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We propose a parity-time (PT) symmetric fiber laser composed of two coupled ring cavities with gains and losses,
which operates both in PT-symmetric and symmetry-broken regimes depending on the static phase shifts. We
perform analytical and numerical analysis by the transfer matrix method taking into account gain saturation
and predict laser bistability in the PT-symmetric regime in contrast to a symmetry-broken single-mode operation.
In the PT-broken regime, the generation power counterintuitively increases with an increase of the cavity
losses. © 2018 Chinese Laser Press
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1. INTRODUCTION

The concept of parity-time (PT) symmetry in optics has at-
tracted a great deal of attention following the first experimental
demonstrations only a few years ago [1,2]. It suggests new pros-
pects for the design of optical structures with symmetrically
distributed regions of gain and losses; see review papers [3–5]
and references therein.

Recently, PT-symmetric lasers were demonstrated experi-
mentally in microrings [6–9]. Importantly, a single-mode laser
operation was achieved in an initially multi-mode system
through stronger mode discrimination, when the system oper-
ates in the PT-broken regime close to a PT-symmetry-breaking
transition. Also, a single transverse-mode operation in a system
of coupled microring lasers was demonstrated near the excep-
tional point [10], and enhanced sensitivity [11,12] was realized.
In a pair of coupled microdisk quantum cascade lasers, the
reversal of generated power dependence [13] was identified in
the vicinity of exceptional points (EPs), where spontaneous
emission is enhanced [14], and EPs were observed directly
in photonic-crystal lasers [15]. Furthermore, a realization of
PT-symmetry-based mode locking [16] and a PT-symmetric
laser absorber [17] were theoretically proposed, and lasing and
anti-lasing in a single cavity were demonstrated [18]. Recently,
a statistical PT-symmetric lasing has been achieved in an optical
fiber network incorporating semiconductor amplifiers [19].

In this work, we develop the theoretical concept of a
PT-symmetric fiber laser based on coupled cavities. We use a
conventional ring cavity laser design and predict PT-symmetric

and PT-broken lasing by means of tunable coupling of a ring
cavity laser with a passive cavity.

2. METHODS AND RESULTS

We present a diagram of the proposed PT-symmetric fiber ring
laser in Fig. 1. The scheme comprises two similar fiber cavities:
one of them is active (with gain), and the other cavity is passive
(with losses). Tunable coupling between cavities is controlled
by means of adjustable phase shifts inside a Mach–Zehnder
interferometer. In the case of zero phase shifts, passive and ac-
tive cavities are uncoupled, so the system acts as a conventional
ring cavity laser if properly pumped. As we demonstrate below,
tunable coupling enables one to switch between PT-symmetric
and PT-broken lasing regimes.

To describe the laser operation and associated PT transi-
tions, we use a discrete transfer matrix model governing the
evolution of the field amplitudes in both fiber cavities. Field
evolution over a cavity round-trip in the first approximation
is described by a transfer operator L,
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where g2 < 0 denotes constant losses and g1 > 0 characterizes
total gain. Importantly, crossover coupling as described by the
second matrix in Eq. (1) facilitates PT symmetry with static
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elements, whereas active modulation was required in previous
realizations of mesh lattices [20].

We simplify Eq. (1) and express the operator as

L � ieg̃�iφ̃
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where g̃ ≡ �g1 � g2�∕2, Δg ≡ g1 − g2, φ̃ ≡ �φ1 � φ2�∕2, and
Δφ ≡ φ1 − φ2. Note that Δφ � 0 corresponds to uncoupled
cavities, whereas Δφ � π means completely cross-coupled
cavities.

We establish that the operator L possesses PT symmetry
when applied in conjunction with the Gauge transformation,

PT e−g̃−iφ̃L � e−g̃−iφ̃LPT : (3)

The parity operator swaps the two fibers,

P �
�
0 1
1 0

�
; (4)

which effectively interchanges the gain and phase coefficients
since

PL�g1; g2;φ1;φ2�P−1 � L�g2; g1;φ2;φ1�: (5)

The time-reversal operator T performs complex conjuga-
tion and also swaps the propagation direction,

TL � �L��−1T : (6)

The signal propagation through the considered system can
be fully described by the eigenvalues μ� and eigenvectors
�u1; u2�T of the operator L, which are found as

μ� � ieg̃�iφ̃μ̃�;
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We note that there is an exceptional point where the two
eigenvalues become identical (μ� � μ−) when the gain/losses
difference reaches a value

ΔgPT � 2 cosh−1
�

1

cos�Δφ∕2�

�
; (10)

which corresponds to the PT-symmetry-breaking threshold
when g̃ � 0.

