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The polarization evolution of vector beams (VBs) generated by q-plates is investigated theoretically and exper-
imentally. An analytical model is developed for the VB created by a general quarter-wave q-plate based on vector
diffraction theory. It is found that the polarization distribution of VBs varies with position and the value q. In
particular, for the incidence of circular polarization, the exit vector vortex beam has polarization states that cover
the whole surface of the Poincaré sphere, thereby constituting a full Poincaré beam. For the incidence of linear
polarization, the VB is not cylindrical but specularly symmetric, and exhibits an azimuthal spin splitting. These
results are in sharp contrast with those derived by the commonly used model, i.e., regarding the incident light as a
plane wave. By implementing q-plates with dielectric metasurfaces, further experiments validate the theoretical
results. © 2017 Chinese Laser Press
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1. INTRODUCTION

Vector beams (VBs) with inhomogeneous polarization have
lately attracted much attention [1]. Different from the common
homogeneously polarized beams, VBs have unique optical prop-
erties owing to their inherent symmetry. For example, a radially
polarized light beam, when tightly focused, can have a strong
longitudinal and nonpropagating electric field [2], resulting
in a sharper focus than a homogeneously polarized beam [3].
This result leads to significant enhancements in the interaction
between light and material [4] and in the microscope resolution
[5]. In addition, an azimuthally polarized beam can be highly
focused into a hollow dark spot [3,6]. Due to their distinguished
properties, VBs have found applications in a variety of realms
ranging from classical to quantum optics. In classical optics, VBs
have be used in optical trapping [7], optical microfabrication
[8], ultra-sensitive metrology [9], high-resolution imaging
[5,10], optical data storage [11], polarization encryption [12],
and optical communications [13]. In the quantum regime, VBs
have been applied to create hybrid entangled states exploiting
the polarization and the spatial degrees of freedom to realize
quantum communications [14,15].

Motivated by these applications, various methods for
generating VBs have been proposed [1], which may be divided
into two classes. One is the intracavity generation technique

involving the coherent summation of two orthogonally polar-
ized modes inside either the laser resonator [16,17] or optical
fibers that are also cylindrically symmetric resonators [18,19].
The other method is the extracavity generation that includes the
interferometric combination of orthogonally polarized beams
[20–27] and the direct conversion of uniformly polarized light
using polarization-sensitive optical elements. Such optical ele-
ments can be implemented by segmented birefringent crystals
[28,29], subwavelength diffractive gratings [30–32], and twisted
liquid crystals [33,34]. These devices are characterized by
singular optic axis distributions with topological charge q and
are usually called q-plates [33].

The VBs generated by the direct conversion method are
often analyzed by regarding the light beam as a plane wave in
the literature. Actually, this simplified model can conveniently
account for the vector polarization generated by the commonly
used half-wave q-plates [35–38]. For these q-plates there occurs
a complete conversion between the two circular polarization
components of the incident light [33], and thus the polariza-
tion of the combined VB is the same as that obtained by replac-
ing the beam with a plane wave and does not change upon
propagation [39].

However, for a q-plate with an arbitrary phase retardation,
this plane wave model may not hold true. For a general
q-plate, an incomplete cross-polarization conversion may occur
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[40,41]. The converted light interferes with the residual beam,
and, consequently, the generated VB possesses a hybrid polari-
zation that may change during propagation [32] and may even
lead to a spin Hall effect of light [40–42]. Actually, it was
shown recently that a superposition of a vortex beam and a
Gaussian beam with opposite circular polarizations, similar
to the two components generated by the q-plate, results in a
polarization distribution on a transverse plane covering the
whole Poincaré sphere [43,44]. Therefore it is not only neces-
sary but interesting to consider the practical dimensions of VBs.
However, except for the approximate plane-wave model, there
is still not an accurate model to describe the polarization of VB
created by a general q-plate.

