…,M correspond to the positions of the radiating aper-
tures of the laser waveguides at y � 0 expressed in the obstacle’s
coordinate system �R,Φ, z�. The symbol k � k0

ffiffiffi
ε

p
is used for

the wavenumber into the cylinder. Obviously, all the coeffi-
cients Bu vanish for ε → 1 and for k0b → 0, since in both
the aforementioned cases, the obstacle is absent [28]. In addi-
tion, the response from the cylinder is apparently proportional
to the strength of the background field as created by the pri-
mary sources. The formula of the total z-polarized electric
field E � Eback � E scat, expressed in the cylindrical coordinate

system �r,φ, z�, is written for the far region as E�r,φ� �ffiffiffiffiffiffiffi
2j

πk0r

q
e−jk0rG�φ� [29], where the polar (azimuthally dependent)

profile G�φ� is given by

G�φ��
XM
m�−M

Fm

�
ejk0Lm cos φ

H �2�
0 �k0a�

�
XU
u�−U

juBuH
�2�
u �k0Rm�e−juΦmej�uφ�k0xb cos φ�k0yb sin φ�

�
:

(4)

It is clear thatG�φ� is comprised of a part attributed to the back-
ground free-space radiation of the active sources and another part
expressing the scattering effect of the passive obstacle on the far
field. In this way, a significant component of the wave inter-
actions between the obstacle and emitters is captured in spite of
our assumption that the primary fields Fm remain unaltered.

If one aims at imitating a far-field pattern G̃�φ� by properly
exciting the laser cavities that, in turn, produce the output local
fields Fm for m � −M ,…,M, the equality G�φ� � G̃�φ�
should be ideally fulfilled for all the angles 0° < φ < 180°
of the upper half space y > 0. In order to find the sets of
complex quantities Fm that optimally verify such a constraint,
we use the following reasoning. Since the active part of G�φ�
is expressed as a finite sum of the basis functions:
fejk0Lm cos φ,m � −M ,…,Mg, let us project the exact equality
of the far fields on the conjugate set of same-basis functions,
namely, adopt the Galerkin [30] approach (where the testing

functions are complex conjugates of the basis functions). In this

sense, we act on G�φ� � G̃�φ� with the operator J f⋆g�
H �2�

0 �k0a�
π

R
π
0 ⋆e

−jk0Ln cosφdφ for n�−M ,…,M,
and we obtain the �2M�1�×�2M�1� linear system S × f � v
with an unknown optimal vector of fields f � �F −M ,…, FM �T .
The matrix S is the sum of two �2M � 1� × �2M � 1� matri-
ces: one Sback � �Snmback� representing the background field of the
diffused waveguide outputs and another Sscat � �Snmscat� regard-
ing the scattering field by the cylinder. The elements of the first
matrix are analytically evaluated as Bessel functions of zeroth
order, namely

Snmback � J0�k0L�m − n��, (5)

as indicated in Ref. [5]. The elements of the second matrix are
given by

Snmscat �
H �2�

0 �k0a�
π

XU
u�−U

H �2�
u �k0Rm�e−juΦmQu�n�, (6)

where Qu�n� � juBu
R
π
0 ej�uφ��k0xb−k0Ln� cos φ�k0yb sin φ�dφ for

u � −U ,…,U are complex quantities computed via numerical
integration. The elements of the constant vector v �
�V −M ,…,V M �T express the projection of the target pattern
G̃�φ� on the testing functions, namely

V n �
H �2�

0 �k0a�
π

Z
π

0

G̃�φ�e−jk0Ln cos φdφ, (7)

for n � −M ,…,M.
The solution f of the �2M � 1� × �2M � 1� linear system

�Sback � Sscat� × f � v will give the output fields of the active
emitters making a radiation pattern G�φ� that mimics optimally
the ideal response G̃�φ� in the presence of the obstacle with
characteristics fb, ε, xb, ybg.

