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Conventional periodic structures usually have nontunable refractive indices and thus lead to immutable photonic
bandgaps. A periodic structure created in an ultracold atoms ensemble by externally controlled light can overcome
this disadvantage and enable lots of promising applications. Here, two novel types of optically induced square
lattices, i.e., the amplitude and phase lattices, are proposed in an ultracold atoms ensemble by interfering four
ordinary plane waves under different parameter conditions. We demonstrate that in the far-field regime, the atomic
amplitude lattice with high transmissivity behaves similarly to an ideal pure sinusoidal amplitude lattice, whereas
the atomic phase lattices capable of producing phase excursion across a weak probe beam along with high trans-
missivity remains equally ideal. Moreover, we identify that the quality of Talbot imaging about a phase lattice is
greatly improved when compared with an amplitude lattice. Such an atomic lattice could find applications in all-
optical switching at the few photons level and paves the way for imaging ultracold atoms or molecules both in the
near-field and in the far-field with a nondestructive and lensless approach. © 2017 Chinese Laser Press

OCIS codes: (050.0050) Diffraction and gratings; (270.1670) Coherent optical effects; (050.5080) Phase shift; (070.6760) Talbot and

self-imaging effects.
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1. INTRODUCTION

In the past few years, artificial periodic structures, such as pho-
tonic crystals [1–5] and metamaterials [6–9], have attracted
increasing attention due to their unprecedented capacities of
engineering the transmission and reflection properties of waves.
An important property of such applications is the ability to
strongly modify the propagation of light in certain directions
and frequencies. A number of new physical phenomena have
been predicted to occur in these materials, including strong
localization of light [10], inhibited spontaneous emission from
atoms [11], photon–atom bound states [11], all-optical signal
processing, and switching [12].

Conventionally, photolithography and electron beam
lithography are widely used to fabricate the periodic structures
with microsized or nanosized features. However, the refractive
index of the resulting periodic structures is usually nontunable,
thus leading to immutable photonic bandgap (PBG). To fully
explore the potential of photonic crystals, it is crucially impor-
tant to achieve a dynamical tunability of their bandgap [13].
In previous studies, a distinct approach to generate spatially

periodic structures, based on the electromagnetically induced
grating (EIG) [14], is proposed by Ling et al. [15] and exper-
imentally demonstrated in cold [16] and hot [17] atomic sam-
ples. Very recently, the spatially dependent electromagnetically
induced transparency (EIT) in cold atoms was demonstrated by
using the phase profile as a control parameter for the atomic
opacity [18]. Unlike traditional photonic crystals, here a peri-
odic structure is created by externally controlled light, and a
novel photonic structure with an optically tunable PBG is
achieved [19]. The EIG with tunable first-order diffraction
has attracted considerable interest due to its potential applica-
tions in all-optical switching and routing [17], light storage
[20], probing optical properties of materials [21], optical bista-
bility [22], shaping a biphoton spectrum [23], and beam split-
ting and fanning [24]. However, 2D EIG and its diffraction
pattern in near-field and far-field have not been demonstrated
yet. In this paper, we demonstrate that optical lattices resulting
from amplitude modulation and phase modulation can be real-
ized in an ultracold atoms ensemble by interfering four ordinary
plane waves under different parameter conditions. We analyze
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theoretically the families of such optically induced square lat-
tices and then discuss the corresponding diffraction pattern
both in near-field and far-field regions. We identify that the
phase modulation plays a significant role not only in the effi-
ciency of diffracting light into high-order directions but also in
the improvement of the quality of the Talbot carpet pattern
(visibility and the signal-to-noise ratio). This work may offer
a nondestructive and lensless way to image ultracold atoms
or molecules both in the near-field and in the far-field.

It is worth mentioning that our system has the following ad-
vantages. First, the optical lattice written in an atomic assemble is
reconfigurable and can be dynamically tuned, leading the refrac-
tive index change, and the PBG structures of our scheme are
sensitive to the adjusting the frequency detuning, so the trans-
mission and reflection of the propagating light can be dynami-
cally modulated. Further detailed studies of these effects will be
presented elsewhere. Second, using the multibeam interference
method, other complex lattice structures, i.e., quasi-crystals,
kagome lattice, defect mediated lattice, honeycomb lattice,
Bessel lattice, virtual lattice, ring lattice, and 3Dphotonic lattice,
can all be realized in current systems. Third, formation of the
lattice, as well as the tuning, is all done all optically.

