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We present a study of single nanoparticle detection using parity-time (PT) symmetric whispering-gallery mode
(WGM) resonators. Our theoretical model and numerical simulations show that, with balanced gain and loss, the
PT-symmetric WGM nanoparticle sensor, tailored to operate at PT phase transition points (also called excep-
tional points), exhibits significant enhancement in frequency splitting when compared with a single WGM nano-
particle sensor subject to the same perturbation. The presence of gain in the PT-symmetric system leads to
narrower linewidth, which helps to resolve smaller changes in frequency splitting and improve the detection
limit of nanoparticle sensing. Furthermore, we also provide a general method for detecting multiple nanoparticles
entering the mode volume of a PT-symmetric WGM sensor one by one. Our study shows the feasibility of
PT-symmetric WGM resonators for ultrasensitive single nanoparticle and biomolecule sensing. © 2018

Chinese Laser Press

OCIS codes: (130.6010) Sensors; (230.4555) Coupled resonators; (230.5750) Resonators.
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1. INTRODUCTION

High-quality whispering-gallery mode (WGM) optical resona-
tors [1] have been widely used in various areas, including
low-threshold lasers [2,3], optomechanics [4], cavity quantum
electrodynamics [5], and optical communications [6,7].
Particularly, the strong light–matter interaction makes
WGM resonators suitable platforms for nanoparticle/biomol-
ecule sensing [8–17]. With circular geometry, the WGM
resonator supports two degenerate modes at the same eigenfre-
quency with opposite propagating directions, i.e., clockwise
(cw) and counterclockwise (ccw) directions. When a nanopar-
ticle enters the mode volume, the interaction of the optical
mode with the nanoparticle lifts the degeneracy of the eigen-
frequency and therefore leads to mode splitting, which can be
used for the detection and measurement of nanoparticles [9].
For example, WGM microtoroid resonators [18], fabricated
from pure silica [9], (i.e., passive resonators with loss) and from
rare-earth-ion doped silica (i.e., active resonators with optical
gain) [10,11], have been used as highly sensitive sensors to
count and size individual nanoparticles with a radius down to
a few tens of nanometers based on the mode splitting technique
in both air and liquids [9–12].

The detection limit for the mode splitting technique is set
by the condition that the frequency splitting could be resolved

in the transmission spectra [9]. Two main approaches have
been introduced to improve the detection limit for nanoparticle
sensing. One approach is to enhance light–matter interaction
by reducing the mode volume [9,11] or increasing the overlap
of optical modes with nanoparticles, which subsequently en-
hances the mode splitting. The second approach is the use
of a gain medium to compensate optical losses in optical modes
so that their linewidths become narrower. Below the lasing
threshold, the gain compensates the losses of optical modes,
increases the effective quality factor, and thus improves the
resolvability [10,14]. In the lasing regime, the linewidth as nar-
row as several Hz could be obtained [19], hence largely improv-
ing the detection limit [11,14,15]. In all these methods, the
frequency splitting in principle is proportional to the strength
of perturbation ε introduced by the nanoparticle/biomolecule,
which sets the fundamental limits of sensitivity and detection
limit of a WGM nanoparticle sensor.

Recently, Wiersig reported sensitivity enhancement of nano-
particle detection with a WGM resonator by utilizing excep-
tional points (EPs) at which both the eigenvalues and the
corresponding eigenstates of a non-Hermitian system coalesce
[20–22]. It was shown that the WGM sensor at (second-order)
EPs exhibits a frequency splitting proportional to the square
root of the perturbation strength, whereas the response of
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conventional WGM sensors is proportional to the perturbation
strength. Therefore, for sufficiently small perturbations, the
sensors operating at EPs can exhibit much larger sensitivity
than the conventional sensors. This sensitivity enhancement
stems from the complex-square-root topology near EPs.
Later, Chen et al. experimentally demonstrated this proposal
by using a WGM microtoroid resonator at EPs to detect nano-
scale objects [23]. The EP was obtained by carefully tuning two
nanoscatterers within the mode volume [23,24]. The square-
root dependence of the frequency splitting on the perturbation
strength as well as the sensitivity enhancement compared with
the conventional WGM sensors was shown. In addition, Zhang
et al. provided a proposal showing the possibility of detecting
nanoparticles from the far-field emission of a photonic
molecule operating at an EP [25].

