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We propose an efficient and robust method to generate tunable vector beams by employing a single phase-
type spatial light modulator (SLM). With this method, a linearly polarized Gaussian beam can be converted
into a vector beam with arbitrarily controllable polarization state, phase, and amplitude. The energy loss during
the conversion is greatly reduced and depends mainly on the reflectivity of the SLM. We experimentally
demonstrate that conversion efficiency of about 47% is achieved by using an SLM with reflectivity of 62%.
Several typical vector beams, including cylindrical vector beams, vector beams on higher order Poincaré spheres,
and arbitrary vector beams attached with phases and with tunable amplitude, are generated and verified exper-
imentally. This method is also expected to create high-power vector beams and play important roles in optical
fabrication and light trapping. © 2018 Chinese Laser Press
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1. INTRODUCTION

In recent years, a new class of laser beams characterized by
space-variant polarization states, also named vector beams,
has become a popular topic [1]. The most dramatic one is
the cylindrical vector beam (CVB) with cylindrical symmetry
in polarization distribution [2], due to unique focusing proper-
ties [3,4]. The focal fields of CVBs can be robustly controlled
when modulated radially [5–7] and azimuthally [8–10], or even
attached with additional phase [9–11]. Meanwhile, vector
beams with different spatial polarization distributions are
successively presented with the purpose of characterizing
optical orbital angular momentum [12–15], realizing spin-
dependent propagation [16–19], and achieving spin–orbital in-
teraction [20–22]. Moreover, vector beams have been exploited
in many scientific and engineering applications, such as optical
trapping [23,24], super-resolution microscopy [25], and laser
micromachining [26,27].

To generate vector beams, a great number of schemes and
systems have been developed. One of them, usually called the
direct method, is to directly transform the polarization state of a
traditional laser mode into a space-variant one by using de-
signed optical elements, such as axial birefringent components
[28], Brewster angle reflectors [29], spatially varying retarders
[30,31], subwavelength gratings [32], and metasurfaces [33,34].

These direct methods often have high conversion efficiencies.
However, the corresponding optical elements require special
fabrication techniques, and they lack flexibility and conven-
ience. Even when the controllable schemes based on the spa-
tially varying retarders are proposed [35–37], they are applied
only to creating a specific type of vector beam, e.g., higher order
Poincaré sphere beams [36,37]. To conveniently control the
space-variant polarization state of a light beam, many optical
arrangements containing spatial light modulators (SLMs) have
been presented [1,16,38–45], on the grounds of the superpo-
sition principle with orthogonal polarization components. In
these superposition methods (also called indirect methods),
it is required to impart the desired phases to the orthogonal
polarization components, which are exactly implemented with
a computer-generated hologram, or a more efficient phase-type
SLM. However, the general low efficiency of generating vector
beams with superposition methods leads to waste of energy. For
example, in Refs. [1,41,45], where the phase-type SLM works
as a pair of screens, at least 75% of the beam energy is lost irre-
spective of the loss from the SLM, because the beam passes
through a beam splitter twice. Of course, efficiency can be greatly
improved if the phase-modulated elements are replaced with el-
ements such as space-variant phase plates [46] and polarization
holograms [47], but it also leads to the loss of flexibility.
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In this paper, we propose an optical arrangement containing
a single phase-type SLM to generate vector beams, of which the
polarization states, phases, and amplitudes can be arbitrarily
controlled. The energy loss of this arrangement is greatly re-
duced and the generating efficiency is improved substantially.

