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The principle of optical trapping is conventionally based on the interaction of optical fields with linear-induced
polarizations. However, the optical force originating from the nonlinear polarization becomes significant when
nonlinear optical nanoparticles are trapped by femtosecond laser pulses. Herein we develop the time-averaged
optical forces on a nonlinear optical nanoparticle using high-repetition-rate femtosecond laser pulses, based on
the linear and nonlinear polarization effects. We investigate the dependence of the optical forces on the magni-
tudes and signs of the refractive nonlinearities. It is found that the self-focusing effect enhances the trapping
ability, whereas the self-defocusing effect leads to the splitting of the potential well at the focal plane and
destabilizes the optical trap. Our results show good agreement with the reported experimental observations
and provide theoretical support for capturing nonlinear optical particles. © 2018 Chinese Laser Press

OCIS codes: (190.3270) Kerr effect; (140.7010) Laser trapping; (350.4990) Particles; (190.7110) Ultrafast nonlinear optics.
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1. INTRODUCTION

Optical trapping, also known as optical tweezers, is a useful
technique for noncontact and noninvasive manipulation of
small particles using a focused laser beam [1]. This technique
has wide applications in physics, chemistry, biology, and other
disciplines [2,3]. Up to now, the stable optical trapping of
micro- and nanoparticles has been extensively demonstrated
by the use of a continuous-wave (CW) Gaussian laser beam
[1–3], cylindrical vector beam [4], evanescent field [5], plas-
monic field [6], and spinning light fields [7], etc. Lots of efforts
have been devoted to trapping a variety of small objects, such as
dielectric particles [1], metallic Rayleigh nanoparticles [4],
semiconductor quantum dots [8], and biological cells [9].

Recently, the optical trapping technique has been extended
by substituting a CW laser with high-repetition-rate femtosec-
ond laser pulses [10–12]. With the femtosecond laser pulses,
several novel phenomena have been observed, including the
trapping split behavior in the process of capturing gold nano-
particles by femtosecond near-infrared laser pulses [13], a con-
trollable directional ejection of optically trapped nanoparticles
[14], and the immobilization dynamics of a single polystyrene
sphere [15]. It should be noted that the optical force originating
from the nonlinear polarization becomes significant and cannot
be neglected if the trapped particles exhibit nonlinear optical

effects. Moreover, the experimental observations have revealed
that the nonlinear optical effects could enhance the optical
force [8,16] or modify the optical trapping potential [13].

To quantitatively appraise the trapping ability, the optical
force exerted on a spherical nanoparticle arising from the linear
polarization has been calculated by various approaches, such as
Rayleigh scattering formulae [1], Maxwell’s stress tensor [17],
and discrete dipole approximation [18]. For a nonlinear optical
Rayleigh particle, however, the optical force unambiguously orig-
inates from the contribution of both the linear- and nonlinear-
induced polarizations. To the best of our knowledge, there is
no theoretical report on the optical force exerted on a nonlinear
optical Rayleigh particle beyond the linear optical regime.
Alternatively, researchers directly modified the Rayleigh scatter-
ing formulae by replacing the refractive index np0 with np0 � n2I
[19–21], where I is the optical intensity, and np0 and n2 are the
linear and third-order nonlinear refractive indexes of particle, re-
spectively. This phenomenological theory could interpret the
self-focusing effect that increases the trapping force strength
and improves the confinement of Rayleigh particles [19–21].

In this work, for the first time to our knowledge, we develop
time-averaged optical forces on a nonlinear optical Rayleigh
particle using high-repetition-rate femtosecond laser pulses,
based on the linear and nonlinear polarization effects.
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2. THEORY

For time-harmonic electromagnetic waves with a Gaussian
temporal envelope, we have

~E�~r; t� � ~E0�~r� exp�−iωt� exp�−2�ln 2�t2∕τ2F �; (1)

~B�~r; t� � 1

iω
∇ × ~E�~r; t�; (2)

where ~E0�~r� is the complex function of position in space, ω is
the circular frequency, and τF is the full width at half-maximum
(FWHM) for a Gaussian pulse. For the sake of simplicity, we
only consider the pulse duration of laser pulses having
τF ∼ 100 fs. Accordingly, the spectral bandwidth of the laser
pulses is so narrow that the pulsed beam can be regarded as
a monochromatic field. Hence the spatial and temporal char-
acteristics of laser pulses can be treated independently.

