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As a highly entangled quantum network, the cluster state has the potential for greater information capacity and
use in measurement-based quantum computation. Here, we report generating a continuous-variable quadripartite
“square” cluster state of multiplexing orthogonal spatial modes in a single optical parametric amplifier (OPA),
and further improve the quality of entanglement by optimizing the pump profile. We produce multimode en-
tanglement of two first-order Hermite–Gauss modes within one beam in a single multimode OPA and transform
it into a cluster state by phase correction. Furthermore, the pump-profile dependence of the entanglement of this
state is explored. Compared with fundamental mode pumping, an enhancement of approximately 33% is achieved
using the suitable pump-profile mode. Our approach is potentially scalable to multimode entanglement in the
spatial domain. Such spatial cluster states may contribute to future schemes in spatial quantum information
processing. © 2018 Chinese Laser Press

OCIS codes: (190.4410) Nonlinear optics, parametric processes; (270.6570) Squeezed states.
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1. INTRODUCTION

Multipartite entanglement is an essential physical resource en-
abling more complex processing. With its use, the fundamental
quantum properties of light have been examined and various
quantum-information tasks, such as quantum computation
[1,2], quantum error correction [3], and quantum communi-
cation [4,5], have been successfully implemented. In recent
years, a special type of multipartite entangled state, the cluster
state, has attracted attention. Being highly entangled, the
cluster state maintains an entanglement structure that is robust
to local measurements [6] and can be used for measurement-
based quantum computation [1,2,7–11].

There have been numerous demonstrations of cluster states,
including the generation of four-mode [12,13] and eight-
mode [14] cluster states. However, in using many cavities and
separate beams to build the quantum state, the schemes require
complex layouts. Very recently, though, a novel and potentially
scalable method was proposed to encode deterministically
quantum modes propagating within one beam, enabling each
quantum mode to be manipulated by the same optical compo-
nents, and cluster states of an arbitrary size to be generated
using a limited and fixed optical setup [15–27]. Previous
attempts to create cluster states within one beam have been
exploited with orthogonal quantum modes in the frequency

domain [15–17] and in the time domain [18–21] by encoding
each mode at different times. To date, an ultra-large-scale en-
tangled state consisting of more than 10000 entangled wave
packets of light has been experimentally demonstrated [20].
In the spatial domain, entanglement between co-propagating
modes in one beam has been demonstrated previously [22],
and a cluster state was also created by defining quantum modes
to be combinations of different spatial regions of one beam
[23]. Yet, to the best of our knowledge, there has been no
report on cluster-state generation using different spatial modes
on the basis of Hermite–Gaussian (HG) modes and Laguerre–
Gaussian (LG) modes. Spatial multimode entanglement in a
single multimode optical parametric amplifier (OPA) has been
explored [24,25], with the generation of continuous-variable
(CV) hyperentanglement [25,26] and spatial quadripartite
Greenberger–Horne–Zeilinger (GHZ) entanglement [27]
being accomplished.

In this paper, we describe our proposal and demonstration
in experiments of spatial-mode quadripartite cluster-state gen-
eration in a single OPA operating in multimode. We further
enhance the nonlinear efficiency to improve the entanglement
by selecting a suitable pump-profile mode. These spatial domain
explorations are expected to advance both theory and experimen-
tation on spatial-mode one-way quantum computation.
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2. THEORETICAL DESCRIPTION

To create the multipart cluster state, multimode entangled
beams are prepared first. We employ the multimode OPA
model of Refs. [25,26], which performs multiplexing in the
spatial domain and generates hyperentanglement of the polari-
zation and orbital angular momentum (OAM) modes. In the
interaction picture, the interaction Hamiltonian of the system
is given by [25,26]

H int � iℏχ
X
k

�âpâi†�1â
s†
−1 � âpâ

i†
−1â

s†
�1 � h:c�, (1)

where âp and âjl denote the bosonic annihilation operators for
the pump and fundamental fields, respectively, superscripts j
�j � i, s� signify signal and idler fields, respectively, and sub-
scripts l � �1 index the quantum number of the OAMmodes
LG1