2. EXPERIMENTAL SETUP

Generally, a vector beam is considered a superposition of two
polarization components with respect to the orthonormal cir-
cular polarization basis feL; eRg [38,42], of which the Jones vec-
tors are �1;�i�T ∕ ffiffiffi

2
p

. We can construct the vector beam by
modulating its two polarization components separately. The ex-
perimental setup is shown in Fig. 1. A horizontally polarized
input laser beam (He–Ne laser, 632.8 nm), with its Jones vector
�1; 0�T , passes through a half-wave plate (HWP, fast axis along
an angle θ ∈ �0; π∕2�), and its polarization is changed into a
linear one �cos 2θ; sin 2θ�T . This linearly polarized beam is
split into horizontally and vertically polarized components
(i.e., p- and s-components) via a triangular common-path
interferometer (TCPI), which is comprised of a polarizing
beam splitter and two mirrors. The p- and s-components
(�cos 2θ; 0�T , �0; sin 2θ�T ), which propagate parallel to each
other, are reflected to a phase-type SLM (Holoeye LETO)
by one face of a right-angle prism mirror (RAPM), and respec-
tively illuminate the left and right halves of the SLM screen,
where two different phase patterns (Φ1 and Φ2) are addressed.
After that, the p- and s-components, �cos 2θ exp�iΦ1�; 0�T and
�0; sin 2θ exp�iΦ2��T , are reflected by the other face of the
RAPM and are recombined and superposed coaxially by
another TCPI. Finally, the two components are converted to
orthonormal circular polarizations via a quarter-wave plate
(with its fast axis along 45°) and are synthesized to a vector
beam, of which the polarization is given by

jEi � cos 2θei�Φ1�δΦ�eR � sin 2θeiΦ2eL; (1)

where the phase difference δΦ between the two components is
generated from the asymmetry of this system. Since this phase

difference can be compensated by appending a constant phase
to the phase pattern of Φ1, it is negligible in Eq. (1) and can be
written as a constant, i.e., δΦ � 0, for convenience. Thus the
polarization of the vector beam is written as

jEi � eiΨT �−Θ�
�
cos

�
2θ − π

4

�
i sin

�
2θ − π

4

� �; (2)

where

Ψ � �Φ1 � Φ2�∕2; (3a)

Θ � �Φ1 − Φ2�∕2; (3b)

T �Θ� �
�
cosΘ sinΘ
− sinΘ cosΘ

�
: (3c)

In Eq. (2), the Jones vector denotes an elliptical polariza-
tion with horizontal principal axis, and the axis ratio is
cot�2θ − π∕4�; the matrix T �−Θ� denotes an anticlockwise
rotation operation on this elliptical polarization with rotation
angle Θ; Ψ is the additional phase. Namely, Eq. (2) represents a
vector beam attached with a phase Ψ , and the polarization
distribution satisfies: the principal axis is along angle Θ, and
the ellipticity is cot�2θ − π∕4�.

Mostly, the two circularly polarized components are set with
equal intensity so that the resulting field is locally linearly
polarized, which is associated with the general CVBs. In this
case, θ � π∕8, and the output polarization is expressed as

jEi � eiΨ
�
cosΘ
sinΘ

�
: (4)

The resulting vector beam is captured by a CCD camera. To
exactly observe the output polarization, a lens is used to image
the light field at the plane of the SLM to the CCD. To examine
the polarization and phase of the vector beam, we employ the
method based on Pancharatnam–Berry phase (PB-phase method)
that we recently proposed [48].

To reduce the energy loss during the mode conversion, we
use beam splitting and combining systems in our setup, which
are two TCPIs that include polarizing beam splitters, as also
shown in Fig. 1. The p- and s-components can separately pro-
pagate with little loss at each face of the splitters. Importantly,
the SLM responds only for a horizontally polarized beam, so it
is necessary to set an HWP closely before the half screen of the
SLM to transform the polarization of the s-component to hori-
zontal. Of course, it can be transformed back to vertical polari-
zation by the same HWP after it is granted phase Φ1. In this
arrangement, we measure the transmittance of the major ele-
ments, and find that 89% of the beam energy can pass through
the TCPI, while 62% passes through the SLM when loading a
null phase map. Finally, this setup gets a transmittance of about
47%. It has to be emphasized that the most energy loss comes
from the SLMused here. If a highly reflective SLM is employed,
the transmittance would be greatly improved.

