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The generation and manipulation of optical vortices are of fundamental importance in a variety of promising
applications. Here, we develop a nonlinear optical paradigm to implement self- and cross-convolution of optical
vortex arrays, demonstrating the features of a vortex copier and regenerator. We use a phase-only spatial light
modulator to prepare the 1064 nm invisible fundamental light to carry special optical vortex arrays and use a
potassium titanyl phosphate crystal to perform type II second-harmonic generation in the Fourier domain to
achieve 532 nm visible structured vortices. Based on pure cross-convolution, we succeed in copying
arbitrary-order single vortices as well as their superposition states onto a prearranged array of fundamental
Gaussian spots. Also, based on the simultaneous effect of self- and cross-convolutions, we can expand the initial
vortex lattices to regenerate more vortices carrying various higher topological charges. Our presented method of
realizing an optical vortex copier and regenerator could find direct applications in optical manipulation, optical
imaging, optical communication, and quantum information processing with structured vortex arrays. © 2018
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1. INTRODUCTION

An optical vortex is distinguished by an undefined phase point
with zero amplitude in the wave front, i.e., phase singularity,
around which the phase varies azimuthally by a nonzero integer
multiple of 2π [1]. The simplest case of an optical vortex is the
twisted light beam with a helical phase, exp�ilφ�, with l being
an integer and φ the azimuthal angle, and within such a light
beam each photon carries a well-defined orbital angular
momentum of lℏ [2]. Recent years have witnessed a growing
interest in various applications with optical vortex or orbital
angular momentum, including optical tweezers and spanners,
optical communications, high-dimensional quantum entangle-
ment, and quantum information protocols [3–6]. Until now,
several mature techniques have been invented to produce op-
tical vortices, including π∕2 mode converter [7], spiral phase
plate [8], Q-plate [9], well-defined integrated optoelectronics
[10], commercial spatial light modulator (SLM) [11], etc.

Compared with the single or isolated optical vortex, the net-
work of vortices, i.e., optical vortex array [12,13], is of signifi-
cant importance in certain fields. As optical vortices contain

abundant information from scattered objects, they were ex-
ploited as a sensing technique for digital spiral imaging
[14,15]. Owing to its specific structural features, an optical
vortex array has dramatically promoted the developments of
optical metrology [16], optical communication [17], microli-
thography [18], and multiple optical traps for rapidly assem-
bling or guiding particulates [19] and detection at a very low
light level [20]. Similarly, an optical vortex array of any desired
structure could be generated and manipulated with computer-
generated holograms displayed by SLM [21]. Also, multibeam
interference, e.g., using superpositions of several plane waves,
spherical waves, or Hermite–Gaussian beams was another ef-
fective way to generate optical vortex arrays [22–24]. Based
on a single topological defect in a nematic liquid crystal mes-
ophase, generation of tunable structured light fields endowed
with various sets of phase singularities was reported [25–27].
Besides, an energy equal optical vortex array with an arbitrary
topological charge was achieved by specially designing a
Dammann vortex grating [28]. We note that the above schemes
are merely implemented within the frame of linear optics,
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whereas the nonlinear optical methods, e.g., second-harmonic
generation (SHG) [29–32], parametric downconversion
[4,33–35], stimulated Brillouin amplification [36], and wave
mixing in a Kerr-like nonlinear medium [37], have also been
explored to generate a single optical vortex with frequency con-
version. In particular, twisted nonlinear photonic crystals with
spatially structured nonlinear susceptibility were recently re-
ported to efficiently generate an optical vortex array [38].
One fascinating application with the nonlinear method is its
role serving as a bridge to transfer information between two
vortex-based quantum networks that employ different wave-
lengths [39]. We also note that the above linear and nonlinear
schemes were implemented in the real space only, while not yet
exploring the features endowed by Fourier optics. Here, we
conduct such an experiment to perform SHG with a potassium
titanyl phosphate (KTP) crystal in the Fourier domain with
structured optical vortex arrays and reveal the interesting effects
of self- and cross-convolution between the constituent vortices.
Of particular interest is the demonstration of two functions and
features achieved by our configurations, which we term “optical
vortex copier and regenerator.” The experimental observations
are in excellent agreement with our theoretical analysis.

