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We investigate the sensitivity of the angular rotation measurement with the method of homodyne detection in
SU(2) and SU(1,1) interferometers by employing orbital angular momentum (OAM). By combining a coherent
beam with a vacuum beam in an SU(2) interferometer, we get the sensitivity of the angular rotation measurement
as 1

2
����

N
p

l
. We can surpass the limit of the angular rotation measurement in an SU(1,1) interferometer by combining

a coherent beam with a vacuum beam or a squeezed vacuum beam when the probe beam has OAM. Without
injection, the sensitivity can reach 1

2N l . In addition, by employing another construction of an SU(1,1) interfer-
ometer where the pump beam has OAM, with the same injection of an SU(1,1) interferometer, the sensitivity of
the angular rotation measurement can be improved by a factor of 2, reaching 1

4N l . The results confirm the potential
of this technology for precision measurements in angular rotation measurements. © 2017 Chinese Laser Press

OCIS codes: (040.5570) Quantum detectors; (350.5730) Resolution; (120.3180) Interferometry.
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1. INTRODUCTION

An optical interferometer [1,2] is an important tool for precision
measurements of phase shifts. Traditional interferometers, so
called an SU(2) interferometers, e.g., a Mach–Zehnder (MZ)
interferometer, is combined by beam splitters (BSs), which are
employed to split the beam into two arms and recombine the
beams together. For a normal MZ interferometer, it has two input
ports, which are injected usually by one coherent beam in one
port. The sensitivity of this interferometer is limited by the quan-
tum noise of the other unused port [3–5]. By injection of the
squeezed vacuum beam in the unused port, the sensitivity is
improved and the method has been widely applied to, for exam-
ple, the Laser Interferometer Gravitational-Wave Observatory
(LIGO) [6–9]. In 1986, another nonlinear interferometer, which
was named as the SU(1,1) interferometer, was proposed by Yurke
et al. [10]. The SU(1,1) interferometer is usually composed of
two nonlinear processes, such as four-wave mixing or parametric
amplification (PA). Employment of the SU(1,1) interferometer
can surpass the phase shot noise limit (SNL), which is defined
as 1ffiffiffi

N
p [11–20], where N is the average photon number. By in-

jecting two vacuum beams, the phase sensitivity can be further
enhanced and reach the phase Heisenberg limit.

Compared with the phase measurement, recently, the
measurement of angular rotation [21] has attracted much

attention based on the interferometers. A photon with the
Laguerre–Gaussian (LG) mode is a candidate for quantum in-
formation processing [22], which possess both spin angular
momentum (SAM) and orbital angular momentum (OAM)
[23–28]. The OAM relates to the transverse angular phase
of the light in the form of exp�ilψ�, while the SAM is related
to the light polarization. Utilizing photon OAM can amplify a
mechanical rotation of θ into lθ, where l is the OAM quantum
number of the photon. Jha et al. employed N -unentangled
photons and N -entangled photons to inject the MZ SU(2)
interferometer and found resolutions of 1

2
ffiffiffi
N

p
l
and 1

2N l , respec-
tively [29]. Soon after, Zhang et al. obtained superresolving and
ultrasensitive angular rotation measurements by employing the
quantum measurement strategy [30,31]. However, with the in-
jection of a coherent beam and a vacuum beam, the sensitivity
of angular rotation even does not surpass the limit of 1

2
ffiffiffi
N

p
l
. This

means that the sensitivity of the angular rotation measurement
is still limited by the SNL of the angular rotation measurement
in the SU(2) interferometer. As described above, as SU(1,1)
interferometers can significantly improve the phase sensitivity,
they could also be good candidates for the angular rotation
measurement. To implement the measurement, compared with
the precious SU(1,1) interferometer [11], we need inject two
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Dove prisms in two arms of the SU(1,1) interferometers to
transform the angular rotation into phase variation.

In this paper, we study the angular rotation measurement
both in SU(2) and SU(1,1) interferometers with homodyne de-
tection (HD). When a coherent beam carrying OAM and a
vacuum beam enters into the SU(2) interferometer, we get
the sensitivity 1

2
ffiffiffi
N

p
l
, which is defined as SNL. In order to

achieve the optimal angular rotation sensitivity, we discuss three
kinds of input beams in two sorts of SU(1,1) interferometers.
In the first case, the sensitivity of the angular rotation measure-
ment is improved by a factor of 1ffiffiffiffiffi

2G
p compared with SNL in an

SU(1,1) interferometer where OAM is carried by a probe beam.
In the following two cases, the inputs are a coherent and a
squeezing beam or a vacuum and a vacuum beam, where
the sensitivity can reach 1