This arrangement also possesses a promising ability to gen-
erate a femtosecond vector beam, which has been proposed to
fabricate and manipulate complex morphologies [49]. In this

Fig. 1. Experimental setup for generating arbitrary vector beams.
λ∕2, half-wave plate; PBS, polarizing beam splitter; M, mirror;
RAPM, right-angle prism mirror; SLM, phase-type spatial light modu-
lator; λ∕4, quarter-wave plate; L, lens. The elements enclosed in the
dashed boxes compose triangular common-path interferometers.
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scheme, all the optical elements should be replaced by achro-
matic ones, and the SLM can optionally be LCOS-SLM
(Hamamatsu×11840 − 02) with reflectivity of 94%.
Theoretically, a femtosecond laser pulse (800 nm, 50 fs) with
a maximum power of 2.73 W can be withstood, and can be
converted to the vector beam with an efficiency of about 71%.

On the other hand, the beam splitting and combining
systems in the arrangement can also be achieved by two beam
displacers, which have nearly the same transmittance as the
TCPI. The beam displacers facilitate setting up the optical
system and stabilize it further. However, due to the aperture
limitation of the beam displacers, the waist of the input beam
needs to be limited.

3. EXPERIMENTAL RESULTS AND DISCUSSION

A. Generating Cylindrical Vector Beams
To generate pure CVBs via the setup shown in Fig. 1, we set
θ � π∕8, Ψ � 0, and Θ � φ� φ0, where φ is the coordinate
of the azimuthal angle, and φ0 is a constant equal to the angle
between the polarization orientation of the CVB and the radial
coordinate. Therefore, the phase patterns loaded on the SLM
meetΦ1 � −Φ2 � φ� φ0. Notably, there exist inevitable phase
errors that the beam obtains from the SLM, which leads to the
emergence of dark lines of light intensity at the boundary of
phases 0 and 2π. To solve this problem, we attach the same
phase grating (φg � kxx, where kx is a constant) to the phase
patterns of Φ1 and Φ2, i.e., Φ1 � φ� φ0 � φg , Φ2 �
−φ − φ0 � φg . Then, a spatial filter is set at the focal plane of
the imaging lens to let only the first order pass through. This
operation leads to a slight diminution of the transmittance of
the setup. The transmittance is about 45% in our experiment.

Figure 2 shows the experimental results of the radially (the
first column) and azimuthally (the second column) polarized
beams generated by the setup of Fig. 1; Fig. 2(a) shows the
intensity patterns captured by the CCD. It can be seen that
dark points appear at the center of light spots caused by the
singularity of polarization. The polarizations of these two vector
beams are measured with the PB-phase method [48], and the
results are shown in Figs. 2(b)–2(d), which depict the normal-
ized Stokes parameters (S1, S2, S3), respectively. The Jones vec-
tors of the radially and azimuthally polarized beams are
�cos φ; sin φ�T and �− sin φ; cos φ�T , respectively. The corre-
sponding Stokes parameters are �cos 2φ; sin 2φ; 0� and
�− cos 2φ; − sin 2φ; 0�, respectively. In contrast to this theory,
the measured Stokes parameters characterize well the states of
radial and azimuthal polarizations. To represent the measured
polarization states more visually, the polarization ellipses are
calculated with the data of the Stokes parameters, as depicted
in Fig. 2(e). These results perfectly present the radial and azi-
muthal polarizations in the center regions of the light fields,
while in the dark regions, elliptical polarizations appear due
to measurement errors.

B. Generating Vector Beams on a Higher Order
Poincaré Sphere
If we set Φ1 � −Φ2 � lφ� φ0 in Eq. (1), the output beam is
represented as a two-dimensional vector with respect to the
orthonormal circular polarization basis fjR l i; jLl ig, such that

jEi � cos 2θeiφ0 jR l i � sin 2θe−iφ0 jLl i; (5)

where jR l i � exp�ilφ�eR , and jLl i � exp�−ilφ�eL. The above
equation describes an arbitrary polarization state on the higher
order Poincaré sphere [13,15], where the latitude and longitude
can be controlled by the parameters θ and φ0, respectively.
Figure 3(a) shows a typical higher order Poincaré sphere for
l � 1. When θ � π∕8, the polarization of the vector beam
is located on the equator, e.g., φ0 � 0 and π∕2 correspond
to the radially (jH 1i) and azimuthally (jV 1i) polarized beams,
respectively, while θ � 0 and π∕4 correspond to the right

Fig. 2. Intensity and polarization distributions of the radially (1)
and azimuthally (2) polarized beams. (a) Light intensity distributions
captured by CCD, (b)–(d) measurement results of normalized Stokes
parameters (S1, S2, S3), and (e) polarization ellipse distributions.