Such a complex-square-root topology can also be found in
systems respecting parity-time (PT) symmetry [26,27], which
was originally developed within quantum field theory and has
emerged as one of the most exciting concepts in photonics in
the past few years [28–37]. It was shown that the eigenvalues of
non-Hermitian Hamiltonians can be entirely real if they satisfy
the condition of PT-symmetry, i.e., �H; PT� � 0 [26,27]. With
balanced gain and loss, a coupled-resonator system can serve as
a good platform to implement PT-symmetry in optics
[32,34,37]. Hodaei et al. demonstrated a thermal sensor with
enhanced sensitivity by using PT-symmetric coupled resona-
tors operating at the phase transition point [37]. Moreover,
they also exploited the third-order exceptional points at which
three eigenvalues and corresponding eigenstates coalesce to
achieve even higher sensitivity that is proportional to the cube
root of the perturbation strength. PT-symmetric coupled
resonators can also be applied to metrology [38] and optical
gyroscope [39].

In this paper, we show that a PT-symmetric system, consist-
ing of two directly coupled resonators with balanced gain and
loss, offers a promising platform to improve the detection limit
for nanoparticle sensing. The PT-symmetric WGM sensor op-
erating at the phase transition points exhibits a square-root
dependence of the sensitivity on the perturbation of nanopar-
ticles, and the sensitivity can be much larger than that of a
single WGM sensor. The dependence of sensitivity enhance-
ment on the perturbation strength and the gain (or loss)
strength is also studied. With the assistance of gain in the sys-
tem, the resolvability of mode splitting as well as the detection
limit for nanoparticle sensing is significantly improved.
Furthermore, we extend our study to multiple-nanoparticle de-
tection and show that, in this case, the PT-symmetric WGM
sensor also has larger sensitivity, compared with the single
WGM sensor.

2. PT-SYMMETRIC WGM NANOPARTICLE
SENSOR

The Hamiltonian of a photonic molecule consisting of two
coupled resonators (i.e., μRa and μRb) with resonance fre-
quency ωa;b and linewidth γa;b can be expressed as [32]
H 0 � �Ωa

κ
κ
Ωb
�, where κ is the coupling strength between

the two resonators and the complex frequencies are Ωa �
ωa − iγa∕2 and Ωb � ωb − iγb∕2. When a nanoparticle enters

the mode volume of a resonator, the backscattering of light
from the nanoparticle enables coupling between the cw and
ccw modes and induces mode splitting. To include the effect
of the backscattering induced by the nanoparticle, the
Hamiltonian of a photonic molecule sensor is extended in
the traveling wave basis of accw, acw, bccw , and bcw and can

be expressed as H 0 �

0
BB@

Ωa 0 0 κ
0 Ωa κ 0
0 κ Ωb 0
κ 0 0 Ωb

1
CCA. The coupling

between the two resonators forms four supermodes. The
eigenfrequencies of the supermodes can be written as

ω1;2 � ω0 − i�γa � γb�∕4�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − �γa − γb�2∕16

q
; (1)

ω3;4 � ω0 − i�γa � γb�∕4 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − �γa − γb�2∕16

q
; (2)

with the assumption that the two resonators have the same res-
onance frequency, i.e., ωa � ωb � ω0. The four supermodes
can be divided into two pairs according to the inter-cavity cou-
pling: the first pair consists of the first and second supermodes
with eigenfrequencies ω1, ω2, and the second pair consists of
the third and fourth supermodes with eigenfrequencies ω3, ω4.