0 and LG−1
0 ; parameter χ denotes the nonlinear coupling

strength, which depends on, e.g., the cavity parameters and spa-
tial overlap between the pump and down-conversion fields
[28,29]. From the interaction Hamiltonian, Eq. (1), the
down-converted signal and idler photons are produced in
two OAM modes, LG1

0 and LG−1
0 . By performing a simple-ba-

sis transformation from the LG modes to the HG modes, the
generated down-converted signal and idler beams also produce
four HG modes, HGi

01, HGs
01, HGi

10, and HGs
10. In the

following, we use the HG mode basis and rewrite H int as

H int � iℏχ
X
k

�âpâi†10âs†10 � âpâ
i†
01â

s†
01 � h:c�, (2)

where subscript 01(10) labels the HG01�10� mode. The hyper-
entanglement criteria for the polarization and OAMmodes can
then also be restated as [25,26]

V �X̂ i
01 � X̂ s

01� < 1, (3a)

V �Ŷ i
01 − Ŷ

s
01� < 1, (3b)

V �X̂ i
10 � X̂ s

10� < 1, (3c)

V �Ŷ i
10 − Ŷ

s
10� < 1, (3d)

where X̂ 01∕10 � â01∕10 � â†01∕10 and Ŷ 01∕10 � i�â01∕10 −
â†01∕10� are the amplitude and phase quadrature operators of
the HG01∕10 mode, respectively, and V �B� � hB2i − hBi2 de-
notes the variance of the observable B, which indicates whether
both the HG01 and HG10 modes are entangled independently.
After simple transformations, these two-mode entanglements
are further transformed into a spatial cluster state [Fig. 1(a)].
Performing the transformation U introduces only a π

2-phase
shift in the two signal fields of the entangled output beam,
resulting in âs01 → iâs01 and âs10 → iâs10. Then, by coupling
the two modes as âs135o � �iâs01 � iâs10�∕

ffiffiffi
2

p
and âs45° �

�iâs01 − iâs10�∕
ffiffiffi
2

p
, the quadrature transformation relation

becomes

X̂ s
01 � �Ŷ s

135° � Ŷ s
45°�∕

ffiffiffi
2

p
, (4a)

Ŷ s
01 � −�X̂ s

135° � X̂ s
45°�∕

ffiffiffi
2

p
, (4b)

X̂ s
10 � �Ŷ s

135° − Ŷ
s
45°�∕

ffiffiffi
2

p
, (4c)

Ŷ s
10 � −�X̂ s

135° − X̂
s
45°�∕

ffiffiffi
2

p
: (4d)

Hence, the entanglement criteria, Eq. (3), read

V
�
Ŷ i

01 �
1ffiffiffi
2

p X̂ s
135° �

1ffiffiffi
2

p X̂ s
45°

�
< 1, (5a)

V
�
Ŷ i

10 �
1ffiffiffi
2

p X̂ s
135° −

1ffiffiffi
2

p X̂ s
45°

�
< 1, (5b)

V
�
Ŷ s

45° �
1ffiffiffi
2

p X̂ i
01 −

1ffiffiffi
2

p X̂ i
10

�
< 1, (5c)

V
�
Ŷ s

135° �
1ffiffiffi
2

p X̂ i
01 �

1ffiffiffi
2

p X̂ i
10

�
< 1, (5d)

which satisfy the definition of a CV cluster-state given by
[13,30]

Ŷ − AX̂ → 0, (6)

where A is the adjacency matrix, representing the graph of a
given CV state. Therefore, the spatial multimode OPA can
be used to generate a spatial-mode cluster state. We give the
graph-state picture representation [Fig. 1(b)] describing the
“square” correlation among the four modes. Each cluster node,
corresponding to a spatial mode, is represented by a circle.
Neighboring nodes are connected by lines and represent the
bipartite entanglement between two spatial modes. Using
the quadrature transformation relations, Eq. (4), the entangle-
ment criteria, Eq. (5), can be restated as phase quadrature var-
iances of the HG modes, HG01, HG10, HG45° and HG135°:

V �Ŷ i
01 − Ŷ

s
01� < 1, (7a)

V �Ŷ i
10 − Ŷ

s
10� < 1, (7b)

V �Ŷ i
45° − Ŷ

s
45°� < 1, (7c)

V �Ŷ i
135° − Ŷ

s
135°� < 1: (7d)