3. NUMERICAL RESULTS AND DISCUSSION

A. General Comments
In Ref. [5], the same problem is addressed but in the absence of
the obstacle; only the �2M � 1� emitters were radiating into
free space. It has been found that for a target pattern G̃�φ�
whose maximum significant order of its Fourier harmonics
fPu, u ∈ Zg is umax, namely, when G̃�φ� ≅ Pumax

u�−umax
Puejuφ,

the beam forming is successful if
umax

M
≲ k0L ≲ 3: (8)

To elaborate further, the distance L between two consecutive
emitters should not be too small (left inequality); otherwise, the
system produces only omni-directional far-field patterns.
Simultaneously, the lasers should not be placed very distant
from each other (right inequality) because coherence between
the sources is a prerequisite for an efficient beam shaping. Such
a requirement as the latter one reminds us clearly of the
subwavelength-sized particles’ constraint for homogenization in
metamaterials and metasurfaces [31]; indeed, the upper limit
of k0L in Eq. (8) is close to π.

That major finding of Ref. [5] concerning the obstacle-free
solution continues to hold even when the dielectric cylinder is
considered (solution of Section 2). We have verified for a
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variety of different target patterns, laser array spacings k0L, and
number of emitters M that the double inequality in Eq. (8)
remains valid for the new solution in Eq. (4). Only small per-
turbations in the numerical behavior of the linear system S ×
f � v (from which the proper output fields of the waveguides
are determined) and the obtained far-field waveforms are ob-
served, being obviously related to the size b, the texture ε, and
the position (xb, yb) of the obstacle. Such a property is natural,
since the cylinder is a passive, secondary source whose response
is dependent on the primary field of the emitters. Even in the
case that the rod is active (complex ε with Im�ε� > 0), it pumps
energy to the device only to the extent that the local background
field created by the emitters admits. In other words, the cylin-
der does not affect the core features of the radiative system,
since it is only one and a peripheral source operating into
the field of multiple and canonically placed principal sources.

Therefore, in the following numerical results, we consider
only laser arrays that can successfully (with negligible error)
shape a far-field pattern G̃�φ� in the absence of the blocking
cylinder. Cases that do not obey the inequality in Eq. (8) have
been elaborated by the obstacle-free analysis of Ref. [5]. Indeed,
a poor placement of the sources fails either with or without the
jamming cylinder; similarly, the proper spacing yielding a suc-
cessful result is not decisively determined by the obstacle.
Instead, the main aims of the numerical results are: (i) testing
the obstacle-free solution, which would not be any more per-
fect, in the presence of various obstacles, (ii) demonstrating the
possibility of identifying the characteristics of the cylinder
based on the recorded error, and (iii) observing how the situa-
tion is remedied by inverse engineering the emission of the
lasers according to the solution in Eq. (4).

A quantity that characterizes the quality of the beam-
shaping operation of the proposed device can be, apparently,
the normalized difference between the actual far-field pattern
of the deviceG�φ� and the ideal one G̃�φ� across the upper half
space 0° < φ < 180°, defined as

error �
R
π
0 jG̃�φ� − G�φ�jdφR

π
0 �jG̃�φ�j � jG�φ�j�dφ : (9)

As far as the obstacle is concerned, its size is kept moderate
compared to the wavelength in vacuum λ0, namely, b <
λ0∕2 (typical value b � λ0∕4); otherwise, the primary sources
would see it as a layer and not as a structural imperfection. The
permittivity ε is taken as real for simplicity and within the
interval 1 < ε < 3 (typical value ε � 2), which includes
the dielectric constants of numerous materials at optical
frequencies. Another reason that we do not examine lossy, ac-
tive, or negative permittivity materials is the role of a cylinder as
a secondary source mentioned above. Furthermore, we do not
place the obstacle too close to the active metasurface y � 0 to
avoid near-field wave interactions, making the results strongly
dependent on the vertical position of the cylinder yb, and our
findings are highly case oriented. When it comes to its horizon-
tal position, it should be kept within the horizontal limits of our
array, namely, jxbj < D, where D � ML.