Now we consider a spherical dielectric particle immersed in
liquid (e.g., water) exhibiting a linear susceptibility χ1 and a
third-order nonlinear optical susceptibility χ3. Besides, we assume
that the particle is isotropic and the optical nonlinearity instanta-
neously responds to laser pulses. According to the Claussius–
Mossotti equation and taking into account the radiation reaction
correction [22,23], we obtain the particle-induced dipole mo-
ment originating from the linear and nonlinear polarizations as

~p�~r; t� � αe�~r; t�
1 − iαe�~r; t�k3∕�6πε0�

~E�~r; t�; (3)

αe�~r; t� � 4πε0a3
�χ1 � χ3j~E�~r; t�j2�

χ1 � χ3j~E�~r; t�j2 � 3
; (4)

where a is the radius of the particle, k � 2π∕λ is the wavenum-
ber, λ is the wavelength, and ε0 is the permittivity of free space.

Under the excitation of femtosecond laser pulses, the instan-
taneous optical force exerted on the Rayleigh particle (a ≪ λ)
for time-averaging over one pulse period T yields [24]

h~F i � 1

4T

Z
T ∕2

−T∕2

�
�~p� ~p�� · ∇�~E � ~E��

�
�
∂~p
∂t

� ∂~p�

∂t

�
× �~B � ~B��

�
dt; (5)

where � denotes the complex conjugate.
The stable optical trapping of nanoparticles with high-

repetition-rate femtosecond laser pulses has been experimentally
demonstrated [10,12]. Each ultrafast laser pulse leads to instan-
taneous trapping of a nanoparticle. The high-repetition-rate en-
sures repetitive trapping by successive pulses; hence the particle
does not diffuse significantly between pulses. Typically, the pulse
duration τF and repetition-rate ν (i.e., the inverse of the pulse
period T ) for a commercial Ti:sapphire oscillator are ∼100 fs
and 76 MHz, respectively. Substituting Eqs. (1)–(4) into
Eq. (5) and considering the condition of 1∕�τFν� → ∞, we have

h~F i � πε0a3τFνffiffiffiffiffiffiffi
ln 2

p Re�β�~E0 · ∇~E�
0 � ~E0 × ∇ × ~E�

0��; (6)

with

β �
Z

∞

−∞

�χ1 � χ3j~E0j2e−ζ2�e−ζ2

3� �1 − 2ik3a3∕3��χ1 � χ3j~E0j2e−ζ2�
dζ: (7)

Here, χ1 � ε02∕ε01 − 1, where ε02 and ε01 are the permittivities
of the particle and the surrounding medium, respectively.

After integrating Eq. (7), we obtain the time-averaged
optical forces on a nonlinear optical Rayleigh particle as

h~F i � 1

4
Re�α�∇j~E0j2 �

k
ε0c

Im�α�h~SiOrb; (8)

where

h~SiOrb � h~Si � ε0c
2k

Im��~E�
0 · ∇�~E0�; (9)

h~Si � 1

2μ0ω
Im�~E0 × �∇ × ~E�

0��; (10)

α �
ffiffiffi
π

p
τFν

2
ffiffiffiffiffiffiffi
ln 2

p �γL � γNL�; (11)

γL �
α0

1 − iα0k3∕�6πε0�
; (12)

α0 � 4πε0a3
ε02∕ε01 − 1
ε02∕ε01 � 2

; (13)

γNL �
12πε0a3

η

X∞
m�2

�−1�m
m1∕2

�χ3ηj~E0j2�m−1
�3� η�ε02∕ε01 − 1��m

; (14)

η � 1 − 2ik3a3∕3: (15)

Here, c and μ0 are the speed and permeability of light in
vacuum, respectively.

As described by Eq. (8), optical forces on a nonlinear nano-
particle with femtosecond laser pulses are divided into two
parts: the gradient force, which is proportional to the gradient
of intensity and drives the particle toward the equilibrium
point, and the radiation force, which is proportional to the
orbital part of the Poynting vector of the field and destabilizes
the trap by pushing the particle away from the focal point. Note
that Eq. (8) degenerates into the one reported previously [7,17]
for a Rayleigh particle without optical nonlinearity (i.e.,
χ3 � 0). Moreover, it is demonstrated, both experimentally
[10] and theoretically [25,26], that optical forces due to pulsed
beam and CW beam of the same average power should be iden-
tical if the nonlinear optical effect can be neglected. Different
from the conventionally optical forces arising from the inter-
action of optical fields with the linear polarization, the optical
trapping of nonlinear optical particles originates from the linear
and nonlinear polarizations. Furthermore, the optical forces ex-
erted on the nonlinear particle strongly depend on the nonlin-
ear susceptibility of particle and the distribution of electric field
besides the other parameters related to the laser characteristics
and the particle itself.
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3. RESULTS AND DISCUSSION