2. THEORETICAL MODEL

The scheme to construct optically induced square lattices relies
on periodically manipulating the refractive index of an ultracold
atoms (or molecules) ensemble. As illustrated in Fig. 1(a), our
model consists of four strong control fields of frequencyωC and
wave number kC, a weak probe field of frequency ωP and wave
number kP, and an ensemble of closed three-level cascade-type
ultracold atoms (or molecules) composing of a ground state jai,
a metastable state jbi, and an excited state jci. The metastable
state jbi is coupled to the excited state jci via the four strong
control fields near resonance on the jbi → jci transition, while

the jai → jbi transition is connected by the probe beam with
Rabi frequency ΩP.

The four controlling plane waves, which are injected into
the atomic sample and interact with the atomic ensemble
by coupling the atomic transition jbi → jci, are the lattice-
forming lasers. To be specific, two plane waves being symmet-
rically displaced with respect to the z axis are incident upon the
atomic sample at a small angle θ, whose intersection will generate
a standing wave along the x direction within the atomic ensem-
ble. In the same way, another two plane waves generate a stand-
ing wave along the y direction inside the medium. The effective
Rabi frequency of the four strong controlling fields can be writ-
ten as jGeff �x; y�j2 � jΩC sin�πx∕a�j2 � jΩC sin�πy∕b�j2.
Here, ΩC is the Rabi frequency of one of the four controlling
fields and assumed to be real for simplicity. a (b) is the spatial
period along the X (Y ) direction [see Fig. 1(b)], which can be
made arbitrarily larger than the wavelength of the controlling
fields by varying θ. A 2D optically induced lattice will be pro-
duced within the ultracold atoms (or molecules) ensemble if the
condition ΩC ≫ ΩP is satisfied. Two points should be empha-
sized herein. First, the stability of the optically induced lattice
structure is determined by lattice-forming beams. As long as
the laser beams forming the optical lattice are stable, small fluc-
tuations should not affect our main results. Second, by employ-
ing two-photon Doppler-free configurations in the thermal
atomic vapor, our scheme could be realized in the thermal atomic
vapor.

Spanning the Hilbert space with bare states (jai, jbi,
and jci) and applying the rotational wave approximation,
the Hamiltonian in the interaction picture can be represented
by (ℏ � 1)

H � GPe−iΔP t jaihbj � Geff e−iΔ2t jbihcj � h:c; (1)
where μij is the electric dipole matrix element to atomic transi-
tion jii → jji (i; j � a; b; c).Δ1�ωP −ωba andΔ2 � ωC − ωbc
are single photon frequency detunings of EP and E eff �x; y� from

Fig. 1. (a) Cascade-type three-level scheme with jai �5S1∕2�F � 3��, jbi �5P3∕2�F � 3��, and jci (5D5∕2) of 85Rb atoms [25], interacting with
three laser beams: probe field EP and two lattice-forming fields E2�x� and E3�y�. (b) The geometry of four laser beams applied upon a cold atoms
ensemble along the z direction, and the corresponding near-field and far-field diffraction patterns of a probe field.
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the transitions jai → jbi and jbi → jci, respectively, withωij �
ωi − ωj (i; j � a; b; c). From dressed state theory analysis, the
atomic transition channel jbi → jci is periodically dressed by
E eff �x; y�, and then jbi will be split into dressed states j�i
and j−i, with eigenvalues λ��Δ2∕2��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

2∕4�jGeff �x;y�j2
p

.
Eventually, 2D square lattice states j�i are formed in space.

The induced polarization at ωP is P�ωP� �
ε0χ�ωP�EP�ωP�, and the optically induced susceptibility can
be expressed as

χ � iN jμabj2
2ℏε0

γac − iΔ12

G2
eff �x� � �γab − iΔ1��γac − iΔ12�

; (2)

where Δmn � Δm − Δn is two-photon detuning, N the atomic
ensemble density, ε0 the vacuum permittivity, and γij the
dephasing rate between jii and jji.

