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Redirecting the flow of light on the basis of the absorption/gain properties of optical systems is of great
interest in many research fields, ranging from optical routing to optical cloaking. In this paper we investigate
the control of the direction of the light propagation through loss-induced absorption in passive linear coupled
optical systems. The considered optical system consists of a mode-splitting resonant cavity formed by coupling
a Fabry–Perot (FP) cavity with a ring resonator. The coalescence of the asymmetric resonances, generated through
mode-splitting dynamics, is the spectral result of the parity time symmetry breaking at FP resonance wavelengths.
For specific values of the FP overall loss, a predominant backward propagation in the FP ring resonator occurs.
In fiber optics technology, this device shows an ability to invert the sense of propagation of the light, quantified
through the contrast ratio, in the order of 20 dB. This value can be obtained by externally varying the FP loss
coefficient for a fixed set of the other physical parameters of the FP ring resonator. Our results can open a new
way toward novel high-performance optical modulation and routing schemes. © 2018 Chinese Laser Press

OCIS codes: (230.5750) Resonators; (230.4555) Coupled resonators.
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1. INTRODUCTION

Recently, because of the strong analogy between quantum me-
chanics and optics, the principles of parity time (PT) symmetry
systems and PT symmetry breaking systems have been success-
fully transferred from the physical context of Hamiltonians
describing the features of quantum systems to the scattering
matrix describing the spectral properties of optical systems [1].
In this scenario, several investigations about intriguing phe-
nomena consisting of loss-induced transparency [2], nonrecip-
rocal light transmission [3,4], perfect coherent absorption
[5,6], enhancement in sensing [7], and non-linearity [8] have
been reported in literature. However, the possibility of control-
ling the propagation direction of light in passive and linear
coupled optical cavities has not yet been investigated. An ex-
ample of passive and linear coupled optical cavities is reported
in Fig. 1(a), where a ring resonator including a Fabry–Perot
(FP) cavity [constituted of two fiber Bragg gratings (FBGs)
placed at a distance lFP] is sketched. Its flux diagram is reported
in Fig. 1(b), where the flow graph represents a coupled ring
resonator device obtained by mirroring the device of Fig. 1(a)
with respect to the axis passing through the middle of the a FP
cavity. Conventionally, a FP ring resonator, as in Fig. 1, is a

standing wave resonator, where both forward clockwise (CW)
and backward counter-clockwise (CCW) modes are equally
excited independently from the sense of the input excitation
(supposed to be CW and called ECW

i in Fig. 1). Thanks to
the specific physical conditions, explained in the following sec-
tions, it is possible to select a CW or CCW predominant propa-
gation mode (respectively called ECW

o and ECCW
o in Fig. 1), and

the FP ring resonator, which is intrinsically a bidirectional
optical system, can become unidirectional. Among these uni-
directional conditions, the most interesting one is related to
backward propagation (i.e., excitation of exiting mode ECCW

o ),
although the input excitation ECW

i has an opposite sense of
propagation. A conventional ring resonator, being a travelling
wave (TW) device, allows only the excitation of a forward mode
(i.e., ECW

o with ECW
i ), while the system under investigation also

allows a predominant ECCW
o to be excited with an ECW

i input.
In detail, an FP ring resonator shows a spectral structure char-
acterized by mode splitting [9]. The spectral splitting is due to
the presence of two scattering centers (i.e., the two FBGs com-
posing the FP), thus creating a resonant scattering state (i.e., the
resonance of the FP). It is intuitive to understand that a mode-
splitting resonant system, depending on the splitting dynamics
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described by means of the scattering matrix, can yield eigen-
values (resonance branches) and asymmetric eigenstates
(asymmetric eigenfunctions) that could coalesce at certain
points called exceptional points (EPs) [10]. These EPs, being
phase singularities of the spectrum associated with the coales-
cence of both eigenvalues and corresponding eigenstates, lead
to many physical effects consisting of level repulsion, crossing,
bifurcation, chaos, and phase transitions [11,12], which have
been also exploited for generating optical potentials in the con-
text of optomechanics [13]. It has also been demonstrated that
it is possible to redirect the flow of light in an active micro
device consisting of a whispering-gallery-mode (WGM) laser,
where two coupled scattering centers (i.e., two nanoparticles)
are used to generate exceptional points [14]. Through the tran-
sition from an EP to another one, obtained by manipulating
the distance between the two nanoparticles, it is possible to
completely reverse the direction of emission of the WGM laser.
In the system under investigation in our work, the EP and the
PT symmetry breaking occur at a resonant scattering state
corresponding to the FP resonance, where eigenvalues and
eigenstates coalesce. Moreover, if the Fabry–Perot resonator
is long enough, with more Fabry–Perot resonance states
present, the system will show a periodical spectral breaking of
the PT symmetry. This periodical spectral breaking acts on the
overall spectral features of the FP ring resonator, leading to the
possibility of redirecting the propagation in a backward direc-
tion without the presence of any active or nonlinear medium.
In particular, by tuning the structural parameters of the com-
plex system, including the loss of the FP, it is possible to route
the flow of the light exiting from the ring resonator in order to
excite a predominant backward CCW mode (i.e., ECCW

O ), even
in the presence of a forward mode input field (i.e., ECW

i ).