By properly selecting parameters κ, γa, and γb, the coupled
resonators can work in different regimes: (i) κ � 0 corresponds
to the case where the resonators are completely decoupled from
each other, and the system is the same as the single resonator
system [Figs. 1(a) and 1(b)]; (ii) κ ≠ 0, γa � γb corresponds to
the case where two passive (or active) resonators with the same
amount of loss (or gain) are coupled to each other and form a

Fig. 1. WGM nanoparticle sensors based on (a) the single passive
resonator, (b) the single active resonator, and (c) PT-symmetric coupled
resonators with balanced gain and loss. The gray-colored small circle
denotes a nanoparticle within the mode volume of the resonator. The
spectra illustrate sensing mechanisms of the sensors. The dashed red
curve shows the spectrum before the nanoparticle binding event; the
solid blue curve corresponds to the spectrum after the nanoparticle
binding event. The sensors in (a) and (b) exhibit a frequency splitting
proportional to ε, which is the perturbation strength induced by the
nanoparticle. With the assistance of gain, the linewidth of the reso-
nance mode is reduced; thus, the resolvability of mode splitting is im-
proved in (b), compared with the sensor in (a). For the PT-symmetric
sensor operating at the phase transition point, the frequency splitting
induced by the nanoparticle exhibits a square-root dependence on the
perturbation. For a sufficiently small perturbation, the PT-symmetric
sensor exhibits much larger frequency splitting. In addition, with bal-
anced gain and loss, the linewidth can be very narrow, which helps to
resolve much smaller mode splitting.
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conventional photonic molecule; (iii) κ ≠ 0, γa � −γb ≠ 0 cor-
responds to a PT-symmetric photonic molecule with balanced
gain and loss [Fig. 1(c)]; (iv) κ ≠ 0, jγaj ≠ jγbj corresponds to a
coupled system with unbalanced gain and loss, which can be
considered as a general non-Hermitian system.

In the PT-symmetric coupled resonators shown in Fig. 1(c),
with balanced gain and loss, i.e., γa � −γb ≡ γ, the expressions
for eigenfrequencies of supermodes are then written as

ω1;2 � ω0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − κ2PT

q
; (3)

ω3;4 � ω0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − κ2PT

q
; with κPT � jγj∕2: (4)

When the coupling strength increases from zero, the system
will experience (i) the PT-symmetry broken regime with
κ < κPT, where the eigenfrequencies are complex numbers with
equal real parts but opposite imaginary parts; (ii) PT-symmetry
phase transition point with κ � κPT, where both the eigenfre-
quencies and the corresponding eigenstates coalesce; (iii) PT-
symmetry unbroken regime with κ > κPT, where the
eigenfrequencies are real numbers. The evolution of eigenfre-
quencies of a PT-symmetric photonic molecule is given in Fig. 2.

The numerical simulations were performed in COMSOL
Multiphysics, where the model consists of two coupled 2D
circular microdisk resonators. The two resonators have the
same size with radius 5 μm and the same real part of the re-
fractive index, which is 2. Therefore, the two resonators have
the same resonance frequency. The optical modes selected for

the numerical study have a wavelength of about 1.5 μm. The
imaginary parts of the refractive indexes of the resonators are
chosen such that one resonator has gain and the other has loss,
i.e., the imaginary part of the refractive index of one resonator is
positive, whereas that of the other resonator is negative. The
values of the imaginary parts vary from 10−5 to 10−3 for differ-
ent gain/loss contrast. To set the system at the phase transition
point, the coupling strength is finely tuned by changing the
distance between the resonators. The perturbation is intro-
duced by placing a circular scatterer with refractive index
1.5 within the mode volume of the resonator with gain, and
the perturbation strength is tuned by changing the diameter
of the scatterer from several nanometers to several tens of
nanometers.