As the lattice-forming laser has an amplitude and space
period, as shown in Fig. 2(a), the optically induced polarization
χ at the probe frequency ωP is periodically modulated by
E eff �x; y�. To illustrate explicitly this point, in Figs. 2(b) and
2(c), we compare the optical properties of the probe field at
the nodes and antinodes of the optically induced nonmaterial
lattice. From the absorption curve [solid lines in Figs. 2(b)
and 2(c)], it is found that the probe field is absorbed strongly
at the nodes and almost transmitted at the antinodes. This
can lead to a substantial amplitude modulation across the probe
beam. On the other hand, the dispersion within the EIT [14]
window [dashed line in Figs. 2(b) and 2(c)] is positive to the
probe field at the nodes but negative at the antinodes. This
feature may open the possibility of a large phase modulation
across the probe beam.

Since the absorption and dispersion coefficients of the probe
field highly depend on E eff �x; y�, they are expected to change
periodically as the lattice-forming laser changes from nodes to
antinodes across the x axis and the y axis. Therefore, the 2D
spatially periodic amplitude and phase modulation are realized
when the probe field passes through the optically induced lat-
tice region along the z axis. The dynamics of the probe field in
such a lattice is described by Maxwell’s wave equation, and here

the optically induced polarizations serve as the driving source.
Under the slowly varying envelope approximation, a self-
consistent equation for EP becomes

∂EP

∂z
� �−α∕2� iσ�EP; (3)

where α � �4π∕λ�Im�χ�ωP�� and σL � �2πL∕λ�Re�χ�ωP��,
corresponding to the two-photon absorption coefficient and
the phase shift of the probe laser, respectively, are functions
of x and y. Equation (3) can be solved analytically, and the
normalized transmission function with interaction length L is

T �x; y� � exp

�
−
α�x; y�L

2
� iσ�x; y�L

�
: (4)

In the following, the propagation dynamics of such optically
induced lattice will be derived, and then the corresponding dif-
fraction pattern in two limiting regimes, namely, the near-field
and far-field regimes, will be presented. In the near-field regime
(or Fresnel near-field regime) where the diffraction effects are
negligible, we will propose a scheme to realize the self-imaging
of ultracold atoms or molecules and demonstrate that the qual-
ity of imaging can be further improved in the current scheme.
In the far-field (or Fraunhofer diffraction regime) where the
diffraction spread is dominant, we will show how the novel
properties of phase shift can help to effectively diffract light into
the higher-order direction.

In the Fresnel near-field regime, using the Fresnel–
Kirchhoff diffraction integral, the diffraction intensity distribu-
tion is proportional to

E�X ; Y ; Z � �
ZZ

dxdyT �x; y� exp
�
ikP

�
2Z � x2 � y2

2Z

−
xX � yY

2Z
� X 2 � Y 2

2Z

��
; (5)

where x (y) is the transverse coordinate at the output surface
of the atomic ensemble, and X (Y ) at the imaging planes,
and z is the diffraction distance from the atomic ensemble to

Fig. 2. (a) The periodical modulation of the lattice-forming laser due to the four-beam interference pattern with ΩC � 8 MHz. The absorption
spectrum and dispersion spectrum (b) at the nodes and (c) the antinodes of the lattice-forming laser.
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the observation plane. To solve the above integral, we expand
T �x; y� in Eq. (4) into a 2D Fourier series

T �x; y� �
X∞

m;n�−∞
Cmn exp

�
−i
�
2πm
a

x � 2πn
b

y
��

; (6)

where Cmn is a 2D Fourier coefficient. a and b are the spatial
periods along the X and Y directions, respectively. By substi-
tuting Eq. (6) into Eq. (5), we recover the traditional Talbot
effect

Ψ�u1; u2; v1; v2� � C0

X∞
n�−∞

cmn

�
exp

�
−iπλPZ

�
m2

a2
� n2

b2

��

× exp
�
i2π

�
m
a
X � n

b
Y
���

; (7)

where the irrelevant terms have been absorbed into C0. Some
interesting conclusions can be immediately obtained from
Eq. (7). First, the amplitude profile of the diffraction field
matches with that at the output plane of the ensemble if
all the diffraction orders are in the same phase. Hence, the
imaging of atomic lattices can be recovered in those planes
zT � m�a2 � b2�∕λP , where m, denoting the order of self-
imaging, is a positive integer. Second, the resolution of
Talbot imaging is independent of the property of atomic lat-
tices. Third, as the amplitude/phase information of the atomic
lattices is contained in the 2D Fourier coefficient, the visibility
and the signal-to-noise ratio of Talbot imaging can be modu-
lated through the parameters of atomic lattices.