We present in Fig. 2(a) the ratio of two eigenvalues,
jμ�∕μ−j, and in Fig. 2(b) the relative phase of the mode
amplitudes, arg�u1∕u2�jμ� � Re�ν��, versus the difference
of phases and gain/loss in two fiber-ring cavities.

The modes are in the PT-symmetric regime for
jΔgj < ΔgPT. In this case, Im�ν�� � 0 and

ν� � −ν−; (11)

and accordingly the eigenmode intensities are equal in the ac-
tive and passive cavities, ju1j � ju2j. Thus, both modes exhibit
the same amplification or absorption averaged over two fiber
cavities, jμ�j � jμ−j � exp�g̃�. Note that PT symmetry always
holds for Δφ � �π, when the fiber cavities are completely
cross-coupled, such that the optical path goes through both
active and passive cavities and the influences of gain and losses
are compensated.

Fig. 1. Schematic of the proposed PT-symmetric fiber-ring laser,
composed of two coupled fiber-ring cavities with gain and losses.
The coupling between cavities is controlled by means of phase shifts
φ1 and φ2. Arrows indicate the direction of propagation.

Fig. 2. (a) Ratio of two linear mode eigenvalues, jμ�∕μ−j and (b) the relative phase of the eigenmode amplitudes arg �u1∕u2�μ� � Re�ν�� versus
the difference of phases and gain/losses in two fiber cavities. White dotted lines indicate the PT-breaking boundary. (c), (d) The absolute
eigenvalues shown with solid (jμ�j) and dashed (jμ−j) lines versus the gain coefficient for fixed losses (g2 � −0.7) and different phases
(c) Δφ � 1.5 and (d) Δφ � 1. Horizontal dotted line marks the level jμj � 1 corresponding to stationary modes with balanced gain and losses.
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In the PT-broken regime when jΔgj > ΔgPT, the modes
exhibit a different rate of amplification or absorption with
jμ�j > jμ−j, while ν� are purely imaginary, and accordingly,
the amplitudes u1;2 are exactly in or out of phase. We note that
the PT-broken regime is always realized for Δφ � 0, since in
this case the cavities become effectively uncoupled, so the mode
in the active cavity experiences amplification, while the mode in
the passive cavity attenuates.

We plot in Figs. 2(c) and 2(d) the characteristic dependen-
cies of the eigenvalues on the gain coefficient g1, while keeping
losses fixed (g2 < 0). For a phase detuning such that

cos�Δφ∕2� < 1∕ cosh�jg2j�; (12)

the net amplification regime is realized at g1 > jg2j simultane-
ously for two eigenmodes in the PT-symmetric regime
[jμ�j � exp�g̃� > 1], whereas PT breaking occurs at stronger
gain after the bifurcation at the exceptional point; see Fig. 2(c).
On the other hand, for the phase detunings with

cos�Δφ∕2� > 1∕ cosh�jg2j� (13)

in the PT-symmetric regime, both modes are attenuated
on average [jμ�j � exp�g̃� < 1], while net amplification is
achieved for one mode at stronger gain in the PT-broken
regime (jμ�j > 1); see Fig. 2(d).

Essentially, the model with a constant gain as represented
above describes an amplifier operating in the regime of small
signal gain, not a laser. The laser is characterized by self-
governing gain saturation that limits the total gain over the
round trip to be equal to total round-trip losses [21]. In the
following, we consider a simple model of gain saturation,

g1 �
g0

1� P̃1

− gh; (14)

where P̃1 is the normalized power at the input of the gain
element in the current round trip. According to Eq. (14),
the gain element introduces losses (−gh < 0) at a high power
level, whereas its amplification of weak field is g0 − gh.