2. OPTICAL VORTEX COPIER

We sketch our experimental setup of an optical vortex copier in
Fig. 1. A laser-diode-pumped all-solid-state 1064 nm laser
(Cobolt, Rumba) serves as the invisible illumination source.
After being collimated and expanded by a telescope, the linear
polarized 1064 nm light is incident on a computer-controlled
SLM (Hamamatsu, X10468-07). The SLM is a reflective
device that consists of an array of pixels (792 × 600) with an
effective area of 16 mm × 12 mm and a pixel pitch of
20 μm. Each pixel individually imprints the incoming light
with a phase modulation (0 ∼ 2π) according to the 8 bit
gray-scale (0 ∼ 255). Here, we divide the whole pixel array into
two subdomains, each of which individually displays a specially
designed holographic grating to produce the desired optical
vortex array. For this, we first add a blazed grating modulo
2π to the phase profile of the desired vortex array; then, we
obtain a pure-phase holographic grating. Subsequently, we
multiply the phase grating with the desired intensity distribu-
tion to obtain the final hologram, which is displayed by SLM.

By an optical 4f system consisting of two lenses
(f 1 � 750 mm and f 2 � 250 mm) and an adjustable iris,
we select the first-order diffracted lights reflected from SLM,
which carry the desired optical vortex arrays.

We assume that the vortex arrays in Path 1 and Path 2 can
be, respectively, described as

E1�r,ϕ� �
X
i

A1,i�ri� exp�il iϕi�, (1)

E2�r,ϕ� �
X
j

A2,j�rj� exp�il jϕj�: (2)

Note that each vortex in both paths is defined at its own
circular coordinates �ri,ϕi� and �rj,ϕj� with respect to the
individual center. The subscripts i and j denote the i-th and
j-th vortex of topological charge l i and l j in Path 1 and
Path 2, respectively. Here, we adopt the Laguerre–Gaussian
(LG) modes [2] with zero radial index p � 0 to describe
the amplitude of each vortex, namely, A1,i�ri� �ffiffiffiffiffiffiffiffiffiffiffi

2
πw2jl i j!

q
�

ffiffi
2

p
ri

w �jl i j exp
�
− r2i
w2

�
, where w is the beam waist, and

A2,j�rj� is defined in the same way. In each path, we use a
lens (L3 or L4, f 3 � f 4 � 100 mm) to perform the
Fourier transform on the input initial vortex array [Eq. (1)
or Eq. (2)], namely, Ẽ1�ρ,φ� �

P
iF �A1,i�ri� exp�il iϕi��

and Ẽ2�ρ,φ� �
P

jF �A2,j�rj� exp�il jϕj��. By a polarizing
beam splitter (PBS), we recombine two paths and then super-
pose their Fourier spectra at the common Fourier plane where
the KTP crystal is placed. As the KTP is cut for type-II phase
matching, we insert into Path 2 an additional half-wave plate
(HWP) with its fast axis orienting at 45° in order to rotate the
vertical polarization into the horizontal one. Thus, these two
Fourier spectra, Ẽ1�ρ,φ� and Ẽ2�ρ,φ�, serving as the funda-
mental lights, participate in the SHG process together.
Under the paraxial approximation and phase-matching
condition, the SHG light field can be described by the
following coupled equation [40]

dẼ3�ρ,φ�
dz

� iω2
3d eff

k3c2
Ẽ1�ρ,φ�Ẽ2�ρ,φ�, (3)

where d eff is the effective nonlinear coefficient, z is the propa-
gation distance, and ω3 and k3 are the frequency and wave vec-
tor of SHG wave, respectively. The subsequent lens 5 (L5)
undoes the Fourier transform on the SHG wave described
by Eq. (3). By considering the small-signal approximation,
we derive the output light field as