2. THEORY

In the system shown in Fig. 1(a), a linearly polarized optical
field from a laser source (ECW

i ) excites the Fabry–Perot ring
resonator through the coupler 1. The two evanescent fiber cou-
plers 1 and 2 can be modelled through a transfer matrix whose
elements are the forward-transmitted and cross-coupled optical
amplitudes τ and k [9]. Each mirror into the Fabry–Perot cavity
(i.e., the two FBGs in Fig. 1) is modelled through a transfer
matrix, expressed as [2]

Tmirror �
�
t − r2∕t r∕t
−r∕t 1∕t

�
, (1)

with t and r the transmitted and reflected electrical field
amplitudes, respectively [9]. To model the Fabry–Perot cavity,
we consider ACW�lFP�, ACCW�0� as the amplitudes of the out-
going counter-propagating electric fields, while ACCW�lFP� and
ACW�0� are the incoming ones. Thus, the FP cavity can be
modeled via a product of transfer matrices [2]�
ACW�lFP�
ACCW�lFP�

�
� Tmirror

�
aejβ

lFP
2 0

0 ae−jβ
lFP
2

�
Tmirror

�
ACW�0�
ACCW�0�

�

� T
�
ACW�0�
ACCW�0�

�
, (2)

where β is the propagation constant of the fiber optical mode
equal to 2πn∕λ, with n the group index of the propagating

optical mode and λ the wavelength; lFP is the length of the
FP cavity, while a � exp�−αlFP∕2� is the FP attenuation coef-
ficient, and α is the loss of the Fabry–Perot cavity per unit
length. Now, the following scattering matrix Sc, including
the electric field amplitudes transmitted (tFP) and reflected
(rFP) from the FP cavity, can be written as

Sc � 1

T 22

�
det�T � −T 21

−T 21 det�T �
�
�

�
tFP rFP
rFP tFP

�
: (3)

In particular,

rFP �
r�1 − e2jϕa�
1 − r2e2jϕa

, (4)

Fig. 1. (a) Physical system consisting of a Fabry–Perot (FP) cavity,
made by two fiber Bragg gratings (FBGs) separated by a distance lFP
enclosed in an optical fiber loop and excited by ECW

i through coupler
1. ACW�0�, ACCW�0� are the two counter-propagating modes at the
input port (z � 0), and ACW�lFP�, ACCW�lFP� are the two counter-
propagating modes at the output port (z � lFP). (b) Flux diagram of
the physical system where two counter-propagating modes (CW and
CCW) are excited.
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tFP �
�r2 − 1�ejϕ ffiffiffi

a
p

1 − r2e2jϕa
, (5)

where r is the electric field amplitude reflected from the
Bragg mirror. ACW�lFP�, ACCW�lFP�, ACCW�0�, and ACW�0�
in Eq. (2) are linked together using Sc [Eq. (3)] as follows:�

ACW�lFP�
ACCW�0�

�
� Sc

�
ACW�0�

ACCW�lFP�
�
: (6)

By defining the scattering matrix in an open loop, the clo-
sure boundary conditions are imposed by considering only a
CW excitation (i.e., ECW

i ) of the ring resonator

ACW�0� � −jke−αI L∕4ejβL∕4ECW
i � τ2e−αI LejβLACW�lFP�, (7)

ACCW�lFP� � τ2e−αI LejβLACCW�0�, (8)

where αI is the loss per unit length in the conventional
fiber loop.

By substituting Eqs. (7) and (8) in Eq. (6), we obtain�
ACW�lFP�
ACCW�0�

�
� Sc

�
−jke−αI L∕4ejβL∕4ECW

i

0

�

� Sc

�
τ2e−αI LejβLACW�lFP�
τ2e−αI LejβLACCW�0�

�
, (9)

that, after some manipulations [15], leads to

M
�
ACW�lFP�
ACCW�0�

�
� −jke−αI L∕4ejβL∕4

�
tFPECW

i
rFPECW

i

�
, (10)

where M is given by

M �
�
1 − tFPτ2e−α

I LejβL −rFPτ2e−α
I LejβL

−rFPτ2e−α
I LejβL 1 − tFPτ2e−α

I LejβL

�
: (11)

The eigenvalues of the system correspond to those β for
which the determinant of the matrix M is equal to zero,

�1 − tFPτ2e−αI LejβL�2 − �rFPτ2e−αI LejβL�2 � 0: (12)

The solutions of this equation are two complex eigenvalues

βSym �
�
1

L

�
· �2πq � 2j ln jtFP � rFPj

− 2 arg�tFP � rFP� � 2j ln�τaI ��,

βAsym �
�
1

L

�
· �2πq � 2j ln jtFP − rFPj

− 2 arg�tFP − rFP� � 2j ln�τaI ��, (13)

where q is an integer corresponding to the resonance order of
the ring resonator. βSym and βAsym are complex eigenvalues,
depending also on the argument of tFP � rFP and tFP − rFP,
respectively.