B. Obstacle Identification
In this subsection, we explore the dependencies and variations
of the error in Eq. (9) when the obstacle jamming the far field is

ignored. This quantity is observable, and we also examine the
potential of guessing some of the features of the cylinder based
on that error and prior knowledge of the rest of rod’s character-
istics. As a target pattern, we assume a Gaussian-type one,
which is also used in Ref. [5]: G̃�φ� � e−γ�φ−ϑ�2 with ϑ � 90°
(maximal radiation angle) and γ � 10 (directivity). The spac-
ing of the waveguide sources is chosen (k0L � 0.1) according
to Eq. (8), so that the error of the method in the absence of the
obstacle is negligible. Note that the size of our active metasur-
face equals 2D ≅ 2.5λ0, which means that for the maximum
radius of the obstacle 2b � λ0, it is of the same order as the
laser array.

In Fig. 2(a), the percent error in Eq. (9) as a function of the
radius of the (centralized) object b∕λ0 for several vertical posi-
tions of the obstacle yb (with ε � 2) is illustrated. Naturally, the
error gets more substantial for increasing size, but this trend will
be reversed for even larger b∕λ0, and oscillations will occur due
to size resonances of the cylinder. Additionally, the closer is the
obstacle to the surface, the more significant is the recorded
error, which is again anticipated, since the field is weaker far
from the emitting apertures. It is clear that, once we know the
position �xb, yb� and the permittivity ε of the jammer, we can
easily determine its size [for this specific ideal response G̃�φ�]
from the curves of Fig. 2(a). Indeed, even if the obstacle is arbi-
trarily large, one can find from the recorded error a small set of
candidate radii and select the one for which the solution in
Eq. (4), referring to the corresponding obstacle, vanishes. Note
that the curves for yb � λ0, 2λ0 cross each other, namely, giving
the same error (around 80%) for the same obstacle of size
b ≅ 0.45λ0. Even if yb is unknown, there is still no ambiguity
because the solution’s error will diminish only for the correct yb,
as long as the cause of the jamming is a single obstacle with the
assumed characteristics (circular shape, known ε and xb).

In Fig. 2(b), we show the error of the obstacle-free solution
as a function of the permittivity ε for various yb∕λ0 (and for
a moderate size b � λ0∕4). Again the curves are increasing
because the jamming is larger when the cylinder becomes
optically denser. Inverting these curves is also easy under the
assumption that fb, xb, ybg are well known, even though
additional resonances due to the optical size of the cylinder
appear for ε > 3.

In Fig. 3(a), we depict the variation of Eq. (9) for the sol-
ution of Ref. [5] with respect to xb∕D � xb∕�ML� for several
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Fig. 2. Percent error of the obstacle-free optimal solution as func-
tions of: (a) radius of the obstacle b∕λ0 (ε � 2) and (b) relative per-
mittivity of the obstacle ε (b � λ0∕4) for several vertical positions yb.
Plot parameters: G̃�φ� � e−γ�φ−ϑ�2 , ϑ � 90°, γ � 10, k0L � 0.1,
M � 80, U � 12, xb � 0.
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radii b∕λ0 of the jammer (with fixed vertical position
yb � 2λ0). Presumably, the harmful effect of the blocking
cylinder decreases as it is moving away from the radiative aper-
ture, and we again notice that the error in far-field beam form-
ing becomes larger for more sizeable jamming cylinders. If one
has prior knowledge of the vertical position yb and the texture ε
of the obstacle, while the unknown parameters fb, xbg belong
in pre-known ranges, they are straightforwardly determined
from Fig. 3(a) through error minimization for the solution
f � S−1 × v obtained in Section 2.