Clearly, the spatial-mode cluster state, Eq. (5), can be char-
acterized using phase quadrature correlations for all four modes
and is easy to measure in experiments.
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U

Fig. 1. Schematic of the underlying principle involved in generating
the CV quadripartite spatial-mode Gaussian cluster state. (a) Pump
laser drives the multimode OPA to produce entanglement of two spa-
tial modes, HG01 and HG10, within one beam. By performing the
transformation U , the multimode entanglement is transformed into
a cluster state containing four spatial orthogonal modes, HG01,
HG10, HG45°, and HG135°. (b) Square representation in the graph-
state picture. Each cluster node, corresponding to a spatial mode, is
represented by a circle. Neighboring nodes are connected by lines
and represent the bipartite entanglement between two spatial modes.
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Essentially, the spatial-state generation in optical parametric
oscillator (OPO) depends closely on the transverse profile
matching between pump mode and generated modes [26,27].
Different pump-mode profiles result in different nonlinear
efficiencies and different pump thresholds, thus leading to dif-
ferent degrees of entanglement. More importantly, maximum
entanglement can be obtained only with an optimal pump
profile.

For the spatial cluster state, which generates HG01 and
HG10 down-conversion modes simultaneously, the transverse
distribution of the pump mode is expressed as νp�~r� �
Σ∞
n�0cn�νn0�~r� � ν0n�~r�� [28,29], where νn0 and ν0n denote

the transverse profiles of the HGn0 and HG0n modes, respec-
tively, and cn is the corresponding coefficient. We can calculate
the pump profile based on the definition of the coupling co-
efficient, which describes the spatial overlap between the pump
and the two down-conversion modes in the transverse plane,
and is defined by

Γ �
Z �∞

−∞

νp�~r�μs�~r�μi�~r�
α

d~r, (8)

where μs�~r� and μi�~r� are the transverse distributions of the
signal and idler modes, respectively, and α, the normalization
coefficient of the squared signal, is defined as α2 �R�∞
−∞ μ4�~r�d~r. For the HG01∕10 down-conversion mode, only
two nonzero overlapping coefficients result from Eq. (8):

Γ00 �
Z �∞

−∞

ν00�~r�μ201∕10�~r�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR�∞
−∞ μ401∕10�~r�d~r

q d~r �
ffiffiffi
1

3

r
, (9a)

Γ02∕20 �
Z �∞

−∞

ν02∕20�~r�μ201∕10�~r�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR�∞
−∞ μ401∕10�~r�d~r

q d~r �
ffiffiffi
2

3

r
, (9b)

for which Γ2
00 � Γ2

02∕20 � 1 holds, and subscripts 00 and
02/20 of Γ indicate the transverse distribution of the pump
mode HG00 and HG02∕20. Hence, the pump-mode profile
for HG01∕10 down-conversion modes can be HG00 and
HG02∕20 modes, and the optimal pump mode is the superpo-
sition of the HG00 and HG02∕20 modes, of which the HG02∕20
accounts for two thirds. The only pump-mode profiles for the
spatial cluster state are therefore the HG00 and the superposi-
tion ofHG02 andHG20 modes, where the superposition mode
is equal to LG0

1 mode. The optimal pump profile is the super-
position of the HG00 and LG0

1 modes, of which LG0
1 accounts

for two thirds, and we have Γopt � 1. When pumping in the
HG00, LG0

1, and the optimal profile, the system increases its
threshold inversely proportional to the square of the overlap
coefficient. In 2017, Pereira et al. also found similar phenom-
ena in type II second-harmonic generation, which is the reverse
process of OPA [31]. By mixing opposite topological charges
�1 and −1, they obtained the superposition between HG00

and LG0
1 modes. Moreover, the generation of higher radial or-

ders was demonstrated when higher opposite charges were
mixed in the crystal. This can motivate future investigations
with higher radial orders and higher topological charges in
the OPO as well.

Although the spatial profile of an ideal pump is the super-
position of HG00 and LG0

1 modes, the efficiency of the LG0
1

mode pump is two times that of HG00. We can almost achieve
optimal entanglement by simply using only the LG0

1

pump mode.