3. SENSITIVITY ENHANCEMENT AT THE PT
PHASE TRANSITION POINT

Without loss of generality, we assume that the resonator μRa
has optical gain, the resonator μRb has the same amount of loss,
and a nanoparticle with perturbation strength ε is introduced
into the mode volume of the resonator μRa [see Fig. 1(c)]. The
perturbation Hamiltonian of the single nanoparticle is given by

H 1 � εI , with I �

0
BB@

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

1
CCA. Thus, the total

Hamiltonian is H � H 0 �H 1 � H 0 � εI , and the
corresponding eigenfrequencies are given as

ω1 � ω0 � ε�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − γ2∕4 − iγε� ε2

q
; (5)

ω2 � ω0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − γ2∕4

q
; (6)

ω3 � ω0 � ε −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − γ2∕4 − iγε� ε2

q
; (7)

ω4 � ω0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − γ2∕4

q
: (8)

The incoming nanoparticle lifts the eigenfrequency degen-
eracy of the supermodes: two supermodes experience a
frequency shift and linewidth change, whereas the other two
supermodes are not affected and can serve as reference signals.
Evolution of the real part of eigenfrequencies is shown in
Fig. 3(a), with variation of the coupling strength between
two resonators. Here, we define the sensitivity as the frequency
shift of a supermode relative to its reference signal, i.e., the fre-
quency splittings Re�Δω� of these two pairs of supermodes
Re�ω1 − ω2� and Re�ω3 − ω4�, which are shown in Fig. 3(b).
When the coupling between the two resonators is weak, the
pair of supermodes localized in the resonator μRa is more af-
fected by the nanoparticle, experiencing significant frequency
splitting, whereas the other pair of supermodes is nearly not
affected. With the increase of the coupling strength, the field
localization is weakened; thus, both pairs of supermodes will be
affected by the nanoparticle and hence undergo frequency split-
ting. The maximum frequency splitting is obtained at the
PT phase transition point owing to the square-root topology
of the complex energy eigensurface. When the coupling

Fig. 2. Evolution of the (a) real part and (b) imaginary part of eigen-
frequencies in PT-symmetric coupled resonators when the coupling
strength between two resonators is varied. The PT phase transition
point is obtained when the coupling strength κ � κPT � 1 GHz.
The symbols are the results of numerical simulations, and the color
curves are theoretical predictions.
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strength continues to increase, and the system enters the PT-
symmetric unbroken regime, the system no longer exhibits
such sensitivity enhancement. In addition, in this regime the
supermodes are equally distributed among two resonators.
Thus, the mode volume of the supermodes is about twice of
that when the coupling strength is zero, assuming that the
two coupled resonators have the same size. Then, for the same
nanoparticle, the light–matter interaction strength (i.e., the
frequency splitting) is about half of that in the single resonator
case (i.e., the coupling strength is zero).

Next, we study the sensitivity enhancement for the PT-
symmetric WGM sensor operating at the phase transition
point, i.e., κ � κPT. In this case, from Eqs. (5)–(8), the eigen-
frequency splitting of these two pairs of supermodes can be
written as ΔωPT � ε�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−iγε� ε2

p
. The two pairs of

supermodes in principle have different frequency splitting
Re�ΔωPT�, which is also observed in Fig. 3(b). However,
when the nanoparticle is sufficiently small, i.e., jεj ≪ jγj, the
same amount of frequency splitting can be obtained, with
ΔωPT � � ffiffiffiffiffiffiffiffi

−iγε
p

. In our study, we choose the pair of superm-
odes exhibiting larger frequency splitting as the detection
signal. Figure 4(a) shows the square-root dependence of sensitiv-
ity on the perturbation strength, which is also confirmed by the
log-log plot with a linear slope 1/2 in the inset. The results of the
numerical simulations agree well with the theoretical predictions.