E3�r,ϕ� � αF �Ẽ1�ρ,ϕ�Ẽ2�ρ,ϕ��
� α

X
ij
�A1,i�ri� exp�il iϕi�� � �A2,j�rj� exp�il jϕj��,

(4)

where α � iω2
3d effL∕k3c2 with L being the crystal length, and

∗ denotes the convolution operation. After filtering out 532 nm
SHG light fields by the filter F1, we use a color CCD camera
(Thorlabs, DCU224C) to record the resultant optical patterns
at the rear focal plane of L5. It is shown by Eq. (4) that our
configuration enables the cross-convolutional computation
between two vortex arrays via SHG in the Fourier domain.

Fig. 1. Schematic overview of experimental setup to realize the
optical vortex copier via type-II second-harmonic generation in the
Fourier domain (see the text for details). Insets (a) and (b) show
the initial array of Gaussian spots in Path 1 and the single vortex
in Path 2, respectively.
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By utilizing the Fourier transform of the LG modes [41], we
can derive that

�A1,i�ri�exp�il iϕi�� � �A2,j�rj�exp�il jϕj��
�F −1fF �A1,i�ri�exp�il iϕi��×F �A2,j�rj�exp�il jϕj��g

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

πw2�jl i� l jj�!

s � ffiffiffi
2

p
r

w

�jl i�l j j
exp

�
−
r2

w2

�
exp�i�l i� l j�ϕ�,

(5)

which reveals clearly that the convolution of every two vortices
results in a new vortex with its topological charge appearing as a
sum of the former two. To realize the function of the optical
vortex copier, we prepare the initial array, which merely consists
of several fundamental Gaussian spots in Path 1, i.e., l i � 0,
while in Path 2 we make the single vortices as well as their sup-
position states. Without loss of the generality, we make
E2�r,ϕ� � A2�r� exp�ilϕ� to bear only a single vortex of topo-
logical charge l ; then, according to Eq. (5), we can simplify
Eq. (4) to E3�r,ϕ� ∝

P
iA3,i�ri� exp�ilϕi�, which reveals that

we can copy the vortex states in Path 2 onto the resultant SHG
light fields, while acquiring the array structure of Path 1, just
like a copier. The same algorithm can be applied to the case of
the collinear superpositions of two vortices. We show our
experimental results in Fig. 2.

We prepare a line of three Gaussian spots in Path 1 [see
Fig. 2(a)]. While in Path 2, we prepare two single vortices with
topological charges of l � 1 and l � 2, respectively [see the
insets of Figs. 2(b) and 2(c)]. We can see from Figs. 2(b)
and 2(c) that we have succeeded in copying the target vortex
onto the resultant SHG light fields, while maintaining the
initial line structure. Namely, a line of three single vortices with
l � 1 and that of three vortices with l � 2 are generated, re-
spectively. Besides, the topological charges of l � 1 and 2 can
be distinguished intuitively from the dark cores, as they
generally scale with

ffiffiffiffiffi
jl j

p
[42]. We also consider another case

of collinear superpositions of two vortices with opposite
topological charges. The initial Gaussian spots in Path 1 are
prepared in a pentagonal array [see Fig. 2(d)]. The vortex super-
positions in Path 2 are l � 	1 and l � 	2, respectively [see
the insets of Figs. 2(e) and 2(f )]. We can see that we have
successfully copied the target superposition states onto the pen-
tagonal arrays, resulting in the SHG light fields of pentagonal
petal-like patterns. Due to the azimuthal constructive and de-
structive interference between two opposite vortices, we also
verify that the petal number equals 2jl j [11,43]. In other words,
based on the cross-convolution between an initial Gaussian
spot array and a variety of vortex states, we have demonstrated
the function and feature of our optical vortex copier.

