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Parity–time (PT) symmetry has been demonstrated in the frame of classic optics. Its applications in laser science
have resulted in unconventional control and manipulation of resonant modes. PT-symmetric periodic circular
Bragg lasers were previously proposed. Analyses with a transfer-matrix method have shown their superior proper-
ties of reduced threshold and enhanced modal discrimination between the radial modes. However, the properties
of the azimuthal modes were not analyzed, which restricts further development of circular Bragg lasers. Here, we
adopt the coupled-mode theory to design and analyze chirped circular Bragg lasers with radial PT symmetry. The
new structures possess more versatile modal control with further enhanced modal discrimination between the
azimuthal modes. We also analyze azimuthally modulated circular Bragg lasers with radial PT symmetry, which
are shown to achieve even higher modal discrimination. © 2018 Chinese Laser Press

OCIS codes: (140.4780) Optical resonators; (130.2790) Guided waves; (230.1480) Bragg reflectors; (130.3120) Integrated optics

devices.
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1. INTRODUCTION

Photonic ring and disk resonators have received significant
attention because they are widely used for both fundamental
research as well as practical applications in optical communi-
cations and signal processing [1]. A method to realize high
optical quality factors is by confining light to a “defect” region
defined by distributed Bragg reflectors. Such resonators are
adopted for semiconductor lasers and have been studied with
various techniques such as conformal mapping, coupled-wave
approach, and transfer-matrix method [2–10]. Previously,
much research attention was given to the radial modes, and
the effort was focused on designing the structures for larger mo-
dal discrimination between modes of different radial orders. In
order to achieve single-mode operation, it is equally important
to achieve large discrimination between different azimuthal
modes. The existing approaches to overcome the challenge
include adoption of radially chirped Bragg gratings [7] and
azimuthal modulation [8].

“Parity–time (PT) symmetry” was first introduced by
Bender et al. in quantum mechanics [11]. Due to the similarity
between the Schrödinger equation and the Helmholtz equa-
tion, the concept of PT symmetry has been adopted in optics
[12–14]. The PT-symmetric and PT-broken phases are sepa-
rated by the exceptional point, where the system’s eigenvalues
coalesce. Interesting phenomena by mode management around

the exceptional points include single-mode lasers [15–20],
reversing pump dependence [21–23], orbital angular momen-
tum lasers [24], and unidirectional reflection [25,26].

In 2016, we proposed PT-symmetric circular Bragg lasers
with radially periodic gratings. We employed a transfer-matrix
method to calculate their reflection and transmission coeffi-
cients and analyzed their modal properties [16]. We found
enhanced modal discrimination among the radial modes.
However, the eigenwaves in circular Bragg lasers take the form
of Hankel functions, whose zeros are not equidistantly distrib-
uted. In order to achieve perfect phase matching in the radial
direction, the phase of the circular gratings of the laser structure
has to follow that of the Hankel functions, rendering nonper-
iodicity (or chirping) in the radial direction. Here, we develop a
coupled-mode approach for designing a PT-symmetric circular
Bragg laser with the radially chirped gratings. We also investi-
gate the effect of an additional azimuthal modulation of the
refractive index and analyze the threshold conditions for differ-
ent azimuthal modes. The rest of this paper is structured as
follows. In Section 2, we focus on radially chirped circular
Bragg lasers and derive a set of coupled equations. We compare
the threshold gain of conventional and PT-symmetric radially
chirped circular Bragg lasers. The PT-symmetric circular Bragg
lasers possess the higher modal discrimination. Such lasers are
also shown to be highly robust, as a small deviation away from
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the exceptional point does not affect the modal discrimination.
In Section 3, we include an additional azimuthal modulation to
the radially chirped PT-symmetric circular Bragg lasers. By sim-
ulating the structures with an finite-difference time-domain
(FDTD) method, we find that the structures with an additional
azimuthal modulation can effectively suppress other un-
wanted modes.