3. EXPERIMENTAL SETUP AND RESULTS

The experimental setup (Fig. 2) entails entanglement source
generation, LG pump generation, and balanced homodyne de-
tection. Our OPA cavity is formed by the rear surface of a type-
II phase-matched potassium titanyl phosphate (KTP) crystal
(KTP1) and an external mirror (radius of curvature is 50 mm,
and R � 95% at 1080 nm). An additional KTP crystal (KTP2)
of identical size is placed with the z axis orthogonal to KTP1, to
compensate the Gouy phase difference induced by astigmatism
[32], and a 1080-nm half-wave plate oriented at 22.5° is in-
serted between the two crystals, so that the HG10 and HG01

modes of different polarizations resonate simultaneously in the
OPA. This degeneracy is further optimized by individually con-
trolling the temperature of the two KTP crystals. The length of
the cavity is approximately 57.8 mm, resulting in a free spectral
range of about 2.6 GHz and a finesse of 91 at 1080 nm. The
cavity has a waist of 40 μm at 1080 nm and 28.5 μm at
540 nm. The cavity loss is approximately 1.44%.

A 45°-polarizedHG01 weak field at 1080 nm is injected into
the OPA cavity as a seed beam, and a fundamental mode or
LG0

1 light beam operating at 540 nm is used as the pump field
to drive the OPA. Here, we achieve the LG0

1-mode by con-
verting the HG11-mode with a HG11−LG

0
1 mode converter

[33], where the HG11-mode is achieved by tailoring the fun-
damental mode with a four-quadrant phase mask and a filtering
cavity. When operated in the de-amplification regime, the OPA
produces simultaneously a bright entangled HG01 beam and
a vacuum-entangled HG10 beam in the cavity. The output
multimode entangled beam then passes through a quarter-wave
plate with its fast axis aligned with the s-polarization axis of

Fig. 2. Experimental layout for the generation and characterization
of the spatial-mode cluster state. Entanglement is generated using a
multimode OPA and measured by BHD detection with spatial tail-
ored local oscillators. LG0

1 pump reconstruction is shown in the right
panel. NOPA: nondegenerate optical parametric amplifier; LO: local
oscillator; DBS: dichroic beam splitter; PBS: polarization beam split-
ter; HWP: half-wavelength plate; QWP: quarter-wave plate; BHD:
balanced homodyne detection; DP: Dove prism; SA: spectrum
analyzer; FQ-PM: four-quadrant phase mask; MC: HG11−LG

0
1 mode

converter.
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beam splitter output to induce a phase shift in the s-polariza-
tion with respect to p-polarization. Then the beam is analyzed
using the balanced homodyne detection systems with the local
oscillator operating in the HG01, HG10, HG45°, and HG135°
modes, respectively. We spatially tailor the measurement basis
using a Mach–Zehnder interferometer with a Dove prism in
one arm to convert a HG01 mode into HG10 mode. This ar-
rangement can be used to generate an arbitrary first-order mode
when both the beam splitting ratio and the relative phase be-
tween two arms can be controlled. Measurements are con-
ducted with the relative phase between the local oscillator
and the signal beam locked to π

2, so that the phase quadrature
variances can be obtained.

We show the measured correlation variance spectra (Figs. 3
and 4) for the range of 1–6 MHz obtained using Eq. (7) with
the HG00- and LG0

1-mode pump beams, respectively. Traces
(2) correspond to the shot noise limit (SNL), which is obtained
by blocking the signal beam, and traces (1) and (3) are the
correlation variance and anti-correlation variance, respectively.
In both figures, (a)–(d) correspond to the phase quadrature
correlations for the HG01, HG10, HG45°, and HG135° modes.
When pumping with the HG00-mode beam (Fig. 3), we
obtained the correlation variances with mean values of
2.20� 0.12 dB, 2.30� 0.12 dB, 1.93� 0.13 dB, and
2.15� 0.14 dB, respectively, over the entire frequency range.
As the analyzing frequency increases, the traces of the anti-
correlation variance diminish because of the limited bandwidth
of the electron gain of the detectors. The parameter settings
of the spectrum analyzer are 300 kHz and 390 Hz for the
resolution and video bandwidths, respectively. From the well-
established inseparability criteria inequalities for the cluster-
state entanglement, Eq. (7), we obtain