For lasing to occur, small-amplitude fields need to be
amplified, i.e., it is necessary to have jμ�jP̃1�0 > 1. Then,
the optical power will grow with each fiber cavity round trip
until the gain gets saturated and a stationary regime is reached
where gain and losses are exactly balanced, jμ�jP̃1

� 1. The
latter condition corresponds to a transition from net losses
to a net gain for varying gain strength (g1), which can be sat-
isfied in PT-symmetric or PT-broken regime depending on
parameters, as we have illustrated above in Figs. 2(b) and 2(c).
Specifically, PT-symmetric lasing can occur for phases satisfying
Eq. (12) above a critical gain g0 − gh > jg2j. On the other
hand, the PT-broken regime occurs at a lower gain threshold
for a range of phases defined in Eq. (13). We summarize the
different parameter domains and gain thresholds for possible
laser regimes in Fig. 3(a).

A characteristic dependence of mode amplification on
power in the PT-symmetric laser regime is presented in
Fig. 3(b). We see that although PT symmetry is broken at
low powers, it is restored at higher powers, when gain is effec-
tively reduced due to saturation. A stationary lasing regime at
exactly balanced gain and losses, i.e., when jμ�j � 1, can be
achieved both in PT (closed circle) and PT-broken (open circle)

regimes. The open circle corresponds to the unstable regime,
due to co-existence of another mode which exhibits net ampli-
fication. Conversely, a closed circle marks a stationary state,
which can be realized simultaneously for both PT-symmetric
modes. We show in the following that this leads to bi-stability
in a laser operation. On the other hand, in the PT-broken laser
regime, a stationary stable point appears only for one mode, as
illustrated in Fig. 3(c).

Measurements of eigenvalues in a real laser are not straight-
forward. The most direct way to characterize the PT transition
is to measure generated powers in both active and passive fiber
cavities, P1 � ju1j2 and P2 � ju2j2, respectively. As we have
discussed above, in the PT-symmetric regime P1 � P2,
whereas in the PT-broken case P1 > P2. Thus the most
straightforward way to identify whether the system operates
in PT-symmetric or PT-broken phases is to measure power ra-
tio P2∕P1. We plot its predicted dependence in Fig. 4(a) as a

Fig. 3. (a) Stationary regimes of laser operation with nonlinear gain
saturation: no lasing (white background), pair of PT-symmetric laser
modes (grey shading), or one mode in PT-broken regime (yellow shad-
ing). (b), (c) Characteristic mode amplification versus power for points
A and B marked in (a) corresponding to different lasing regimes. Solid
circles mark stable and the open circle marks unstable regimes with
balanced gain and loss (zero mode amplification). Background shading
marks PT-symmetric and broken regimes. Saturable gain parameter
gh � 0.23 (1 dB).

Fig. 4. Power dependencies in stationary lasing regimes. (a) A ratio
of power generated in passive and active cavities, P2∕P1, is unity in
PT-symmetrical region and less than unity in PT-broken area. (b),
(c) Dependence of the lasing power in two cavities on the gain in
PT-symmetric and PT-broken regimes corresponding to different
phase shift Δφ � 1.5 and 0.8, respectively, both shown with dashed
lines in plot (a).
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function of gain coefficient (i.e., the amount of pumping in the
active cavity) and the phase shift (i.e., amount of coupling). We
emphasize that the generation threshold of the laser is a function
of the phase shift in the PT-broken case, whereas in the PT-sym-
metrical area the threshold does not depend on the phase shift.
We illustrate a characteristic dependence of the lasing power in
two cavities on the gain in PT-symmetric and PT-broken
regimes in Figs. 4(b) and 4(c), respectively. We see that for
any gain level, in the PT-symmetric case the generated powers
are equal in both cavities (P2∕P1 � 1), although only the active
one is pumped. In the PT-broken case, the power in the passive
cavity is always less compared to the power generated in the
active cavity, i.e., P2∕P1 < 1. In particular, in the limiting case
of uncoupled cavities (zero phase shift Δφ � 0), the power in
the passive cavity is completely zero, yielding P2∕P1 � 0.