2N l. Moreover, we also consider the
SU(1,1) interferometer where a pump beam carries OAM in
the PA process, and the angular rotation sensitivity can be en-
hanced by a factor of 2, reaching our optimal result of 1

4N l.
The paper is organized as follows. In Section 2, we present a

description of the angular rotation measurement of an SU(2)
interferometer using a coherent beam and a vacuum beam. In
Section 3.A, we describe an SU(1,1) interferometer where a
probe beam has OAM with the injection of a coherent beam
and a vacuum beam, a coherent beam and a squeezing vacuum
beam, or a vacuum beam and a vacuum beam. In Section 3.B,
the sensitivity of another construction of an SU(1,1) interfer-
ometer is investigated where OAM is carried by the pump
beam and the probe beam no longer carries OAM with the
same injection to the previous interferometer. Section 4
presents our conclusions.

2. SCHEME OF THE SU(2) INTERFEROMETER

We consider an MZ interferometer with a coherent beam in
one input port and a vacuum beam in the other input port
by employing the method of HD. Different from the usual
SU(2) interferometer, two Dove prisms are located in each
arm respectively, as shown in Fig. 1. Dove prism 2 orients
at angle θ2 and Dove prism 1 is set at θ1 � 0. The employment
of Dove prisms is that it not only rotates the beam with OAM
but also can alternate the value from l to −l . In addition, for a
coherent beam jαi with OAM l at input-port a and a vacuum
beam at input-port b, when a beam with OAM passes through
a Dove prism, it will have a phase shift of 2lθ, and θ is the
rotation angular. The input–output relations of the BS are

â1 �
ffiffiffiffi
T

p
â0;�l � i

ffiffiffi
R

p
b̂0; b̂1 � i

ffiffiffi
R

p
â0;�l �

ffiffiffiffi
T

p
b̂0: (1)

T � R � 1
2 are the transmissivity and reflectivity of the BS.

a0;�l and b0 are annihilate operators. According to Eq. (1),
we obtain the input–output relations of the interferometer,
which are described by

âout �
1

2
â0;�l �e2ilθ2 − 1� �

1

2
ib̂0�e2ilθ2 � 1�;

b̂out � i
1

2
â0;�l �e2ilθ2 � 1� � 1

2
b̂0�e2ilθ2 − 1�: (2)

After the first BS, the beam intensity is

I ps � hb̂�1 b̂1i �
jαj2
2

: (3)

We assume that jαj ≫ 1. The beam intensity that passes
through the interferometer is

hb̂�outb̂outi �
hb̂�0 b̂0i�1� cos�2lθ2��

2
� Ips�1� cos�2lθ2��:

(4)

In the next step, according to Ref. [11], the definition of the
quadrature amplitude of this interferometer is

X̂ out � â�out � âout: (5)

By assuming that α � ijαj, we can easily calculate the quad-
rature amplitude. Moreover, from Ref. [11], the interferometer
works at near 2lθ2 � 0 and we assume that 2lθ2 � δ, with
δ ≪ 1. We have

hX̂ 2
outi � jαjjαj sin2�2lθ2� � 1 � hX̂ outi2 � 1

� 2I psδ2 � 1: (6)

In Eq. (6), hX outi2 corresponds to the signal where the noise
is just 1 from vacuum noise, which leads to the signal-to-noise
ratio (SNR) as

Rlimit � jαj2�δ�2∕1 � 2I ps�δ�2 � 2I ps�2lθ2�2: (7)

Then the phase sensitivity of an SU(2) interferometer is

δ � 1ffiffiffiffiffi
N

p � δSNL: (8)

Thus, the corresponding sensitivity of the angular rotation
measurement is

θ2 �
1

2l
ffiffiffiffiffi
N

p � θSNL: (9)

According to Ref. [11], the phase sensitivity in Eq. (8) is
defined as the phase SNL. Furthermore, the sensitivity of
the angular rotation measurement in Eq. (9) is the same as
the result of N -unentangled photons in an SU(2) interferom-
eter. However, when a coherent beam and a vacuum beam
enter an SU(2) interferometer by the HD, the phase sensitivity
is defined as phase SNL. Thus, this sensitivity of the angular
rotation measurement is defined as SNL. In addition, in
Ref. [29], with the same construction, it is injected with
N -unentangled photons carrying OAM and is directly detected
by the detector. The angular rotation measurement of this con-
struction is the relative angular rotation between the two Dove
prisms. Here, though the sensitivity of the angular rotation
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Fig. 1. Scheme for the angular rotation measurement uses a coher-
ent beam carrying OAM and a vacuum beam. The coherent beam
comes from input-port a and has an OAM of lℏ and is detected
by the method of HD. M, mirror; DP, Dove prism; LO, local beam.
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measurement is the same as the previous result, what we mea-
sure is the absolute angular rotation of Dove prism 2.