2. PT-SYMMETRIC CIRCULAR BRAGG LASERS
WITH RADIALLY CHIRPED GRATINGS

We previously proposed a laser structure with its complex re-
fractive index in the radial direction distributed periodically.
We used a transfer-matrix method to analyze its threshold gain
[16] and found that the threshold gain for different radial
modes could have large difference. However, because circular
Bragg lasers with radially periodic gratings cannot obtain large
modal discrimination between the azimuthal modes [2], here
we propose to apply the concept of PT symmetry to radially
chirped gratings, as shown in Fig. 1(a). We suggest a structure
that possesses the same dispersion relation as that of a planar
PT-symmetric grating, where the refractive index distribution
along the radial direction is shown in Fig. 1(c). We will com-
pare modal properties of different types of circular Bragg lasers
and show that the proposed structure performs better in con-
trolling the azimuthal modes with a high modal discrimination.

Let us consider a specific azimuthal mode with perturbation
in the radial direction. Erdogan et al. derived the expression for
different azimuthal modes of the TE polarization [2]. In con-
trast with Ref. [2], here we focus our analysis on the TMmodes
whose major field component is Ez . All the other electromag-
netic field components of the TM modes can be obtained from
Ez , which satisfies the Helmholtz equation�

r2
∂2

∂r2
� r

∂
∂r

� ∂2

∂φ2 � r2ε�r,φ�k20
�
Ez � 0: (1)

Ez can generally be expressed as Ez �
P∞

l�−∞Ezl exp�ilφ�,
where Ezl � Al �r�H �1�

l �kr� � Bl �r�H �2�
l �kr� is the radial dis-

tribution of the electric field of the l th-order mode, l is the
azimuthal mode number, r and φ are the radial and azimuthal
coordinates, respectively, and k is the wavenumber, which
becomes k0 in the vacuum and kav in the medium. The
Hankel functions of the first (second) kind represent the
radially outward (inward) waves, with Al and Bl being their

amplitudes. With orthogonality of the function exp�ilφ�,
the equation for Hankel-phased circular Bragg resonators
was derived by Scheuer et al. [8]:

dAl

dr
�2iH �1�

l � − dBl

dr
�2iH �2�

l � � k0Δε
nav

�AlH
�1�
l � BlH

�2�
l � � 0,

(2)

whereΔε�r� can be expanded in terms of Hankel functions. The
0th-order Fourier expansion coefficient of Δε�r� determines
how Al or Bl evolves due to self-contribution, and the �1st-
order coefficients, which contain exp��2i phase�H �1�

l �kavr���
terms, determine the strength of coupling between Al and
Bl . In Eq. (2), the derivatives of Al and Bl can be separated
according to their spatial frequency in the radial direction.
We suggest the �1st-order perturbation of Δε�r� to be
Δεr�r� � iΔεi�r� with�

Δεr�r� � Δεr cos�2 phase�H �1�
l �kder�� � θ1�

Δεi�r� � Δεi cos�2 phase�H �1�
l �kder�� � θ2�

, (3)

where kde is the spatial frequency of the refractive index modu-
lation. The phase shifts θ1 and θ2 are used for satisfying the PT
symmetry requirements and for fine-tuning the laser wavelength
such that kav � kde. We define δ as kav − kde, which is the
difference between the actual wavenumber and the designed
spatial frequency. With the approximation H �1�

l �x � δx� ≈
H �1�

l �x� exp�iδx� and separation of the inward and outward
waves, the coupled equations for the amplitudes are as follows:8<

:
dAl
dr � i Δεr exp�iθ1��iΔεi exp�iθ2�

4nav
k0Bl �r� exp�−2iδr�

dBl
dr � −i Δεr exp�−iθ1��iΔεi exp�−iθ2�

4nav
k0Al �r� exp�2iδr�

: (4)

The above equations are typical coupled equations for
chirped circular Bragg gratings. With κ � Δεrk0∕�4nav� and
g � Δεik0∕�4nav� and expressing Al �r� � Rl �r� exp�−iδr�
and Bl �r� � Sl �r� exp�iδr�, we obtain(

dRl
dr � iδRl �r�� i�κ exp�iθ1�� ig exp�iθ2��Sl �r�
dSl
dr � −i�κ exp�−iθ1�� ig exp�−iθ2��Rl �r�− iδSl �r�

: (5)

By expressing Rl �r� � D1 exp�iγr� � D2 exp�−iγr� and sim-
ilarly for Sl �r�, we obtain the eigenvalues of the above equations
−γ2 � κ2 − g2 − δ2 � 2iκg cos�θ1 − θ2�. To ensure the same
dispersion relation as that in a PT-symmetric planar Bragg gra-
ting, we should set θ1 � θ2 � π∕2. Next, we focus our analysis
on the 8th-order mode similar to that in Ref. [8].