Now, by considering the stand-alone FP cavity, it resonates if

βFP �
�

1

lFP

�
�πm� 2j ln�ra��, (14)

where m is an integer corresponding to the resonance order of
the FP cavity, and a is the attenuation coefficient inside the FP
cavity.

Now, by considering the two resonance orders q and m, it is
possible to verify that, by setting q � q� (i.e., by imposing a

specific integer as resonance order of the ring resonator), the
real and imaginary parts of βSym and βAsym always coalesce
at βFP (for each m when lFP ≪ L). This means that many
EPs, spectrally placed at the FP resonances, are generated,
and that the PT symmetry is broken at those points.

The outgoing optical fields are a forward mode, ECW
O , and a

backward mode, ECCW
O , if the exciting field is CW. They are

evaluated by solving the system of Eq. (10) [6,9]

ECW
O � −jke−αI L∕4ejβL∕4ACW�lFP� �

1

2
Sym� 1

2
Asym, (15)

ECCW
O � −jke−αI L∕4ejβL∕4ACCW�0� � 1

2
Sym −

1

2
Asym, (16)

where the symmetric and anti-symmetric solutions are
respectively given by

Sym � −
k2aI e−jβL∕2�tFP � rFP�

1 − τ2aI2e−jβL�tFP � rFP�
ECW
i , (17)

Asym � −
k2aI e−jβL∕2�tFP − rFP�

1 − τ2aI2e−jβL�tFP − rFP�
ECW
i : (18)

With reference to Eqs. (15) and (16), the condition for
which the CW mode is equal to the CCW mode is easily
obtained for Asym � 0. If Asym ≠ 0, CW and CCW mode
powers result to be unbalanced.

At the FP resonance, the condition Asym � 0 is verified
when ffiffiffi

a
p

r2 � �1 − a�r − ffiffiffi
a

p � 0: (19)

This leads to the following relation between r and a:

Asym � 0 ⇔ r � a − 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1 − a�2 − 4a

p
2

ffiffiffi
a

p : (20)

Thus, for each r, the condition Asym � 0 is satisfied for
specific values of a, and it is independent from the coupler
features (i.e., τ and k).

3. RESULTS

In order to appropriately evaluate the ability of the device to
invert the sense of the light propagation, we consider the con-
trast ratio CR as a figure of merit [4]. Indeed, CR takes into
account the ability of the device of reversing the sense of
the flow of light when a CW excitation is imposed in order
to route the optical signal in the opposite direction (CCW).
In analogy with Ref. [4], CR is defined as

CR �
����E

CCW
O

ECW
O

����
2
����
ECW
i

�
���� Sym − Asym

Sym� Asym

����
2
����
ECW
i

: (21)

For the sake of simplicity, we evaluate CR at the FP reso-
nance condition. In Fig. 2 we report the values of r and a,
which satisfy Eq. (20) at the FP resonance. The condition
Asym � 0 corresponds to CR � 0 dB. For each combination
of r and a that does not verify Eq. (20), the CW and CCW
powers result to be unbalanced.

In Fig. 3 we show CR at the FP resonance condition as a
function of attenuation a, with a group index of the single-
mode fiber n � 1.45, FP length lFP � 4 cm, fiber loop length
L � 8 m, and aI ≈ 1 [9]. In particular, two different cases of
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FBG amplitude reflection coefficient (r � 0.4, green curves,
and r � 0.9, orange curves), and two different values of for-
ward-transmitted optical amplitude τ (τ � 0.5, dashed curves,
and τ � 0.7, solid curves) have been analyzed. In Fig. 3, pos-
itive (negative) values of the CR correspond to a CCW (CW)
dominance. The zero decibel (dB) point results to be a function
of the FBG amplitude reflection coefficient r, while the slope
of the CR curves, that results to be monotone, changes with
coupler transmission coefficient τ. It can be noticed that for
negligible values of loss (a → 1) the CCW results are almost
suppressed, as in a conventional TW ring resonator.