To trap and manipulate nanoparticles in optical tweezers, gen-
erally, an x-polarized Gaussian beam is tightly focused by a high
numerical-aperture (NA) objective lens. Theoretically, the elec-
tric field distribution ~E0�~r� in the focal region of an aplanatic
lens can be expressed as [27]

~E0�~r� �
E00i

λ

8<
:

�I 0 � cos�2φ�I 2�~ex
sin�2φ�I 2~ey
2i cos φI 1~ez

9=
; (16)

with

I0 �
Z

ϑ

0

l�θ�eikz cos θ�1� cos θ�J0�kr sin θ�dθ; (17)

I 1 �
Z

ϑ

0

l�θ� sin θeikz cos θJ1�kr sin θ�dθ; (18)

I 2 �
Z

ϑ

0

l�θ�eikz cos θ�1 − cos θ�J2�kr sin θ�dθ: (19)

Here, l�θ� � exp�−sin2 θ∕sin2 ϑ� sin θ�cos θ�1∕2. r, φ, and
z are the polar radius, azimuthal angle, and axial position in the
cylindrical coordinate system for the observational point, re-
spectively. Jm�·� is the mth-order Bessel function of the first
kind. ϑ � arcsin�NA∕nw0 � is the maximal angle determined
by the NA of the objective lens in the image space, where nw0 �
�ε01�1∕2 is the linear refractive index in the image space.
According to the law of conservation of energy, the coefficient
E00 is given by jE00j2 � 4nw0 Ppeak∕�πε0cNA2�, where Ppeak �
2�ln 2�1∕2P∕�π1∕2τFν� and P is the average power of laser
pulses.

Substituting Eq. (16) into Eq. (8), one could calculate the
time-averaged optical forces on an optical nonlinear Rayleigh
particle by tightly focused linearly polarized Gaussian beam.
It should be noted that the value of ε0cIm��~E�

0 · ∇�~E0�∕�2k�
in Eq. (9) is proportional to the nonuniform distribution of
the spin density of the light field [17]. When the input beam
is a linearly polarized beam, however, this value becomes neg-
ligible and can be ignored. Hence, the radiation force expressed
by Eq. (8) is only proportional to the Poynting vector h~Si in the
following analysis.

In addition to the characteristics of the light field, the polari-
zation induced by the external optical field in the particle
undoubtedly plays a crucial role in the magnitude and distri-
bution of the optical force. As described by Eq. (14), the non-
linear polarization is related to both the third-order nonlinear
optical susceptibility χ3 and the distribution of electric field.
For the sake of simplicity, we only consider the Rayleigh dielec-
tric particle exhibiting the Kerr nonlinearity. In this case, the
third-order nonlinear optical susceptibility χ3 is related to the
third-order nonlinear refractive index n2 through the conver-
sion formula Re�χ3� � n2ε02ε0c∕�3ε01�. In general, the nonlin-
ear refractive index of particles ranges in magnitude from 10−14

to 10−20 m2∕W. Note that the moderate magnitude of n2 is
taken in this work [21]. Without loss of generality, the particle
is assumed to be immersed in water. Consequently, the linear
refractive indexes of water and particle are taken to be nw0 �
�ε01�1∕2 � 1.33 and np0 � �ε02�1∕2 � 1.58, respectively. For

numerical calculations, the other parameters are chosen to
be λ � 800 nm, τF � 100 fs, ν � 76 MHz, and the aver-
age-power of laser pulses P � 100 mW in the entire analysis.
Using Eq. (8), we investigated both the distribution and the
magnitude of the optical forces exerted on the nonlinear optical
Rayleigh particle.

Figure 1 shows the distributions of the transverse forces
produced by tightly focused laser pulses for the particle with
self-focusing and self-defocusing effects in the x-y plane
(z � 0), by taking three different values of n2 (i.e., 5.9 ×
10−17, 0, −5.9 × 10−17 m2∕W), NA � 0.85, and a �
40 nm. Here, the transverse force is the vector superposition
of the x-direction and y-direction forces, and the magnitude
of the transverse force is defined as �F 2