In Fig. 3(b), similar Gaussian-shaped curves are represented
for the error of the obstacle-free optimal excitation as a function
of the horizontal position of the jammer xb∕D when various
permittivities ε are considered. As the perturbation of the back-
ground field becomes weaker, the less electromagnetically dense
is the material of the cylinder and the more off-centered it gets.
Notice that the deterioration of the beam shaping is smaller
with increasing ε, which reveals the existence of the first optical
thickness resonance for ε > 3.

In Fig. 4(a), we consider a centralized obstacle (xb � 0) for
which the error in Eq. (9), when it is ignored in determining
the optimal fields of the lasers, is represented in a contour plot
with respect to its permittivity ε and its electrical radius b∕λ0.
We clearly notice the vanishing error along the lines ε � 1 and
b � 0, which correspond to an absent obstacle. The error is
kept relatively low for b < 0.2λ0 and ε < 1.5, while it rapidly
blows up for larger or denser cylinders. As mentioned earlier,
this trend will not be monotonic, since for ε > 3 and
b > λ0∕2, size resonances of the cylinder occur. In Fig. 4(b),

the jammer is placed at the side of the array (xb � D � ML),
and thus the obstacle-free solution exhibits substantial robust-
ness; it is natural, since the influence on the radiation from the
laser outputs is not that direct.

Once again, there is a clear indication that from one scalar
output, the error in Eq. (9) when the obstacle-free approach is
adopted, it is feasible to determine the characteristics of the
cylinder, as long as some information about it is available.
In particular, if the position �xb, yb� of the object is given, meas-
uring the difference between the actual pattern G�φ� and the
ideal one G̃�φ� can give a set of textures and structure combi-
nations �ε, b∕λ0� describing obstacles causing a specific error
(iso-contour levels of Fig. 2). By applying the method described
in Section 2 to every single member of this set and computing
the actual response for the corresponding optimal fields
f � S−1 × v, the permittivity and the radius of the obstacle
can be directly revealed (they will be the ones whose solution
gives minimal, almost negligible, error) and very satisfying
beam forming will be achieved.

The same trial-and-error approach can be successfully fol-
lowed even when no information about the object is available;
the minimum of the metric in Eq. (9) for the radiation pattern
in Eq. (4) should then be searched in the four-dimensional
parametric space fb, ε, xb, ybg. A major strength of the proposed
inversion based on the analytical formula in Eq. (4) is that it
requires testing with only one target pattern G̃�φ� and one op-
erational frequency ω. Once the object is found by minimizing
the error in Eq. (9) for a specific ideal response G̃�φ� and
oscillation frequency ω, the method works well for any other.

C. Optimal Beam-Forming Examples
In this subsection, we examine the effect of the obstacle not
only on the observable error of the obstacle-free solution in
Eq. (9), but especially on the actual waveforms of the far field.
In addition, we will show how the solution in Section 2 (which
takes into account the presence of the cylinder) remedies the
error and finds suitable waveguide excitation reproducing
the far-field target pattern.