Let us suppose the refractive index is nav in the unperturbed
region (r < r0) and is expressed as follows in the perturbed
region (r0 < r < rw):

n � nav � Δnr signfcos�2 phase�H �1�
8 �kder�� � θ1�g

� iΔni signfcos�2 phase�H �1�
8 �kder�� � θ2�g, (6)

where sign�x� is 1 for positive x and −1 for negative x, and
rw is the outer radius of the circular grating region. We also
use N (the number of layers) to help describe the struc-
ture. Considering that Δn�r� � Δnr�r� � iΔni�r� and the
perturbation is weak (Δnr , Δni ≪ nav), we can approxi-
mate Δε�r� as 2nav�Δnr�r� � iΔni�r�� so that the Fourier
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Fig. 1. (a) Schematic of the PT-symmetric circular Bragg laser.
(b) Schematic of the azimuthally modulated circular Bragg laser with
radial PT symmetry. (c) Radial profile of the refractive index of the two
types of lasers, showing the real (Δnr ) and imaginary (Δni) refractive
index modulations that satisfy the PT symmetry requirement.
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expansion coefficients of Δε�r� respond linearly to Δn�r�.
The index profile in Eq. (6) results in the Fourier expan-
sion Δε�r� � P∞

m�−∞ am exp�2mi phase�H �1�
8 �kder���, where

a0�0, a1 � 4nav�exp�iθ1�Δnr � i exp�iθ2�Δni �∕π, a−1 �
4nav�exp�−iθ1�Δnr � i exp�−iθ2�Δni �∕π. In this case, κ �
2k0Δnr∕π and g � 2k0Δni∕π. We obtain the solutions for
the 8th-order mode�

A8�rw�
B8�rw�

�
�

�
M 11e−iδ�rw−r0� M 12e−iδ�rw�r0�

M 21eiδ�rw�r0� M 22eiδ�rw−r0�

��
A8�r0�
B8�r0�

�
(7)

with 8>><
>>:

M 11 � cosh�iγL� � δ sinh�iγL�∕γ
M 12 � �ieiθ1κ − eiθ2g� sinh�iγL�∕iγ
M 21 � �−ie−iθ1κ � e−iθ2g� sinh�iγL�∕iγ
M 22 � cosh�iγL� − δ sinh�iγL�∕γ

: (8)

Equation (8) reveals that, at the exceptional point
(Δnr � Δni), if θ1 � θ2 − π∕2, then M 12 � 0 and M 11 is
simplified as exp�iδL�, yielding constant amplitude of the out-
ward wave in the grating region. If θ1 � θ2 � π∕2, then
M 21 � 0 andM 22 is simplified as exp�−iδL�, yielding constant
amplitude of the inward wave. In what follows, we focus on the
case of θ � θ1 � θ2 − π∕2.

Next, by applying the boundary conditions that the E field
and its derivative must be continuous, and no inward wave
should exist at r � rw, we obtain the reflection coefficient
of the circular Bragg grating at r � r0, which is expressed
as ρr exp�2iδr0� with ρr � −M 21∕M 22. We can further
obtain the oscillation condition of circular Bragg lasers:
ρrρ0 exp�2iδr0 � 2αr0� � 1. ρ0 denotes the reflection coeffi-
cient at r � 0, which must be equal to 1, and α is the gain
coefficient in the central region. In circular Bragg lasers, the
central region (r < r0) provides the lasing modes with gain
or loss to achieve the oscillation condition. Therefore, it is
important to obtain the normalized threshold gain
αr0 � − ln�jρrρ0j�∕2, where the resonant wavelength should
satisfy that phase�ρr� � 2δr0 be a multiple integer of 2π.
For δ � 0 and Δnr � Δni, the reflection coefficient at r �
r0 can be simplified as i�κ � g�L exp�−iθ�, which scales lin-
early with the length of the grating region. Additionally, the
laser can lase at the desired frequency when θ is equal to
π∕2. It should be noted that the PT symmetry can be realized
only for the specific order of Fourier expansion of the refractive
index, while the refractive index does not have to follow Eq. (6).