x � F 2
y �1∕2. For compari-

son, both the magnitude and the distribution of the optical
force on the particle without nonlinearity (n2 � 0) are also
shown in the second row of Fig. 1. It is shown that the distri-
butions of the gradient force nearly maintain the circular sym-
metry in the transverse plane, whereas the corresponding
radiation forces exhibit a fan-shaped structure with the two-fold
rotation symmetry. It is noteworthy that the magnitude of the
radiation forces is negligible compared with that of the gradient
forces. Consequently, the distribution of total forces can be
nearly regarded to be circular.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 1. Transverse force distributions produced by tightly focused
laser pulses for the particle with self-focusing (n2 � 5.9 ×
10−17 m2∕W), without nonlinearity (n2 � 0), and with self-
defocusing (n2 � −5.9 × 10−17 m2∕W) in the x-y plane (z � 0), by
taking NA � 0.85 and a � 40 nm. The magnitudes and directions
of the transverse forces are illustrated by the colorbar and arrows in
(a)–(i), respectively. (j)–(l) give the force profiles along the x direction
shown in the above three rows.
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For the particle with self-focusing effect (i.e., n2 > 0), the
distribution of forces displayed in the first row of Fig. 1 is
almost identical to that of the particle without nonlinearity
(n2 � 0) shown in the second row of Fig. 1. Moreover, the total
force always directs to the position of the focal point to produce
a force balance. However, the magnitude of the total force ex-
erted on the self-focusing particle is about two times larger than
that on the linear particle. In the optical trapping experiments,
it is expected that the transverse trapping efficiency and stiffness
of the self-focusing particle are larger than those of the linear
particle. Obviously, the nonlinear polarization arising from the
self-focusing effect improves the particle trapping ability, which
is consistent with the reported experimental observations
[8,16]. Under the excitation of intense femtosecond laser
pulses, the effective refractive index np0 � n2I�r;φ; z� of the
self-focusing particle (n2 > 0) is larger than that of the linear
particle (n2 � 0). Accordingly, the self-focusing particle bends
the light stronger than the same particle without nonlinearity
under the same illumination condition, resulting in stronger
gradient force exerted on the self-focusing particle than that
on the linear particle [28].

For the self-defocusing particle (i.e., n2 < 0), interestingly,
both the distribution and the magnitude of the transverse force
are quitely different from those of the self-focusing particles and
the linear particle. As shown in Fig. 1(i), the distribution of the
total force exerted on the self-defocusing particle exhibits the
double-ring pattern. Furthermore, the magnitude of the total
force on the self-defocusing particle is smaller than that on the
linear particle (n2 � 0). This special distribution of the transverse
force shown in Fig. 1(i) can be interpreted for the following rea-
sons. For the case of n2 < 0, a spatial-variant Gaussian-intensity
distribution in transverse can induce a negative lens effect due to
the presence of space-dependent refractive-index change
n2I�r;φ; z�. Hence, the contributions of the linear and nonlinear
polarizations to the gradient force are opposite to each other. At
relative weak intensity, the nonlinear polarization is not large
enough, and the force exerted on the nonlinear particle is similar
to that on the linear particle except for the reduced force. Under
the excitation of high intensity, however, the force direction at the
center and edge of the focused beam will be reversed, giving rise
to the double-ring distribution of the transverse force.

Figure 2 illustrates the distributions of the longitudinal
forces on the nonlinear particles produced by focused laser
pulses in the x-z plane (y � 0), by taking three different values
of n2 (i.e., 5.9 × 10−17, 0, −5.9 × 10−17 m2∕W), NA � 0.85,
and a � 40 nm. Different from the transverse forces in the
focal plane mainly originating from the gradient forces shown
in Fig. 1, the magnitude of longitudinal gradient forces is com-
parable with those of the radiation forces. Owing to the self-
focusing effect of the particle, the longitudinal gradient force
increases and the radiation force decreases, in contrast with
those on the linear particle. As a result, the self-focusing particle
with femtosecond laser pulses forms a stable 3D trap in the
focal region and increases the trapping efficiency and stiffness,
which has been validated by the reported experiment [29].
On the contrary, for the particle exhibiting the self-defocusing
effect, both the decreased longitudinal gradient force and the
enhanced radiation force destabilize the trap by pushing the

particle away from the focal plane. That is, at relatively low
power of the laser pulses, the self-defocusing particle is trapped
at the focal plane because of the weak optical nonlinearity. With
increasing the power under the pulsed excitation, interestingly,
the trapped particle will be ejected axially along the direction of
the beam’s propagation owing to the strong longitudinal force
arising from the self-defocusing effect. This theoretical result
successfully explains the puzzling experimental phenomena
that the optical trapping is destabilized with increasing power
under pulsed excitation only [12,15].