In Figs. 5(a)–5(c), we show the obtained patterns (real and
imaginary parts) via the obstacle-free solution for an ideal
Gaussian-shaped target (which is also depicted) when the cyl-
inder gets larger and larger. More specifically, Fig. 5(a) assumes
a small obstacle of radius b � λ0∕8, and the maximum of the
desired curve is well captured at the expense of oscillations far
from φ � 90° and the appearance of the nonzero imaginary
part. In Fig. 5(b), the size of the cylinder is doubled
(b � λ0∕4), and thus the performance of the obstacle-free sol-
ution is much poorer. If we increase further the radius of the
blocking object [Fig. 5(c), b � λ0∕2], the jamming effect is
substantial, and spurious oscillations appear both in the real
and the imaginary parts of the far-field pattern. In Fig. 5(d),
we apply the method f � S−1 × v in Section 2 for the
worst-case scenario in Fig. 5(c); we realize that the actual
G�φ� is very close to the ideal one G̃�φ�, even though a very
small residual imaginary part is still there. In this sense, we
demonstrate the necessity of taking into account the cylinder
in computing the optimal excitations for the laser waveguides
and the success of the followed technique.
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Fig. 3. Percent error of the obstacle-free optimal solution as a func-
tion of the horizontal position of the obstacle xb∕D � xb∕�ML� for
several (a) radii b∕λ0 (ε � 2) and (b) permittivities ε (b � λ0∕4). Plot
parameters: yb � 2λ0, and the remaining ones the same as in Fig. 2.
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Fig. 4. Percent error of the obstacle-free optimal solution in contour
plot of the permittivity ε and the electrical radius of the cylinder b∕λ0
for (a) centered obstacle (xb � 0) and (b) off-centered obstacle
(xb � ML � D � 4λ0∕π). Plot parameters: yb � 2λ0 and the re-
maining ones the same as in Fig. 2.
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In all the previous examples, we just picked an optical dis-
tance between two consecutive lasers within the limits imposed
by the double inequality in Eq. (8). We did not calibrate this
parameter in order to obtain perfect performance, since our in-
tention was to demonstrate the validity of the proposed method
and express clearly its limitations when the obstacle is ignored.
However, the error obviously varies as a function of k0L even
within the interval of Eq. (8). This is demonstrated in Fig. 6(a),
where the optimal solutions in the absence and in the presence
of the object [the one corresponding to the worst case, in
Fig. 5(c)], are utilized. We note that in both cases, there is
a decreasing trend of the recorded error for larger k0L < 3;
nonetheless, narrower alternative configurations are useful,
since the overall size 2D of the radiating array may be subjected
to constraints. Most importantly, we can observe the increase in
the error of the method when the obstacle appears, by several
decimal orders; it expresses the difficulty of cloaking the object
with the same number of lasers. Such a huge deterioration in
performance makes the variation of the error with respect to
k0L critical when an obstacle is present and is the reason for
not obtaining a perfect result in Fig. 5(d), where the spacing
is small: k0L � 0.1. To put it alternatively, this narrow array
works flawlessly without the object (where the error is negli-
gible anyway) but not that satisfactorily (still very well) with
the object. Surely, the relative size of the obstacle 2b with re-
spect to the horizontal size of the cluster 2D is inevitably an
additional hindrance in beam forming, which was absent in
the obstacle-free solution. If we select a larger inter-waveguide
distance (k0L � 2.4) and redo the calculations, we obtain
Fig. 6(b), where the desired waveform is captured and repro-
duced perfectly.