From Fraunhofer diffraction theory [26], the far-field
diffraction pattern over the diffraction angle θ with respect
to the z direction is proportional to the Fourier transform
of T �x; y� if the incident probe laser is a plane wave [15,27]
The diffraction intensity distribution is given by

I�θx ; θy� � jJ�θx ; θy�j2
sin2�Pπa sin �θx∕λP��
P2 sin2�πa sin �θx∕λP��

×
sin2�Qπb sin �θy∕λP��
Q2 sin2�πb sin �θy∕λP��

; (8)

where J�θx ; θy� �
RR

dxdyT �x; y� exp�−i2πxa sin �θx∕λP��
exp�−i2πyb sin �θy∕λP�� represents the Fraunhofer diffraction
of a single space period, and the diffraction efficiency into
any diffraction-order along the x axis and the y axis is deter-
mined by a sin θx � mλP and b sin θy � nλP , respectively.
P and Q are the number of spatial periods along the x axis
and the y axis of the lattices which are illuminated by the
probe beam. θx (θy) is the diffraction angle with respect to
x (y) direction.

3. RESULTS AND DISCUSSION

Using the equations outlined in Section 2, the near-field and far-
field diffraction patterns of two typical atomic lattices will be dis-
cussed in this section. For the sake of convenience, we assume that
the trapped 85Rb atom cloud in a magneto-optical trap is about
1 mm in diameter, with the laser cooled to around 4.4 mK. The
upper transition jbi → jci �5S1∕2�F � 3� → 5P3∕2�F � 3��
is specifically derived by four elliptical Gaussian-shaped
coupling beams, which are split from a CW Ti:sapphire laser

with power of about peff 20 mW and a wavelength of
λeff � 775.98 nm. Those four beams are symmetrically placed
with respect to the z axis and intersect at the center of the rubid-
ium cell at an angle of θ to establish an optical lattice in the
transverse plane of the 85Rb atom cloud, with lattice period
a � λeff∕�2 sin θ� and b � λeff∕�2 sin θ� along directions x
and y, respectively. Meanwhile, the probe field generated from
an external cavity diode laser (with a wavelength of 780 nm and
power of 5 mW) is partially overlapping with the four coupling
beams and used to connect the lower transition jai → jbi
[5P3∕2�F � 3� → 5D5∕2]. We start from investigating the
Fraunhofer diffraction patterns of optically induced lattice
within a parameter regime of Δ1 � Δ2 � 0.

Figures 3(a) and 3(b) show the transmission profiles over
four space periods and the normalized Fraunhofer diffraction
patterns, respectively. It can be found from Fig. 3(a) that the
probe profile around the antinodes is almost without absorp-
tion but with strong absorption at the nodes. This atomic lat-
tice tends to gather light to the center maximum and the
higher-order diffraction patterns are almost invisible, as shown
in Figs. 3(b) and 3(d). Therefore, a phenomenon reminiscent
of the pure amplitude-type lattice is implemented in such an
atomic lattice. This phenomenon coincides with our expecta-
tion. On one hand, because the intensity of the lattice-forming
laser at the transverse locations around the nodes is very weak,
the probe beam is absorbed according to the usual Beer law [see
the solid line in Fig. 2(b)]. At the antinodes, however, the probe
is absorbed much less due to the EIT effect [see the solid line in
Fig. 2(c)]. This leads to a periodic amplitude modulation across
the beam profile of the probe field. On the other hand, the real
part of the susceptibility vanishes as Δ1 � 0, and the phase
modulation is absent in such atomic lattices [see Fig. 3(c)].
Therefore, the higher-order diffraction obtained by this pure
amplitude lattice is very limited.

Next, we optimize the parameter to create a phase
modulation lattice, which is lossless and highly efficient in
diffracting light into high-order directions. In order to realize
this objective, the controlling fields should have a high intensity
and resonance interaction with the transition jbi → jci so
that a good level of transparency across the beam profile can
be well maintained. Meanwhile, the weak probe is optimized
to tune away from the transition jai → jbi but still operates
within the EIT window to introduce a π phase modula-
tion (σL � π).