Except for the sign of optical nonlinearity, the optical forces
exerted on nonlinear optical Rayleigh particles strongly depend
on the magnitude of nonlinear refractive index n2, the numeri-
cal aperture of an objective lens NA, and the size of the nano-
particle a. Figure 3 shows the force profiles along the x
direction for y � 0 and z � 0 when one parameter changes.
Here, the parameters used for numerical simulations, if they
are not the changing one, are n2 � 6 × 10−17 m2∕W,
NA � 0.85, and a � 40 nm. As shown in the first column
of Fig. 3, the positive (or negative) optical forces mean that
their direction is along the �x (or −x) direction. Clearly,
the self-focusing particle can be easily trapped along the x di-
rection at the focal plane due to the existence of the equilibrium
point. Furthermore, the magnitude of optical forces increases
when the value of n2, NA, or a increases. As is well known,
the larger the magnitude of optical force is, the higher the

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 2. Longitudinal force distributions produced by tightly
focused laser pulses for the particle with self-focusing (n2 � 5.9 ×
10−17 m2∕W), without nonlinearity (n2 � 0), and with self-defocusing
(n2 � −5.9 × 10−17 m2∕W) in the x-z plane (y � 0), by takingNA �
0.85 and a � 40 nm. The bottom row gives the force profiles along the
z direction shown in the above three rows. Arrows in the figures denote
the directions of the longitudinal forces.
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optical trapping efficiency and stiffness are. As shown in the
second column of Fig. 3, it is found that the maximum values
of the optical forces, Fmax, are monotonously nonlinear increas-
ing functions of n2, NA, or a. In order to increase the optical
trapping efficiency and stiffness in optical tweezers, one should
trap the large-sized particles with large optical nonlinearity
using high NA objective lens.

To form a stable particle trap, the potential generated by the
gradient force must be deep enough to overcome the kinetic en-
ergy of the particle in Brownian motion, kBT , where kB is
Boltzmann constant, and T is the absolute temperature of
the ambience. In the optical trapping, the heating effect unavoid-
ably exists and increases the temperature of the trapped particles
and surrounding medium, especially for absorbing particles. In
this work, we restrict our attention to nonabsorbing particles
with refractive nonlinearity. Hence, the heating effect is limited,
and the temperature raised by the optical trapping is negligible.
An assumption that the room temperature of T � 300 K is
used to calculate the potential depth is reasonable. The potential
depth can be estimated by U � −

R ~F · d~r, which is the work
done by the optical force along the trapping length direction
[30]. Figure 4 shows the trapping potential along the x and z
directions for the particles with three different values of n2
(i.e., 5.9 × 10−17, 0, −5.9 × 10−17 m2∕W), by taking NA �
0.85 and a � 40 nm. As shown in Fig. 4(a), the potential
depths for three types of particles are larger than 1 kBT .
Accordingly, the particles with and without nonlinearity can
be captured along the x direction. The potential of the
self-focusing particle becomes deeper than that of the linear

particle, indicating that the self-focusing effect enhances the
trapping ability. Surprisingly, for the particle exhibiting the self-
defocusing nonlinearity, the potential splits into two off-axis
trapping sites along the x direction, which is supported by
the reported experiments [13]. For the trapping potential along
the z direction shown in Fig. 4(b), there are two important
parameters: one is the absolute depth of the potential minimum
Umin, and the other is the potential barrier U esc that directly
relates to the trapping efficiency. As shown in Fig. 4(b), the
self-focusing effect increases the values of Umin and U esc and
then improves the confinement of particles. However, the poten-
tial barrierU esc of the self-defocusing particle is less than 1 kBT ,
resulting in the destabilization of the particle in the axial
direction.

4. CONCLUSIONS

In summary, for the first time to our knowledge, we have developed
time-averaged optical forces exerted on a nonlinear optical Rayleigh
particle using high-repetition-rate femtosecond laser pulses, based
on linear and nonlinear polarizations. We have investigated the
characteristics of the transverse and longitudinal optical forces
for particles exhibiting self-focusing and self-defocusing effects.
It is shown that the self-focusing effect increases the trapping force
strength and improves the confinement of particles, whereas the
self-defocusing effect leads to the splitting of the potential well
at the focal plane and destabilizes the optical trap, resulting in ejec-
tions of trapped particles along the direction of the beam’s propa-
gation. Experimentally, the optical forces exerted on the nonlinear
optical particles are directly related to the trapping stiffness. It is
expected that the self-focusing (or self-defocusing) effect increases
(or decreases) the trapping efficiency and stiffness. Our results
successfully explain the reported experimental observations and
provide theoretical support for capturing nonlinear nanoparticles
with femtosecond laser trapping.
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