For a single WGM sensor with the same perturbation, the
eigenfrequency splitting is Δωsingle � 2ε. Here, we define a
sensitivity enhancement factor

η≡
����
Re�ΔωPT�
Re�Δωsingle�

����: (9)

When the nanoparticle is small enough, so that ε can be
approximated as a real number, and jεj ≪ jγj, the sensitivity
enhancement factor η is given by

Fig. 3. (a) Evolution of the real part of the eigenfrequencies
Re�ω − ω0� in PT-symmetric coupled resonators with single nanopar-
ticle located at resonator μRa when the coupling strength is varied.
Two supermodes (blue squares and red circles) are perturbed by the
nanoparticle and thus experience frequency shift, whereas the other
two supermodes (black squares and circles) are not affected, serving as
reference signals. The size and location of the nanoparticle (i.e., per-
turbation strength) are fixed. (b) Absolute value of the frequency split-
ting Re�Δω� of two pairs of supermodes in PT-symmetric coupled
resonators when changing the coupling strength. The frequency split-
ting is obtained by calculating the difference between frequencies of
the perturbed supermode and its reference. When the coupling
strength is zero, it becomes the case of a single WGM sensor: the res-
onator with the nanoparticle exhibits frequency splitting, whereas the
other resonator is not affected at all. At the phase transition point, the
PT-symmetric sensor exhibits about twice the frequency splitting com-
pared with the single WGM sensor subject to the same perturbation.
The symbols are results from the numerical simulations, and the color
curves are the theoretical predictions.

Fig. 4. (a) Dependence of sensitivity of a PT-symmetric sensor oper-
ating at the phase transition point on the perturbation strength ε. Inset
shows the log-log plot of the dependence of the sensitivity on the
perturbation strength, where a linear slope of 1/2 is clearly seen.
(b) Dependences of the sensitivity enhancement on the perturbation
strength ε (blue squares and dashed curve) and the gain strength γ
(red circles anddashed curve). For the former one, the gain (loss) strength
γ of the coupled resonators and the coupling strength κ are fixed when
changing the perturbation strength ε. For the latter, the perturbation
strength ε of the nanoparticle is fixed when changing the gain (loss)
strength γ, and the coupling strength between the resonators is varied
to set the systemat the phase transition point.The symbols are the results
of numerical simulations, and the color curves are theoretical predictions.
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η �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jγ∕�8ε�j

p
; (10)

which is proportional to the square-root of gain (i.e., loss)
strength and inversely proportional to the square-root of
perturbation strength of the nanoparticle. The dependences
of sensitivity enhancement on the perturbation strength ε of
the nanoparticle and the gain strength γ within the involved
mode are shown in Fig. 4(b): for a PT-symmetric sensor, larger
sensitivity enhancement can be obtained for smaller perturba-
tions; for the same perturbation, the PT-symmetric sensor with
larger gain–loss contrast exhibits larger sensitivity enhance-
ment. Fluctuations in the numerical simulations mainly come
from the slight deviation of the system from the phase
transition point [40].

4. IMPROVEMENT OF THE DETECTION LIMIT

The nanoparticle not only lifts the degeneracy of the real part of
the eigenfrequencies in the PT-symmetric sensor but also
affects the imaginary part of the eigenfrequencies, as shown
in Fig. 5(a). The linewidth difference is also enhanced at
the vicinity of the phase transition point [Fig. 5(b)]. Note that
here the linewidth difference comes from the unmatched res-
onance frequencies of two coupled resonators. The loss induced
by the nanoparticle is small and negligible.

For the PT-symmetric WGM sensor in the broken-phase
regime, the optical fields of one pair of supermodes grow,
whereas the optical fields of the other pair decay, i.e., one pair
of supermodes experiences gain, whereas the other pair feels loss
[33,34]. When the system enters the PT-symmetry unbroken
regime, the imaginary part of eigenfrequencies coalesces to zero,
i.e., both pairs of supermodes will remain neutral. For the PT-
symmetric sensor operating at the phase transition point or in
its vicinity, the frequency splitting is enhanced due to the
square-root topology of the complex energy eigensurface;
meanwhile, the linewidth of the supermodes can be narrow
due to the balanced gain and loss. As a result, the detection
limit can be significantly improved.