3. OPTICAL VORTEX REGENERATOR

In contrast with the cross-convolution-based optical vortex
copier, here we aim to demonstrate the optical vortex regener-
ator based on the self-convolution of an arbitrary vortex array.
For this, the experimental setup is rearranged and sketched in
Fig. 3. We make the fundamental lights carry the same vortex
arrays, and one key step is to use an additional half-wave plate
with its fast axis orienting at 22.5° to make the polarization pose
at 45°. As a result, the horizontal and vertical components with
identical spatial profile, i.e., E1�r,ϕ� � E2�r,ϕ�, in Eqs. (1)
and (2), can satisfy the type-II phase matching condition
and participate in the SHG collinearly in the KTP crystal.
Accordingly, we need to rewrite Eq. (4) as

E3�r,ϕ� ∝
X
i

�A1,i�ri� exp�il iϕi�� � �A1,i�ri� exp�il iϕi��

�
X
i≠j

�A1,i�ri� exp�il iϕi�� � �A1,j�rj� exp�il jϕj��:

(6)

It is clearly revealed by Eq. (6) that the self-convolution of
an arbitrary array can be considered as the self-convolution of
each constituent vortex and the cross-convolution between
every two different vortices. For example, if we prepare the ini-
tial array of two single vortices with topological charges, l 1 and
l 2, as marked as A and B in inset (a) of Fig. 3, then, after SHG,
we obtain the output array of three single vortices, as a result of
both self- and cross-convolution, namely, A � A, A � B, and
B � B, accompanying with the increase of topological charges
as l 01 � 2l 1, l 02 � l 1 � l2, and l 03 � 2l2, respectively. In other

Fig. 2. Experimental observations of the optical vortex copier.
(a) and (d) Initial structured arrays of fundamental Gaussian spots.
Single vortex with (b) l � 1 and (c) l � 2. Superposition of two vor-
tices with (e) l � 	1 and (f ) l � 	2.

Fig. 3. Schematic overview of the experimental setup to realize the
optical regenerator (see the text for details). Insets (a), (b), and (c) show
the initial array of two single vortices, the corresponding results of self-
convolution, and the resultant array after the cylindrical lens, respectively.

Research Article Vol. 6, No. 6 / June 2018 / Photonics Research 643



words, we can realize the optical vortex regenerator, which is
able to regenerate more vortices with higher topological
chargers from an initial low-order vortex array; therefore, the
initial array is expanded.

The experimental results are presented in Fig. 4. We prepare
the initial arrays of a single vortex, two vortices, triangle
vortices, and quadrangular vortices, respectively (see the top
panel in Fig. 4). After the SHG in the Fourier domain, we ob-
tain the output arrays that consist of more vortices (see the
middle panel). For a single vortex of l � 1, we merely obtain
a single vortex whose topological charge is trivially doubled, i.e.,
l 0 � 2. For two single vortices of l 1 � 1 and l2 � 2, as men-
tioned above, we have three newly regenerated vortices whose
topological charges are l 01 � 2, l 02 � 3, and l 03 � 4, respec-
tively. For the triangular case, the three vortices at each vertex
result from the self-convolution of each input vortex, taking
topological charges l 01 � 6, l 02 � 4, and l 03 � 2, respectively.
While the other three at the middle of each side originate from
the cross-convolution between every two of input vortices, tak-
ing l 04 � 5, l 05 � 4, and l 06 � 2, respectively. Similarly, for the
2 × 2 input array, we can reproduce an expanded 3 × 3 output
array, as shown in Fig. 4. The four vertex vortices are produced
from self-convolution with doubled topological charges, while
the other five are generated from cross-convolution.