3. SCHEME OF THE SU(1,1) INTERFEROMETER

A. Probe Beam Carries OAM
Now, let us consider an SU(1,1) interferometer. Unlike an
SU(2) interferometer in Fig. 1, here BS is replaced by PA as
shown in Fig. 2. For the PA process, G is the gain of PA
and the relationship between input and output is

â1 �
ffiffiffiffi
G

p
â0;�l �

ffiffiffiffiffiffiffiffiffiffiffi
G − 1

p
b̂�0 ;

b̂1 �
ffiffiffiffiffiffiffiffiffiffiffi
G − 1

p
â�0;�l �

ffiffiffiffi
G

p
b̂0: (10)

The input–output relations of the whole interferometer are

âout � �G � �G − 1�e2ilθ2 �â0;�l

�
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G�G − 1�
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G�G − 1�

p
e2ilθ2

�
b̂�0 ;

b̂out �
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G�G − 1�
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G�G − 1�

p
e−2ilθ2

�
â�0;�l

� ��G − 1� � Ge−2ilθ2 �b̂0: (11)

As the above SU(2) interferometer, we can calculate Ips as

Î ps � hb̂�1 b̂1i � �G − 1��jαj2 � 1� ≈ �G − 1�jαj2; jαj ≫ 1:

(12)

The output intensity of the interferometer can be
expressed as

hb̂�outb̂outi � �2G�G − 1� � 2G�G − 1� cos�2lθ2���jαj2 � 1�
≈ �2G�G − 1� � 2G�G − 1� cos�2lθ2���jαj2�
� 2G�1� cos�2lθ2��I ps: (13)

Next, we examine the quantum noise in the output of the
interferometer

hX̂ 2
bouti � 2G�G − 1�jαj2�1 − cos�4lθ2��

�4G2 − 4G � 1� 4G�G − 1� cos�2lθ2�: (14)

Here, we assume that θ2 � θ� Δθ and 2lθ2 � 2l�θ� Δθ�.
The interferometer usually works near at the dark fringe
with 2lθ � π. Thus, with a very small angular rotation shift
Δθ ≪ 1, 2lθ � π, and 2lΔθ � δ, we have

hX̂ 2
bouti ≈ G�G − 1�δ2�4jαj2 � 2� � 1: (15)

Hence, the SNR for measuring a small phase shift of Δθ is
given by

Rlimit � G�G − 1�δ2�4jαj2 � 2� ≈ 4GI psδ2: (16)

Under this condition, we get a phase measurement of
angular rotation shift, which is the same as Ref. [11],

δ � 1

2
ffiffiffiffiffiffiffiffiffi
GIps

p � δSNLffiffiffiffiffiffiffi
2G

p : (17)

Due to the condition that 2lΔθ � δ, we get the sensitivity
of the angular rotation measurement, which is described by

Δθ � 1

4l
ffiffiffiffiffiffiffiffiffi
GI ps

p � θSNLffiffiffiffiffiffiffi
2G

p : (18)

Obviously, comparing the result with SNL, it is easy to find
that with the gain of PA, the angular rotation sensitivity of an
SU(1,1) interferometer is enhanced by a factor of 1ffiffiffiffiffi

2G
p . The

beam input is a coherent beam and a vacuum beam.We assume
that jαj � ffiffiffiffiffi

N
p

≫ 1, for the technology limitation, where the
gain is less than

ffiffiffiffiffi
N

p
. While the sensitivity is better than the

SNL, it is impossible to reach 1
2N l .

Next, we reduce the noise by injecting a squeezed vacuum
beam. In the following model, we set the input port a0 in a
coherent state jαi, while the input port b̂0 is in a squeezed
vacuum beam. In this case,

ξ�b̂0ξ � b̂0 cosh r − b̂�0 e2iϕ sinh r;

ξ�b̂�0 ξ � b̂�0 cosh r − b̂0e−2iϕ sinh r; (19)

where ξ is the squeezing operator so that the input beam is ξj0i
and r is the squeezing parameter. For convenience, we assume
that ϕ � 0 and we get the quadrature amplitude

hX̂ 2
bouti ≈ 4G�G − 1�δ2jαj2 � e−r jαj ≫ 1: (20)

Hence, we get the signal-to-noise ratio, which is displayed as

Rlimit � 4G�G − 1�δ2jαj2er : (21)