Fig. 3. Generated vector beams on a higher order Poincaré sphere.
(a) Schematic of polarizations on a higher order Poincaré sphere for
l � 1; (b), (c) experimental results of the generated vector beams for
θ � 0.08π, φ0 � 0 and θ � 0.2π, φ0 � π∕6, respectively; (d),
(e) vector beams for l � 2 and 1/2, respectively, while θ � 0, φ0 � 0.
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(jR1i) and left (jL1i) circular polarizations, respectively, as also
shown in Fig. 3(a).

We set θ � 0.08π, φ0 � 0 and θ � 0.2π, φ0 � π∕6, re-
spectively, and generate the vector beams on the higher order
Poincaré sphere for l � 1. The corresponding results of mea-
sured polarizations are depicted in Figs. 3(b) and 3(c), where
the red and cyan ellipses denote right (S3 > 0) and left
(S3 < 0) elliptical polarizations, respectively. It can be clearly
seen that the experimental results of these two vector beams
are in accordance with the theoretical forms shown in the inset
of Fig. 3(a).

Furthermore, the vector beams for the other orders, e.g., l �
2 and 1/2, can also be produced as shown in Figs. 3(d) and 3(e),
respectively. The experimental results represent well the polar-
izations of orders l � 2 and 1/2, where the appearance of the
red and cyan ellipses is the result of measurement errors.
Notably, there are a dark core [Fig. 3(d)] and a dark line
[Fig. 3(e)] in the intensity distributions of the vector beams,
due to the singularity of polarizations. Thus, the displayed
polarizations at these positions are insignificant.

C. Generating Arbitrary Vector Beams
We can generate a presupposed vector beam with an arbitrary
polarization distribution just by loading a calculated phase map
on the SLM. For example, the vector beams with multiple
polarization singularities can be created by setting [50]

Φ1 � −Φ2 �
XN
n�1

mnφn � φ0; (6)

where N is the number of singularity, mn and φn are the
topological charge and azimuthal coordinate of the nth singu-
larity at position (xn; yn), respectively, and φn � arg��x − xn� �
i�y − yn�� is satisfied. Figure 4 shows the experimental re-
sults of the generated vector beams with double singularities,
where Figs. 4(a) and 4(b) correspond to m1 � m2 � 1 and
m1 � −m2 � 1, respectively. In consideration of the local lin-
ear polarizations of these vector beams (θ � π∕8), the polari-
zation ellipticity (or Stokes parameter S3) can be ignored. To
visualize in detail the polarization variation in space, the orien-
tation distributions of the polarizations are calculated with the
experimental data, and are depicted in the bottom of Fig. 4.

These experiment results represent the predicted polarizations
well. Figures 4(c) and 4(d) are another two examples of vector
beams with designed polarizations, which depict the radially and
azimuthally varied polarization (Φ1�−Φ2�φ�2πr∕r0�π∕6,
r0 � 1.4 mm) and taiji-shaped polarization, respectively.

D. Attaching Additional Phase to Vector Beams
According to Eq. (4), the generated vector beams can be
attached with an additional phase by setting Φ1 ≠ −Φ2. These
vector beams are intuitively associated with the hybrid-order
Poincaré sphere [14,51]. If Φ1 � lφ� φ0, Φ2 � mφ − φ0,
the resulting field of the setup would represent a vector beam
at the sphere coordinate (2φ0, π∕2 − 4θ) on the hybrid-
order Poincaré sphere of order (l , m). Figures 5(a) and 5(b)
show the experimental results of the vector beams jH 0;−2i
(φ0 � 0, θ � π∕8, l � 0, m � −2) and jH 5;−1i�φ0 � 0;
θ � π∕8; l � 5; m � −1�, respectively, where the top and bot-
tom are the measurement results of the polarization and phase
distributions by employing the PB-phase method, respectively.
Theoretically, the vector beam jH l ;mi has a polarization state
with order �l − m�∕2 and a phase distribution �l � m�∕2.
The results in Figs. 5(a) and 5(b) conform well to this theory.