Figures 4(a) and 4(c) display the amplitude and phase of the
transmission function T �x; y� with settings Δ1 � 10 MHz,
Δ2 � 0 MHz, and ΩC � 15 over four space periods.
Within a single space period, i.e., (−0.5a ≤ x ≤ 0.5a,
−0.5b ≤ y ≤ 0.5b), the antinode is located at (x � 0, y � 0)
and the node is located at (x � �0.5a, y � 0) and (x � 0,
y � �0.5b). For a more intuitive display, the amplitude (solid
curve) and phase (dashed curve) of the transmission function
T �x; y� in a 1D graph over a single period are presented in
Fig. 4(c). A small absorption in the transmission and a relatively
stable phase shift of π∕2 can be observed around the antinodes of
such lattice in Fig. 4, while a phase modulation of about −π∕2 is
introduced into the transmission profile at the nodes and the
corresponding absorption intensity is about 49%. Moreover,
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both the absorption and phase experience rapid changes around
kGeff �x� sin�πx�k � kΔ1k and kGeff �x� sin�πy�k � kΔ1k. It
can be seen in Figs. 4(b) and 4(d) that the amount of light dif-
fracted into zero-order is completely converted into higher-order
diffraction light, i.e., the first order along the x axis (or the y axis)
or even first order in the four quadrants is considerably increased.
In our model, although it is impossible to realize the ideal phase
lattice, the resulting lattice possesses some features similar to the
ideal phase lattice. First, themaximum absorption at the nodes is
only 49%, while it is close to zero in the other regions of the
single period, implying a low energy loss inside the atomic
medium. Second, the phase difference between the nodes and
the antinodes is of the order of π [see Fig. 4(e)].

In order to quantitively study the far-field intensity
distribution of the amplitude lattice and the phase-type lattice,
the intensity of different diffraction orders, including zero-
order IP�θ0x ; θ0y � (solid line), the first-order along the x axis
IP�θ1x ; θ0y � (dashed line), and the first-order in the four quad-
rants IP�θ1x ; θ1y � (dashed–dotted line), are presented in Fig. 5.
We first focus on the amplitude lattices with the parameters
similar to Fig. 3. As shown in Fig. 5(a), both IP�θ1x ; θ0y � and
IP�θ1x ; θ1y � increase almost linearly to a maximum value and
then decrease with ΩC . This can be interpreted by the follow-
ing two reasons. On one hand, EIT will gradually open up
the individual antinodes, making more light available for
higher-order diffraction. One the other hand, if ΩC is further

increased, however, the majority part of one period of lattices is
transparent. Such a wide opening period will limit the chances
of light to stray into the higher order. In the absence of phase
modulation, a small amount of energy is shifted into the
higher order, about 0.98% with IP�θ1x ; θ0y � and 0.18% with
IP�θ1x ; θ1y �. However, IP�θ0x ; θ0y � is still dominant and only the
zero-order diffraction component is visible [see Figs. 3(a) and
5(a)], whereas the higher-order diffraction attainable by this
pure amplitude lattice is very limited. Then, we turn to the
case of phase lattices where the phase modulation is introduced
with settings Δ1 � 10 MHz, Δ2 � 0 MHz. It can be ob-
served from Fig. 5 that more energy of probe field is transferred
from zero-order to higher-order directions in such phase lattice
[as shown in Fig. 5(b)] than in the amplitude lattices [as shown
in Fig. 5(a)]. The resulting diffraction intensities IP�θ1x ; θ0y � and
IP�θ1x ; θ1y � of the phase lattices are 9.2% and 8%, respectively.
Hence, the probe field is effectively diffracted into the high-
order directions, see also Figs. 4(b) and 4(d).