Then the phase shift is

δ � 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
GI pser

p � δSNLffiffiffiffiffiffiffiffiffiffi
2Ger

p : (22)

Taking OAM into consideration, we get

Δθ � 1

4l
ffiffiffiffiffiffiffiffiffiffiffiffiffi
GI pser

p � θSNLffiffiffiffiffiffiffiffiffiffi
2Ger

p : (23)

With the squeezed vacuum at the other input port, we get a
better sensitivity of the angular rotation measurement with an
improvement by a factor of

ffiffiffiffi
er

p
. While we increase the gain of

the PA and the squeezing degree of a vacuum squeezing beam,
it seems possible to get the result of 1

2lN . However, in the cur-
rent experimental condition, to obtain such a result, we needffiffiffiffiffiffiffiffiffiffi
2Ger

p � ffiffiffiffiffi
N

p
, and it still has challenges to approach it. In our

configuration, the phase shift is caused by Dove prisms and
OAM. Due to the generation of photons from a squeezing vac-
uum beam, here, we should assume that the squeezing vacuum
beam carries OAM of −lℏ.
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0

0

Fig. 2. SU(1,1) interferometer for the angular rotation measure-
ment uses a coherent beam and a vacuum beam. The beam comes
from input-port a carries an OAM of lℏ. Note that two PA processes
replace two BS compared with Fig. 1.
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Next, we consider an interesting case that there is no injec-
tion of a coherent beam at all. Then jαj2 � 0 and

I ps � G − 1: (24)

The intensity of the outcome is

hb̂�outb̂outi � �2G�G − 1� � 2G�G − 1� cos�2lθ2��: (25)

Thus, the quadrature amplitude is

hX̂ 2
bouti � 1� 4G�G − 1� cos�2lθ2� ≈ 1� 2G�G − 1�δ2:

(26)

Hence, the SNR is

Rlimit � 2G�G − 1�δ2: (27)

In this case, the phase shift is

δ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2G�G − 1�

p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2I ps�Ips � 1�p ≈

1

N
� δHL: (28)

The result is just the Heisenberg limit in phase measurement as
Ref. [11]. The angular rotation measurement of the Dove
prism is shown as

Δθ ≈
1

2lN
: (29)

It is identical to the result of Ref. [29] where N -entangled pho-
tons enter into the SU(2) interferometer. Obviously, due to the
simple device, it is much easier to realize than that with
N -entangled photons. However, the problem in this scheme
is that due to no injection of a coherent beam to boost the
sensing intensity, N is low. According to Ref. [28], another
problem in this interferometer is that lℏ is bounded by the
spontaneous emitted photon from PA. In this case, in fact,
the topological charge l is limited in 0, �1, and �2. In addi-
tion, we also need the projection measurement to choose the
valid lℏ.

B. Pump Beam Carries OAM
In this section, we consider another construction where the
pump beam has the OAM of lℏ, as shown in Fig. 3.
Combining the phase-matching conditions with the
assumption that the probe beam no longer carries OAM,
the beam b has a topological charge of 2l [32]. For the PA
where the probe beam has no OAM, it follows that

â1 �
ffiffiffiffi
G

p
â0 �

ffiffiffiffiffiffiffiffiffiffiffi
G − 1

p
b̂�0 ;

b̂1 �
ffiffiffiffiffiffiffiffiffiffiffi
G − 1

p
â�0 �

ffiffiffiffi
G

p
b̂0: (30)

Then the relationship of this SU(1,1) interferometer between
input and output is given by

âout � �G � �G − 1�e−4ilθ2 �â0

�
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G�G − 1�
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G�G − 1�

p
e−4ilθ2

�
b̂�0 ;

b̂out �
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G�G − 1�
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G�G − 1�

p
e4ilθ2

�
â�0

� ��G − 1� � Ge4ilθ2 �b̂0: (31)

As we have calculated before, we get the I ps as

I ps � hb̂�1 b̂1i � �G − 1��jαj2 � 1� ≈ �G − 1�jαj2; jαj ≫ 1:

(32)

Then the output intensity is calculated as

hb̂�outb̂outi � �2G�G − 1� � 2G�G − 1� cos�4lθ2���jαj2 � 1�
≈ �2G�G − 1� � 2G�G − 1� cos�4lθ2��jαj2
� 2G�1� cos �4lθ2��I ps: (33)

The quadrature amplitude is

hX̂ 2
bouti � 2G�G − 1�jαj2�1 − cos�8lθ2��

�4G2 − 4G � 1� 4G�G − 1� cos�4lθ2�: (34)