In addition, the vector beam can be endowed with arbitrary
phase rather than the spiral one. In Fig. 5(c), we attach a conical
phase to a single-charged vector beam. The parameters are
set as θ � π∕8, and Φ1;2 � −2πr∕260 μm� �φ� π∕6�. The
measurement results of the generated vector beam reveal the
characteristics of cylindrical polarization and conical phase.

E. Tuning Amplitude of Vector Beams
Considering that the amplitude information can be encoded
into the phase map [52], the amplitude of the generated vector
beam can be conveniently tuned just through replacing the
phase map on the SLM by a calculated one, which combines
both the amplitude and phase information. Namely, if the
vector beam to be produced is expressed by E0 exp�iΨ �·
�cosΘ; sinΘ�T , where E0, Ψ , and Θ are, respectively, the
amplitude, phase, and polarization direction, the phase patterns
loaded on the SLM can be calculated by

Φ1;2 � �1 − sin c−1E0�mod�Ψ � Θ� φg ; 2π�; (7)

Fig. 4. Experimental results of the generated arbitrary vector beams.
(a), (b) Vector beams with double singularities, (c) vector beam with
radially and azimuthally varied polarization, and (d) vector beam
with taiji-shaped polarization distribution. Top: measured polariza-
tion distributions. Bottom: corresponding orientation distributions
of polarizations.

Fig. 5. Generated vector beams (top) and their phase distribu-
tions (bottom). (a) Θ � φ, Ψ � −φ; (b) Θ � 3φ, Ψ � 2φ;
(c) Θ � φ� π∕6, Ψ � −2πr∕260 μm.
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where φg � kxx induces a phase grating. A spatial filter at the
focal plane of the imaging lens is needed to let only the first
order pass through.

Figures 6(a) and 6(b) depict the generated vector beams of
Laguerre–Gaussian modes LG2;1 and LG2;2, where the top pan-
els are the intensity distributions on the imaging plane captured
by CCD; the middle and bottom panels show the correspond-
ing intensities after passing through the horizontal and vertical
analyzers. As can be seen from the experimental results, three
ring-like lobes appear in the rotationally symmetric intensity
distributions, and the fanlike extinction patterns after using
analyzers show the polarizations of vector beams with orders
1 and 2 for Figs. 6(a) and 6(b), respectively.

We can also encode arbitrary patterns into the phase maps,
such as a letter “S” or a flower-shaped pattern, and generate
vector beams with the corresponding intensity distributions.
The results are shown in Figs. 6(c) and 6(d), where the polar-
izations are tuned as the radial one and the one with double
singularities, respectively. An interesting pattern variation can
be observed when the flower-shaped vector beam passes
through a rotating analyzer, as also shown in Visualization 1.

It is important to note that the amplitude-encoded technol-
ogy would reduce the energy of the first diffraction order, which
depends on the amplitude distribution, inducing lower
generation efficiency.

4. CONCLUSION

We propose an optical arrangement to efficiently generate
tunable vector beams by employing a single phase-type
SLM. With this arrangement, a linearly polarized Gaussian
beam is converted into a vector beam, of which the polarization
ellipticity, orientation, and distribution can be arbitrarily con-
trolled, while an additional phased term is also granted. The
energy loss of this arrangement is greatly reduced, which de-
pends mainly on the reflectivity of the SLM. Accordingly,
the conversion efficiency is substantially improved. Based on
the measurements of the polarization and phase of the resulting

fields via the PB-phase method, we experimentally demonstrate
the generation of vector beams with cylindrical polarizations,
on a higher order Poincaré sphere, with arbitrary polarizations,
attached with phase, and with tunable amplitude. The pro-
posed method is expected to create high-power vector beams
and play important roles in optical fabrication and light
trapping.
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