5. DETECTION OF MULTIPLE NANOPARTICLES

For the case of detecting multiple nanoparticles, both the
perturbation strength and position of each nanoparticle need
to be considered. The strength of light scattering from cw mode
to ccw mode is determined by the interference of scattered light
from cw to ccw mode induced by each nanoparticle and vice
versa. For two nanoparticles located at the resonator μRa with
perturbation strengths ε1, ε2, and angular positions β1 ≡ 0,
β2 � β, as shown in Fig. 6(a), the total perturbation
Hamiltonian H 1 can be written as [21]

H 1 �

0
BBB@

ε1 � ε2 ε1 � ε2e−i2mβ2 0 0
ε1 � ε2ei2mβ2 ε1 � ε2 0 0

0 0 0 0
0 0 0 0

1
CCCA; (11)

where m is the azimuthal number of the involved mode. Here,
we only consider the interaction between nanoparticles and
optical modes, neglecting the interaction between the nanopar-
ticles when the particles are coarsely deposited.

The off-diagonal element ε1 � ε2e−i2mβ2 (ε1 � ε2ei2mβ2 )
stands for the backscattering of light from cw (ccw) to ccw
(cw) mode in the resonator μRa [21,41–43]. For sufficiently
small nanoparticles, εi�1;2 can be approximated as a real num-
ber. Thus, the strength (absolute value) of the backscattering
between cw and ccw modes is always the same regardless of
the sizes and the angular positions of nanoparticles. This is dif-
ferent from previous studies [21,41], where the nanoparticles
are sufficiently large; thus, εi is a complex number, implying
that the strength of backscattering of light between cw and
ccw modes can be different when ε1 ≠ ε2.

Two different cases are considered: (i) two identical nano-
particles with the same perturbation strength, i.e., ε1 � ε2; and
(ii) two different nanoparticles with different perturbation
strengths, i.e., ε1 ≠ ε2. The angular position of the second
one β2 is varied. The frequency splitting shown in Fig. 6 peri-
odically changes from maximum to minimum due to construc-
tive interference (maximum) or destructive interference
(minimum) between light scattered by the two nanoparticles.
For case (i), the amount of light scattered by each nanoparticle
is the same. Thus, the destructive interference between the scat-
tered light results in zero frequency splitting. However, for case
(ii), the light scattering between cw and ccw modes is not
balanced; therefore, the frequency splitting never reaches zero.

Fig. 5. (a) Evolution of the imaginary part of the eigenfrequencies
Im�ω − ω0� in PT-symmetric coupled resonators with a single nano-
particle located at resonator μRa when the coupling strength between
two resonators is varied. The size and location of the nanoparticle (i.e.,
perturbation strength) are fixed. (b) Absolute value of the linewidth
difference 2 Im�Δω� of two pairs of supermodes in PT-symmetric
coupled resonators when changing the coupling strength. The line-
width difference is obtained by calculating the difference between
the linewidths of the perturbed supermode and its reference. The sym-
bols are results from the numerical simulations, and the color curves
are theoretical predictions.
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The above discussion can be directly extended to the case
of three or more nanoparticles. The total perturbation
Hamiltonian of N nanoparticles is [21]

H 1 �
XN
i�1

εiI i ; with I i �

0
B@

1 e−i2mβi 0 0
ei2mβi 1 0 0
0 0 0 0
0 0 0 0

1
CA;

(12)

where εi, βi are the perturbation strength and the angular po-
sition of the i-th nanoparticle, respectively, and m is the azimu-
thal number of the involved mode. Figure 7 shows the
numerical results of the variation of frequency splitting when
10 different nanoparticles are deposited one by one at random
angular positions on a PT-symmetric WGM sensor, in com-
parison with a single WGM sensor subject to the same nano-
particles. It is clearly seen that the PT-symmetric WGM sensor
operating at the phase transition point has better sensitivity.
Each discrete step in Fig. 7 corresponds to the deposition
of a new nanoparticle. Because the sizes and positions of

the nanoparticles are random, the heights of discrete steps
(i.e., the change of frequency splitting) are different, and
the frequency splitting does not have to be successively
increasing [43].