Now that we have designed radially chirped PT-symmetric
circular Bragg lasers, we are ready to analyze the properties of
their azimuthal modes. Due to different phase shifts in the
approximation of even- and odd-order Hankel functions, the
odd azimuthal modes are unlikely to be excited in lasers de-
signed for even azimuthal modes [2]. By using the transfer-
matrix method, which was verified by numerical solutions of
the coupled equations, we calculated the normalized threshold
gain (αr0) for even azimuthal modes for two types of circular
Bragg lasers, namely, conventional radially chirped and PT-
symmetric radially chirped, with the results plotted in Fig. 2(a).
Here “conventional” refers to a structure with Δni � 0 and

Δnr � 0.08, and “PT-symmetric” refers to a structure with
Δni � Δnr � 0.025, where a different Δnr was chosen to
ensure a similar threshold gain for the targeted mode operating
at the wavelength of 1.55 μm for both types of lasers.
Other structural parameters include N � 120, nav � 3.4,
and r0 � 1.164 μm.

As shown in Fig. 2(a), in both types of lasers, the intended
8th-order azimuthal mode indeed possesses the lowest thresh-
old gain and thus will be the lasing mode. However, the PT-
symmetric laser structure achieves larger modal discrimination
(i.e., the difference of threshold gain between the lasing mode
and the other modes) than the conventional counterpart. The
bottom line is that the PT-symmetric circular Bragg lasers can
be designed to optimize the performance of a mode of any
azimuthal order, with significantly enhanced modal discrimina-
tion compared with the conventional circular Bragg lasers.

With the superior properties, the PT-symmetric circular
Bragg lasers can be fabricated on a III–V wafer. Selective etch-
ing and metal deposition can modulate, respectively, the real
(Δnr ) and the imaginary (Δni) part of the refractive index.
This method was employed to fabricate the PT-symmetric mi-
croring laser, without the problem of carrier diffusion to destroy
the PT symmetry [15,24]. The effect of a small deviation away
from the exceptional point was also studied, where the imagi-
nary part (Δni) and the real part (Δnr ) of the refractive index
modulation are not equal. As shown in Fig. 2(b), increasing
(decreasing) the imaginary modulation leads to an overall
reduction (enhancement) of threshold gain for all modes, so
the modal discrimination remains essentially unchanged.

3. CIRCULAR BRAGG LASERS WITH RADIAL PT
SYMMETRY AND AZIMUTHAL MODULATION

In the previous section, a coupled-mode approach has been
employed to analyze and design laser structures with modula-
tion only in the radial direction. Because azimuthal modulation
is usually employed to control azimuthal modes, in this section
we propose to impose additional modulation in the azimuthal
direction, as illustrated in Fig. 1(b). We will use the coupled-
mode equations to analyze the modes and show the additional
azimuthal modulation can also enhance the modal discrimina-
tion. To that end, we suggest the following refractive index
profile:
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Fig. 2. (a) Normalized threshold gain (αr0) for even-order azimu-
thal modes of PT-symmetric and conventional radially chirped circular
Bragg lasers. Inset shows the E field profile of the targeted 8th-order
azimuthal mode. (b) Effect of a small deviation away from the
exceptional point on the normalized threshold gain values for the
PT-symmetric radially chirped circular Bragg lasers.
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n � nav − Δnr signfsin�2 phase�H �1�
8 �kder���gΘ�φ�

− iΔni signfcos�2 phase�H �1�
8 �kder���gΘ�φ� (9)

with

Θ�φ� �
�
1, cos�qφ� > 0
0, cos�qφ� < 0

,

where q denotes the number of periods in the azimuthal
direction. The radial modulation in Eq. (9) is the same as that
in Eq. (6). By following the approach in Ref. [8], under the
weak perturbation condition, the responsible terms in the
Fourier expansion of Δε�r,φ� are those of the 0th and 1st or-
ders in the azimuthal direction and the 1st order in the radial
direction. The azimuthal modulation defined by Θ�φ� actually
introduces coupling between the l th- and �l � q�th-order azi-
muthal modes. From the previous work by Erdogan and Hall
[2], we can analyze the structure with coupled-mode theory.
For the PT-symmetric structure with refractive index defined
in Eq. (9), the Fourier expansion of Δε�r� yields Δε�r,φ� �P∞

h�−∞
P∞

f �−∞ sf ,he2hiqφ exp�2f i phase�H �1�
8 �kder��� with

s−1,0�2nav�Δnr�Δni�∕π, s−1,1�s−1,−1�4nav�Δnr�Δni�∕π2,
s1,0 � 2nav�Δnr − Δni�∕π, s1,1� s1,−1�4nav�Δnr −Δni�∕π2,
and f �h� being the order of Fourier expansion in the radial
(azimuthal) direction. These parameters determine the cou-
pling coefficients between the different modes. It should be
noted that the coupling strength relies not only on the coeffi-
cient but also on an overlap integral involving the modal pro-
files in the radial direction. Without loss of generality, we
choose q � 16, which leads to strong coupling between the
8th-order mode and the −8th-order mode, which have the same
profile in the radial direction.

We compared the reflectivity of the same azimuthal mode
for two laser structures (without and with azimuthal modula-
tion) by solving the coupled-mode equations numerically. The
two structures share the same r0 (1.03 μm) and N (120). The
modulation depth (Δnr � Δni) is set to be 0.025 and 0.03 to
ensure the same reflectivity of the 8th-order mode for the laser
with and without the azimuthal modulation, respectively.
Assuming that the amplitudes of the outward wave of different
modes are the same, we can obtain the two highest-reflectivity
modes of the PT-symmetric laser without azimuthal modula-
tion: 0.804 for the 1st-order mode and 0.904 for the 8th-order
mode. The reflectivity of the 8th-order mode of the structure
with azimuthal modulation remains 0.904, but that of the 1st-
order mode reduces to 0.366. This suppression is attributed
mainly to the mismatch of the modal profiles between the
1st-order mode and the −15th-order mode in the radial direc-
tion. As previously mentioned, such analysis is based on a 2D
model. Some other effects of azimuthal modulation are not
considered here. For example, the diffracted waves can be
coupled with radiation modes, which results in reduced modal
discrimination [27].

We also simulated the two laser structures in Lumerical
by an FDTD method [28]. Figure 3 plots the simulated laser
output spectra with the modal field distribution for the reso-
nant modes. As predicted by the coupled-mode theory, the 8th-
order mode plays a major role, while the additional azimuthal

modulation introduces significant mode suppression to the
1st-order mode. It is clear that the azimuthal modulation struc-
tures proposed in this section not only enjoy the benefit from
the PT-symmetric radial gratings but also get further suppres-
sion to the unwanted modes from the deliberately designed
azimuthal modulation.

4. CONCLUSION

We have adopted a coupled-mode approach to design and
analyze circular Bragg lasers with radial PT symmetry. We
analyzed and compared the threshold gain for different azimu-
thal modes of circular Bragg lasers with radially chirped gratings
for both conventional and PT-symmetric structures. We have
shown that the PT-symmetric radially chirped circular Bragg
lasers have higher modal discrimination. Further suppression
to unwanted modes is obtained by introducing an additional
azimuthal modulation to the circular Bragg lasers with radial
PT symmetry. With an intrinsic broadside circular aperture,
such lasers will lend themselves to a variety of applications
in integrated photonic and optoelectronic circuitry as well as
fiber-optic communication.

Funding. Hong Kong Research Grants Council Early
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Foundation of China (NSFC) and Research Grants Council
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