Now we consider the corresponding diffraction pattern of
the optically induced lattices in the near-field regime, where
the main results are illustrated by Eq. (7). In Figs. 6(a) and
6(b), the near-field Fresnel diffraction patterns in the case of
amplitude and phase lattice are compared. Figures 6(a1)–6(a4)
show a typical 2D Talbot carpet pattern at four different im-
aging planes Z � 0, zT ∕2, 2zT ∕3, and zT . It is obvious that
resolution of the diffraction patterns, including transverse and

Fig. 3. Amplitude-type lattice, with settings ΩC � 15 MHz, Δ1 � 0 MHz, and Δ2 � 0 MHz. (a) The amplitude and (b) the phase of the
transmission function T �x; y� plotted over four space periods along x and y. (c) The corresponding normalized diffraction intensity I�θx ; θy� as a
function of sin θx and sin θy. (d) 2D transverse patterns corresponding to (c). Other parameters are γab � 1 MHz, γac � 0.1 MHz,
a∕λP � b∕λP � 4, L � 10, and P � Q � 1.
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longitudinal, are identical. The diffraction pattern at zT ∕2 is
shifted laterally by half a period with respect to the imaging
at 0, which agrees well with the theoretical prediction as de-
scribed above. On the other hand, the contrast at those
Talbot planes is approximately unity. However, the visibility
as well as the signal-to-noise ratio are limited as the phase
modulation is absent in Cmn. In Figs. 6(b1)–6(b4), the
near-field diffraction patterns of phase-type lattice at Z � 0,

zT ∕2, 2zT ∕3, and zT are shown. Evidently, the location of
the Talbot plane in this case exactly coincides with the ampli-
tude lattice case. Moreover, the longitudinal resolution of the
corresponding diffraction pattern are identical as well. Those
properties are independent of the introduced phase modula-
tion. Compared with Fig. 6(a), we noticed that the contrast
of the Talbot carpet pattern is reduced slightly at those
Talbot planes. However, the visibility and the signal-to-noise

Fig. 5. Normalized diffraction intensity IP�θ0x ; θ0y � (solid line), IP�θ1x ; θ0y � (dashed line), and IP�θ1x ; θ1y � (dashed–dotted line) as a function of ΩC
with (a) amplitude lattice with Δ1 � 0 MHz, and Δ2 � 0 MHz and (b) phase-type lattice Δ1 � 10 MHz, and Δ2 � 0 MHz. Other parameters
are γab � 1 MHz, γac � 0.2 MHz, a∕λP � b∕λP � 4, L � 10, and P � Q � 1.

Fig. 4. Phase-type lattice, with settings ΩC � 15 MHz, Δ1 � 10 MHz, and Δ2 � 0 MHz. (a) The amplitude and (b) the phase of the trans-
mission function T �x; y� plotted over four space periods along x and y. (c) The corresponding normalized diffraction intensity I�θx ; θy� as a function
of sin θx and sin θy . (d) 2D transverse patterns corresponding to (c). (e) The amplitude (solid curve) and the phase (dashed curve) of the transmission
function T �x; y� as a function of x within a single space period. Other parameters are γab � 1 MHz, γac � 0.2 MHz, a∕λP � b∕λP � 4, L � 10,
and P � Q � 1.
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ratio are significantly improved. All of these points agree well
with theoretical predictions drawn from Eq. (7) in Section 2.

Indeed, we noticed that the first-order diffraction efficiency
of our phase lattices is smaller than the efficiency of an
ideal sinusoidal phase grating, which is approximately 34%.
However, we know that the diffraction efficiency is very sensi-
tive to the phase modulation, especially cross phase modulation
(XPM). Further detailed studies of phase lattice based on XPM
will be presented elsewhere.

4. CONCLUSIONS

In summary, we have presented an alternative approach to
realizing nonmaterial square lattices in an ultracold atoms
ensemble, which is capable of producing a π phase excursion
across a weak probe beam with high transmissivity. We dem-
onstrate that the resulting optically induced lattices exert both
amplitude and phase modulations on the probe beam in the
same way as the hybrid (amplitude and phase) lattices does
to the amplitude and phase of an electromagnetic wave. In
the far-field regime, we also demonstrate that the atomic
ensemble under resonance interaction serves as an amplitude
lattice to the probe field, and the medium is close to that of
an ideal phase lattice with a predicted diffraction efficiency
of 9.2% under the phase modulation condition. In the near-
field regime, we address specifically that the phase modulation
can be used to improve the quality of Talbot imaging while the
contrast of the diffraction pattern is slightly reduced. Such a
nonmaterial lattice could find applications in all-optical switch-
ing [28–31] at the few photons level. Furthermore, the atomic
lattices can be further used as a nondestructive and lensless way
to image the ultracold atoms or molecules in the near-field and
far-field regimes [32].
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