In Fig. 7, we use another target pattern: G̃�φ� �
e−βφ�1� A cos�αφ��, where the magnitude A expresses the dif-
ference of G̃�φ� from an omni-directional pattern, the constant
α determines the rapidness of oscillations with respect to φ, and
the quantity β specifies the envelope trend. We consider the
same metasurface (with parameters k0L � 1 and M � 50)
as in Ref. [5], which works perfectly for that waveform (specific
A, α, β). In Fig. 7(a), we test the behavior of the obstacle-free
solution in the presence of a centralized cylinder with b � λ0∕4
and permittivity ε � 1.5. A noticeable difference between
Re�G�φ�� and (real) G̃�φ� is recorded, and a significantly erro-
neous Im�G�φ�� is obtained. The performance of the method of
Ref. [5] is mildly deteriorated for a denser cylinder with ε � 2
[Fig. 7(b)], and a slightly greater failure is observed for ε � 2.5
[Fig. 7(c)]. The similar shape of the curves in Figs. 7(a)–7(c)
and their small change for increasing ε can be attributed to the
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Fig. 5. Ideal target G̃�φ� and the optimal actual pattern G�φ� (both
real and imaginary parts) as functions of azimuthal angle φ for the
obstacle-free solution of Ref. [5] with (a) b � λ0∕8, (b) b � λ0∕4,
(c) b � λ0∕2, and (d) for the solution of Section 2 of this study
and the worst case b � λ0∕2. Plot parameters: ε � 2, xb � 0,
yb � 2λ0, and the remaining ones the same as in Fig. 2.
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Fig. 6. (a) Percent error of optimal solution without and with the
obstacle as a function of the optical distance between two neighboring
lasers k0L. (b) Ideal target G̃�φ� and the optimal actual pattern G�φ�
(both real and imaginary parts) as functions of azimuthal angle φ for
k0L � 2.4. The configuration of Fig. 5(c) is considered.
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Fig. 7. Ideal target G̃�φ� and the optimal actual pattern G�φ� (both
real and imaginary parts) as functions of azimuthal angle φ for the
obstacle-free solution of Ref. [5] with (a) ε � 1.5, (b) ε � 2,
(c) ε � 2.5, and (d) for the solution of Section 2 of this study
and the worst case ε � 2.5. Plot parameters: G̃�φ� � e−βφ�1�
A cos�αφ��, A � 0.7, α � 13.5, β � 0.2, k0L � 1, M � 50,
U � 12, b � λ0∕4, xb � 0, yb � 2λ0.
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fact that the radius of the obstacle is much smaller than the size
of the radiating aperture (2D ≅ 25λ0), unlike in Figs. 5(a)–5(c).
For such a case, where the jamming of the obstacle is not so
dramatic, our method in Section 2 works extremely well, as also
expected from Fig. 6(a), and the error of the beam forming is
almost nullified, as shown in Fig. 7(d) [similar to Fig. 6(b) for
another target pattern].

4. CONCLUDING REMARKS

The rigorous solution to the forward problem of the far
field created by a one-dimensional array that is jammed by a
near-field object can work as an efficient inverse tool to deter-
mine all the features of that obstacle. The essence of our pro-
posed method is captured by the block diagram depicted in
Fig. 8. By following the process described in Ref. [5], one
can find the output fields of the waveguides that lead to perfect
beam forming, in the absence of the obstacle, as long as the
condition in Eq. (8) is satisfied. However, we do not obtain
G�φ� ≅ G̃�φ�, since the jamming object is present (with size,
permittivity, and position parameters fb, ε, xb, ybg). Thus, a
substantially different target G̃�φ� and radiation pattern
G�φ� are developed according to Eq. (4) and a non-negligible
error in Eq. (9) is recorded.

This observable quantity of the difference between the ideal
G̃�φ� and the actual G�φ� response for a specific jammer is an
analytic function of its own features fb, ε, xb, ybg and the lasers
output fields Fm for m � −M ,…,M that constitute the vector
f � S−1 × v. Therefore, one can perform a greedy search for the
features of the objects by trying Eq. (4) and, accordingly,
Eq. (9) for all possible f � f �b, ε, xb, yb�. The jamming cylin-
der whose optimal feeding fields give a negligible error would
be the one of our configuration and will make G�φ� ≅ G̃�φ�.
In other words, one tests by trial and error the optimal field
solution for all the candidate objects (determined by prior
knowledge, if it exists) and does not stop until reaching a
vanishing error corresponding to the actual obstacle. It should
be stressed that the presented inverse concept requires data

only from one specific target pattern G̃�φ� at single operational
frequency ω.

In the future, we plan to investigate the effects of unequally
spaced emitters with random characteristics. The rapid matu-
rity and growth of development in the photonic integrated cir-
cuits market allow unusual molding of them in numerous
geometric configuration and materials technologies, combining
both active and passive components (non-Hermitian engineer-
ing) [32]. In addition, the introduction of defects [33] or in-
jection of strong optical signals [34] in a localized region within
the array may provide another path for improved performance
and radical functionality. Therefore, such reconfigurable
phased-array designs may enable revolutionary devices for beam
steering in wireless optical links.
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