In a conventional laser, the higher the optical losses, the less
is a generation power. We find that this is not always the case in
a considered system of fiber laser with a PT symmetry. Indeed,
when optical losses g2 are varied, lasing power P1 changes in a
complex way; see Fig. 5(a). In a PT-symmetric area, the higher
the losses jg2j, the lower the lasing power, whereas in the
PT-broken area lasing power P1 grows with the increase of
the optical losses jg2j. Correspondingly, there are three scenarios
of the dependence of lasing powerP1 on losses g2, defined by the
relative positions of PT symmetric, PT-broken, and under-
threshold areas. Thus, at relatively small Δφ, i.e., in the case
of weakly coupled cavities, areas of PT-symmetric and PT-bro-
ken solutions are adjacent [see Fig. 5(b)], so that lasing power P1

drops to its minimum value and then grows in the PT-broken
area while cavity losses are increased. At larger phase shifts Δφ,
there is a gap between PT-symmetric and PT-broken areas
where the laser is under threshold; see Fig. 5(c). Finally, at large
phase shifts Δφ, i.e., in the case of strongly coupled cavities, the
PT-broken area disappears and lasing power drops monotoni-
cally down to zero in the PT area while optical losses are
increased; see Fig. 5(d).We note that an increase of lasing power
P1 along with optical losses jg2j appears as a result of energy
redistribution between cavities, rather than the total energy
growth. A conceptually similar power dependence has been
reported recently in a PT laser of another type [19].

We now analyze how the laser reaches its stationary state,
i.e., the laser dynamics. To establish the general dynamical
properties, we study the evolution of the following quantity:

J � Im�u1u�2� � ju1u2j sin	arg�u1� − arg�u2�
: (15)

Considering complex amplitudes u1 and u2, we find that
after the evolution over one period described by matrix L
with arbitrary phase and gain coefficients in Eq. (2),

J → e2g̃ J : (16)

Thus, the following quantity remains invariant during
evolution, both in PT and PT-broken regimes:

sign�J� � signfsin	arg�u1� − arg�u2�
g � const: (17)

Accordingly, the relative phase is confined to one of two
domains, depending on the initial conditions,

0 < arg�u1� − arg�u2� < π;

−π < arg�u1� − arg�u2� < 0: (18)

We show these regions with different shadings in Fig. 6(a).
We also indicate with solid and dashed lines possible stationary
lasing states, which could be realized for various structural
parameters.

The horizontal lines with arg�u1� − arg�u2� � f0;�πg in
Fig. 6(a) correspond to stationary PT-broken modes, according
to the general features discussed above. Importantly, PT-broken
states appear at the boundaries of two phase regions determined
in Eq. (18), and therefore for any input state the laser can
converge to a single PT-broken lasing mode operation.

Stationary PT-symmetric modes can appear along the ver-
tical lines at jP2∕P1j � 1, as indicated in Fig. 6(a). The pairs of
PT-symmetric modes have opposite relative phases according
to Eq. (11), and therefore they necessarily appear inside distinct
regions; see an example of two modes corresponding to particu-
lar structure parameters marked with black circles in Fig. 6(a).
This indicates a bi-stable laser operation, since each of the sta-
tionary points can act as an attractor for all initial states inside
the associated phase region, while the boundary between these
regions cannot be crossed. We illustrate the bi-stable dynamics
in Figs. 6(b) and 6(c), which show that depending on initial
phase difference between the amplitudes in two fiber cavities
(but not on initial powers), the laser converges either to the
first or second PT-symmetric eigenmode.

Fig. 5. (a) Dependence of generated power P1 on phase shift Δφ and loss g2 at fixed gain g1 � 1.0 has non-trivial form resulting from PT
transition. In the PT-symmetric area, the higher are the losses jg2j, the lower is the lasing power as it should be in a conventional laser, whereas in the
case of PT-broken regime, the generation power increases with the increase of losses. Panels (b)–(d) are cross sections of a 3D surface indicated on
panel (a) over dotted lines.

Research Article Vol. 6, No. 4 / April 2018 / Photonics Research A21



3. CONCLUSION

In conclusion, we proposed and analyzed theoretically a PT-
symmetric fiber-ring laser composed of two active and passive
cavities with a cross-coupling element, which allows us to
switch between PT-symmetric and broken regimes without
using active modulation of gain/loss elements. We considered
the effect of gain saturation at high powers and predicted that
the system always converges to a stationary lasing state, while
demonstrating bi-stable behavior in the PT-symmetric regime.
We also revealed that the generated power nontrivially depends
on the optical losses, as in PT-broken regime the lasing power
increases for stronger losses, whereas lasing can be completely
suppressed for intermediate loss levels between the PT-
symmetric and PT-broken regions.
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