The first nanoparticle entering the mode volume of the PT-
symmetric WGM sensor will be detected with the maximal
enhancement due to the square-root topology and move the
system away from the phase transition point. The second
and the consecutive nanoparticles will start with a system that
is not exactly at the phase transition point but away from it,
depending on the amount of the perturbation induced by
the nanoparticles. The sensitivity enhancement can still be ob-
tained provided that the total perturbation of the nanoparticles
remains small compared with the gain (or loss) strength in the
PT-symmetric sensor [20].

6. CONCLUSION

In summary, we study nanoparticle detection using PT-
symmetric WGM sensors operating at the phase transition
points, where significant enhancement of detection sensitivity
is predicted for small perturbations. We have confirmed this
enhancement and its dependence on the perturbation strength
and the gain (loss) strength through both theoretical analysis
and numerical simulations. Two mechanisms contribute to
the improvement of detection limit using the PT-symmetric
WGM sensor: the first is the square-root topology of complex
energy eigensurfaces in the parameter space; the second is the
narrow linewidth of the system due to the gain. In addition to
the study of single nanoparticle detection, we have also derived
a theoretical model and performed numerical simulations to
study a multi-nanoparticle detection scenario where the nano-
particles fall onto the PT-symmetric sensor one by one.
Our results clearly show that the sensing performance of a
PT-symmetric sensor operating at the phase transition point
surpasses that of conventional configurations.

Fig. 6. (a) Illustration of the detection of two nanoparticles in a PT-
symmetric WGM nanoparticle sensor. The two nanoparticles are
placed within the mode volume of the resonator with gain. (b),
(c) Variation in frequency splitting as a function of the angular posi-
tion of the second nanoparticle when (b) the two nanoparticles are
identical with the same perturbation strength, and (c) the two nano-
particles are different and hence have different perturbation strengths.
The angular position of the first nanoparticle is fixed and set to be zero.
Blue squares are numerical simulation results; red solid curves are theo-
retical predictions. The results are normalized by the frequency split-
ting induced by the first nanoparticle on a single resonator sensor.

Fig. 7. (a) Illustration of the detection of multiple nanoparticles in a
PT-symmetric WGM nanoparticle sensor. Ten different nanoparticles
(numbered gray circles) are randomly deposited within the mode vol-
ume of the resonator with gain one by one. (b) Numerical results of
frequency splitting variation for 10 nanoparticles deposited on the PT-
symmetric WGM sensor (blue lines and squares) and a single WGM
sensor (red lines and circles). The dashed vertical lines are used as eye
guides. Results for the single WGM sensor are obtained by removing
the lossy resonator in the numerical simulation. Results are normalized
by the frequency splitting induced by the first nanoparticle deposited
on a single WGM sensor with a value of 73 MHz.
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It is worth noting that single passive or active WGM reso-
nators have already been used for nanoparticle detection
[9,11,14,15], and PT-symmetric WGM resonators have also
been realized in different configurations [32–34]. Each of
the two resonators could be associated with a micro-heater
for thermal tuning so that the frequency detuning between
the two resonators can be tuned to zero [44]. The sensitivity
enhancement achieved in practice could be affected by the sta-
bility of the system, environmental noise, etc. But, overall, the
required experimental platforms are readily available to test the
capability of PT-symmetric systems for nanoparticle detection.
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