Here, we assume that θ2 � θ� Δθ, and the interferometer
works near 4lθ � π. Thus, 4lθ2 � 4l�θ� Δθ� � π � δ, and
then

hX̂ 2
bouti ≈ G�G − 1�δ2�4jαj2 � 2� � 1: (35)

We get the SNR like before as

Rlimit � G�G − 1�δ2�4jαj2 � 2� ≈ 4GI psδ2: (36)

Hence, the phase shift is derived as

δ � 1

2
ffiffiffiffiffiffiffiffiffi
GIps

p � δSNLffiffiffiffiffiffiffi
2G

p : (37)

We get the angular rotation measurement, which is shown as

Δθ � 1

8l
ffiffiffiffiffiffiffiffiffi
GI ps

p � θSNL

2
ffiffiffiffiffiffiffi
2G

p : (38)

Obviously, the phase sensitivity in Eq. (37) is same as
Eq. (17), and the sensitivity of the angular rotation measure-
ment is enhanced by a factor of 2. Then in the case that the
unused mode b̂0 is a vacuum squeezed beam, the quadrature
amplitude is

hX̂ 2
bouti ≈ 4G�G − 1�δ2jαj2 � e−r ; (39)

and the SNR is

Rlimit � 4G�G − 1�δ2jαj2er : (40)

Then we get the phase shift as in Ref. [13]:

δ � 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
GI pser

p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GNer

p : (41)

Compared with Eq. (23), the sensitivity of phase is same to
each other, while the angular rotation from each other is differ-
ent, which is shown as

M

M

a

b

PA PA

a a

b bDP-2

Pump Pump

1θ

2θProbe

LO

BS
D

D
1

2
DP-1

l

0

0

1

1

2

2

l

Fig. 3. SU(1,1) interferometer for the angular rotation measure-
ment uses a coherent beam and a vacuum beam. The pump beam
has an OAM of lℏ, and the probe beam has no OAM.
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Δθ � 1

8l
ffiffiffiffiffiffiffiffiffiffiffiffiffi
GI pser

p � 1

4l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GNer

p : (42)

Next, another interesting case is that there is no injection of
a coherent beam at all while the pump beam carries OAM lℏ.
Then the calculated phase shift is

δ ≈
1

N
� δHL: (43)

Therefore, the corresponding sensitivity of the angular rotation
measurement is

Δθ ≈
1

4lN
: (44)

Compared with the SU(1,1) interferometer where the probe
beam carries OAM, the angular rotation measurement of this
interferometer is enhanced by a factor of 2 and the phase sen-
sitivity is same when topological charge l is carried by the pump
beam. Furthermore, in mode A, the path a carries OAM and
we set the angular rotation θ as 0. In the current case, due to the
phase-matching condition, the path a no longer carries OAM
and the angular rotation of Dove prism 1 can be an arbitrary
angle. Since the input is a coherent beam and a squeezing
vacuum beam, to meet the phase-matching condition, the
squeezing vacuum beam needs to carry OAM of 2lℏ. In this
case, the input is two vacuum beams, the OAM, which is car-
ried by photons from spontaneous emission, is complex, and
we have choose the one that path b has OAM of 2lℏ.
However, the topological charge l is also limited by PA. In ad-
dition, for the N -entangled photons in an SU(2) interferom-
eter, this construction can beat the sensitivity. Although the
result 1

4Nl has the limit of low photon number due to the loss
of a coherent beam, it is still the best result of angular rotation
measurements so far. At the same time, it is much easier than
the N -entangled photons in an SU(2) interferometer, which is
limited by the generation of N -entangled photons.

4. CONCLUSION

In conclusion, we have showed that by the employment of HD,
the sensitivity of angular rotation measurements in an SU(2)
interferometer with the injection of a coherent beam and a vac-
uum beam can be same, which is injected by N -unentangled
photons with intensity detection, 1

2
ffiffiffi
N

p
l
. Furthermore, the

analysis shows that the SU(1,1) interferometer where OAM
is carried by a probe beam can further enhance the performance
of the sensitivity with a coherent beam combined with a vac-
uum beam using the method of HD. The sensitivity can be
improved while a vacuum beam is substituted by a vacuum
beam or a coherent beam is replaced by a vacuum squeezed
beam. In addition, we find that compared with SU(1,1) inter-
ferometer where OAM is carried by a probe beam, the sensi-
tivity of the SU(1,1) interferometer where OAM is carried by a
pump beam has increased by a factor of 2 and the best result is
1

4N l. The work presented here provides such examples to detect
small rotation of optical components, including single Dove-
prism angular rotation rather than relative angular rotation be-
tween two Dove prisms. It will have potential applications both
in sensing and performing fundamental studies.
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