In order to determine the topological charges of each newly
regenerated optical vortex, we adopt a single cylindrical lens
[44,45] to convert the vortex beams described by LGl

p�0 into
1D horizontal lattices, with the lobe number N characterized
by N � l � 1. After the cylindrical converter, we record the

resultant optical patterns with the color CCD camera. As
shown in the bottom panel of Fig. 4, we can see that the helical
phase of each doughnut-shaped vortex is unfolded, changing
into the characteristic 1D optical lattices, which give us directly
the information of topological charge according to the relation
of N � l � 1. We take the quadrangular case in Fig. 4, for
example, which initially has a 2 × 2 vortex array with l � 1,
2, 3, 4, respectively (left to right, top to bottom). After simul-
taneous self- and cross-convolution, we have the output-
expanded 3 × 3 vortex array. By observing the lobe numbers
of 1D lattices in the bottom panel, we deduce that the
generated topological charges are l � 2, 3, 4; 4, 5, 6; and
6, 7, 8, respectively (left to right, top to bottom).

We further perform another experiment of optical vortex
regenerator with an array of coherent superposition states of
vortex beams. As is shown by Fig. 5(a), the initial input array
is composed of five different superposition states, namely,
LG4

0 � LG−4
0 , LG2

0 � LG−2
0 , LG0

0 � LG0
0, LG

3
0 � LG−3

0 , and
LG1

0 � LG−1
0 , respectively, with the petal number specified

as 2jl j. We present our experimental observations in Fig. 5(b),
from which we can see that more new superposition states can
be generated, and the array is expanded effectively, as a conse-
quence of both self- and cross-convolutions between the con-
stituent vortices. In light of Eq. (6), we conclude that the
pattern on the top right corner, marked with the white box
in Fig. 5(b), is generated from the self-convolution of the input
superposition state, LG2

0 � LG−2
0 , in Fig. 5(a). Thus, it can

be described by the following coherent superposition,
LG4

0 � 2LG0
0 � LG−4

0 , leading to nine maxima in the output

Fig. 4. Experimental observations of the optical vortex regenerator with different arrays of single vortices. Top panel: Initial input arrays encoded
in 1064 nm fundamental lights. Middle: Regenerated arrays encoded in 532 nm SHG light fields. Bottom: Measurements of topological charges
with a cylindrical lens.
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intensity pattern. In contrast, the generation of the central
pattern in Fig. 5(b), marked by the red circle, is a bit more com-
plicated. Its formation has threefold contributions, i.e., one
self-convolution and two cross-convolutions between the con-
stituent vortices in Fig. 5(a). Specifically, the self-convolution of
the central one still results in a Gaussian spot described by LG0

0.
While the cross-convolution between two diagonal vertices pro-
duces the superposition, LG5

0 � LG3
0 � LG−3

0 � LG−5
0 , the

convolution between two antidiagonal vertices generates the
superposition, LG5

0 � LG1
0 � LG−1

0 � LG−5
0 . Thus, we know

that the newly generated central pattern in Fig. 5(b) is math-
ematically corresponding to the coherent superposition,
2LG5

0�LG3
0�LG1

0�LG0
0�LG−1

0 �LG−3
0 �2LG−5

0 , which
is in essence a multilevel orbital angular momentum state in
a high-dimensional Hilbert space [46]. In other words, our
present scheme of an optical vortex regenerator offers a feasible
technique to generate more high-order vortices as well as their
superposition states with a specially designed structure.

4. CONCLUSION

In summary, we proposed and conducted the SHG experiment
with optical vortex arrays in the Fourier domain, in contrast
with previous work considering only single vortices in the real
domain. Based on a cross-convolution configuration, we
succeeded in copying the target single vortices as well as their
superposition states onto a prearranged array of Gaussian spots.
Besides, based on simultaneous self- and cross-convolution, we
realized the optical vortex regenerator that can generate more
vortices of higher topological charges, even their various super-
position states of a specially designed structure. It is noted that
the number of vortices and their superpositions in the array is
limited by the crystal’s acceptance angle, which is related to the
phase-matching condition as well as the crystal length. By
adopting a more effective nonlinear crystal or system to enable
strong photon–photon interaction, our method could poten-
tially be extended to the few-photon level. Our present work
may find potential applications in the fields of optical
micromanipulation, free-space optical communication with
vortex multiplexing, and quantum information protocols with
high-dimensional orbital angular momentum states.
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