To experimentally record the spectral responses of the FP
ring resonator, an integrated cavity output technique can be
used [6], and the CR can be adjusted through a fine tuning
of the FP loss (by adjusting a tunable absorber inserted along
the optical path lFP) while the CR slope can be controlled
through the features of the couplers (by adjusting the coupling
coefficients of two tunable couplers).

In Fig. 4, we report the spectral responses of the CW and
CCW outputs, with a CW excitation (i.e., jECW

O j2, dashed
curves, and jECCW

O j2, solid curves, respectively, with ECW
i � 1),

when the reflection coefficient of the FBG mirror [i.e., r in

Eq. (1)] is equal to r � 0.9, which represents a value for
medium-reflectivity FBGs. In particular, in Fig. 4(a) the spectral
responses of the system are shown for τ � 0.7 and a � 0.65
(marker I in Fig. 2) and a � 0.95 (marker II in Fig. 2), whereas
in Fig. 4(b) the CW and CCW responses are evaluated for
τ � 0.5 and a � 0.65 (marker III in Fig. 2) and a � 0.95
(marker IV in Fig. 2). Intuitively, both Figs. 4(a) and 4(b) show
the ability of the device to invert the sense of light propagation.

In particular, for a � 0.65 and τ � 0.7 (marker I) a CR of
2.672 dB has been achieved, while for a � 0.95 and τ � 0.7
(marker II) CR is equal to −8.27 dB.

For a � 0.65 and τ � 0.5 (marker III) CR is 4.247 dB,
while for a � 0.95 and τ � 0.5 (marker IV) is −10.47 dB.

For different combinations of τ and r (e.g., τ � 0.2214 and
r � 0.98) when a < 0.48, it is possible to achieve contrast ra-
tios greater than 20 dB (see blue curve in Fig. 3 with marker V
focusing on the 20 dB value). With the same combinations of τ
and r, the CR results to be less than −10 dB when a > 0.99.

Although the results reported in Figs. 3 and 4 demonstrate
that when the attenuation is varied, the output power is also
modulated (similarly to Refs. [16] and [17]), the proposed
system exhibits the same physical effect by coupling linear
and passive cavities and achieving the condition of PT
symmetry breaking without the need of any active and nonlin-
ear medium.

Fig. 2. Mirror reflection coefficient r and FP attenuation coefficient
a, satisfying the condition Asym � 0 in the FP ring resonator.

Fig. 3. Contrast ratios with ECW
i � 1, with r equal to 0.4 (green

curves) and 0.9 (yellow curves) and τ equal to 0.5 (dashed curves) and
0.7 (solid curves); contrast ratios with ECW

i � 1, with τ � 0.2214 and
r � 0.98 (blue curve). Markers I, II are placed in CCW dominance
region while markers III, IV are in the CW one. Marker V corresponds
to CR � 20 dB.

Fig. 4. (a) Spectral responses of CW exit, jECW
O j2 (dashed curves),

and CCW exit, jECCW
O j2 (solid curves), with ECW

i � 1, with r � 0.9,
τ � 0.7, a � 0.65 (red curves) and a � 0.95 (blue curves).
(b) Spectral responses of CW exit, jECW

O j2 (dashed curves) and CCW
exit, jECCW

O j2 (solid curves), with ECW
i � 1, with r � 0.9, τ � 0.5,

a � 0.65 (red curves) and a � 0.95 (blue curves).

528 Vol. 6, No. 6 / June 2018 / Photonics Research Research Article



4. CONCLUSIONS

In conclusion, we have presented the physical principle of op-
tical devices capable of redirecting and routing the flux of the
photons. They consist of simple architectures made by passive
and linear Fabry–Perot ring resonators, where the flow of light
can be routed by varying the FP loss. More particularly, for a
specific FP mirror coefficient, it is possible to excite a predomi-
nant forward (CW) or backward (CCW) propagation mode by
properly tuning the FP loss coefficient. In fiber optics technol-
ogy, this device allows the control of the direction of light
propagation and the possibility to obtain a backward propaga-
tion with a contrast ratio of 20 dB. High-performance loss-
induced optical modulation and routing techniques can be
easily conceived by exploiting the physics of these systems.
More generally, our investigations extend the concept of the
control of light propagation due to the exceptional points
and the PT symmetric systems, from active coupled cavities
to passive ones, consisting of ring resonators coupled to an
FP cavity. This work significantly contributes to the field be-
cause it demonstrates that in these optical systems the predomi-
nant backward propagation does not require a nonlinear regime
but only the achievement of the condition of PT symmetry
breaking and precise design of structural parameters. Although
we report our investigations in fiber optics technology and
for a specific architecture of coupled cavities (i.e., FP ring
resonators), our results can be extended to integrated optics
technology and other coupled cavities configurations (e.g., 1D
photonic crystal ring resonators and other architectural
solutions).
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