V �Ŷ i
01 − Ŷ

s
01� � 0.62� 0.02 < 1, (10a)

V �Ŷ i
10 − Ŷ

s
10� � 0.59� 0.02 < 1, (10b)

V �Ŷ i
45° − Ŷ

s
45°� � 0.64� 0.02 < 1, (10c)

V �Ŷ i
135° − Ŷ

s
135°� � 0.61� 0.02 < 1: (10d)

The LG0
1-mode as a pump provides better efficiency. All

four correlation variances show improvements (Fig. 4); mean
values of 3.15� 0.11 dB, 3.63� 0.12 dB, 3.20� 0.12 dB,
and 3.32� 0.14 dB were obtained. Compared with HG00

pumping, an enhancement of approximately 33% is achieved.
Their corresponding values for non-separability (Fig. 5) are also
improved:

V �Ŷ i
01 − Ŷ

s
01� � 0.48� 0.02 < 1, (11a)

V �Ŷ i
10 − Ŷ

s
10� � 0.43� 0.02 < 1, (11b)

V �Ŷ i
45° − Ŷ

s
45°� � 0.48� 0.02 < 1, (11c)

V �Ŷ i
135° − Ŷ

s
135°� � 0.47� 0.02 < 1: (11d)

The measured inseparabilities and correlation are affected by
various inefficiencies in the experiment. We estimate the total
detection efficiency to be ηtotal � ηpropηphotηhd, where ηprop �
0.96� 0.02, ηphot � 0.92� 0.02, and ηhd � 0.96� 0.02 are
respective of the measured propagation efficiency, photodiode
(ETX500) efficiency, and spatial overlap efficiency in the ho-
modyne detector. Thus, the inferred inseparability values are:
V �Ŷ i

01 − Ŷ
s
01� � 0.36� 0.02, V �Ŷ i

10 − Ŷ
s
10� � 0.30� 0.02,

V �Ŷ i
45° − Ŷ

s
45°� � 0.36� 0.02, and V �Ŷ i

135° − Ŷ
s
135°��

0.35�0.02, and the inferred correlation variances (Fig. 4)
are: −4.44� 0.11 dB, −5.23� 0.12 dB, −4.44� 0.12 dB,
and −4.56� 0.14 dB.

In addition to the inefficiencies in measurement discussed
above, cavity loss resulting from the non-optimal dielectric

(a) (b)

(c) (d)

Fig. 3. Measured quantum correlations of the cluster state in the
mode basis (a) HG01, (b) HG10, (c) HG45°, and (d) HG135° using
the fundamental mode pump. Trace (2) is the shot noise limit (SNL),
and traces (1) and (3) are the correlation variance and anti-correlation
variance, respectively, normalized to SNL. Measurement settings:
resolution bandwidth 300 kHz, video bandwidth 390 Hz.

(a) (b)

(c) (d)

Fig. 4. Enhanced entanglement for the (a) HG01, (b) HG10,
(c) HG45°, and (d) HG135° modes with LG0

1 pumping. Trace (2) is
SNL; traces (1) and (3) are the correlation variances normalized to
SNL. Measurement settings: resolution bandwidth 300 kHz, video
bandwidth 390 Hz.
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coatings on optical elements is also a main factor that limits
the quality of entanglement. Also, extra noise in the laser,
imperfect phase locking, and so on, will also degrade the cor-
relation. The entanglement can be improved by optimizing the
experimental setup for future applications.

4. CONCLUSION

We have experimentally demonstrated the CV quadripartite
spatial-mode “square” cluster-state generation by multiplexing
orthogonal spatial modes within one beam in a single multi-
mode OPA. The degree of freedom is extended in the spatial
mode domain, and the generation setup is much simpler with
only one OPA cavity. Realizing a compact Gaussian quantum
computation using a multi-pixel detector or charge coupled de-
vice (CCD) [34] looks promising. Using this infinite spatial
basis within a single beam, and the possible manipulation of
the modes, makes it a practical contender for spatial multimode
quantum communication systems. Furthermore, we explored
the dependence of entanglement of the spatial cluster state
on the pump profile, and demonstrated the enhancement
for the spatial cluster state with a LG0

1 pump profile. The ap-
proach described can be extended to other more complex graph
states if a suitable pump profile is used [35,36].
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