In this paper, we take into account the beam dimensions to
investigate the polarization of VBs generated with q-plates.
First, an explicit form of VB beyond a quarter-wave q-plate
is established based on vector diffraction theory. Second, this
model is applied to investigate the polarization evolution of
VBs. It is found that the transverse distribution of polarizations
of VBs vary with position and the value q. In particular, for the
incidence of circular polarization, the exit vector vortex beam
has polarization states that can cover the whole Poincaré sphere
and then belongs to full Poincaré beams. For the incidence
of linear polarization, the VB is not cylindrical but specularly
symmetric, and exhibits an azimuthal splitting of spin. These
results are entirely different from those derived by the plane
wave model for the incident light. Applying our model, the
underlying mechanisms to the polarization and intensity pro-
files of the VBs are revealed. By implementing q-plates with
dielectric metasurfaces, further experiments are made to verify
the theoretical results.

2. THEORETICAL FORMULATION

Let us consider a homogeneous elliptically polarized light
normally incident on a wave plate. This polarization can be
expressed in terms of its polar angle ϑ and azimuthal angle
φ on the Poincaré sphere [44,45]:

E i�x; y; 0� � E0�x; y��cos ϑe−iφj�i � sin ϑeiφj−i�; (1)

where E0�x; y� is the amplitude, and j�i � �x̂ � iŷ�∕ ffiffiffi
2

p
and j−i � �x̂ − iŷ�∕ ffiffiffi

2
p

represent the right and left circular
polarization states, respectively.

We choose a uniaxial wave plate for which the transmission
coefficients are t s and tf along the optical slow and fast
axes, respectively, and the phase retardation therein is δ.
Then the transmission matrix for this plate can be written
as T 0 � diag�t se−iδ∕2; tf eiδ∕2�. Let the optical fast axis be space
varying, rendering the plate inhomogeneous. Specifically, we
assume the optical axis forms an angle α against the x direction.
The new transmission matrix for the plate will be T �
R�−α�T 0R�α� [33], where R�α�� �cos α; sin α;− sin α;cos α�
is the usual rotation matrix in the x-y plane. If t s � tf , we
come to

T �
�
cos δ

2 − i sin
δ
2 cos 2α −i sin δ

2 sin 2α
−i sin δ

2 sin 2α cos δ
2 � i sin δ

2 cos 2α

�
:

(2)

For a quarter-wave plate (QWP) (δ � π∕2), we get

T 1∕4 �
1ffiffiffi
2

p
�
1 − i cos 2α −i sin 2α
−i sin 2α 1� cos 2α

�
� 1ffiffiffi

2
p �I � T 1∕2�;

(3)

where I is the unity matrix and T 1∕2 is the transmission matrix
for a half-wave plate (HWP) (δ � π):

T 1∕2 � −i
�
cos 2α sin 2α
sin 2α − cos 2α

�
: (4)

In the literature most work has been devoted to the case of
inhomogeneous HWPs. In the present work, we focus on the
inhomogeneous QWP. Specifically, the optical axis in the x-y
plane is assumed to be

α � qθ� α0; (5)

where q and α0 are constants and θ � arctan�y∕x� is the
azimuthal angle [33,34]. Such a q-plate will be implemented
by dielectric metasurfaces in the following.

Through the inhomogeneous QWP, the light turns into
E�x; y; 0� � T 1∕4E i�x; y; 0�. By Eqs. (1) and (3) we get

E�x; y; 0� � E0ffiffiffi
2

p �cos ϑe−iφj�i � sin ϑeiφj−i�

− i
E0ffiffiffi
2

p �sin ϑe−i�2α−φ�j�i � cos ϑei�2α−φ�j−i�:

(6)

It is obvious that in Eq. (6), the part in the first square
bracket has the same distribution as the incident light, while
the one in the second is the same as that generated by a
HWP. It is noteworthy that, if E0 is a constant, then
Eqs. (1) and (6) represent an incident and an exit plane wave,
respectively. In the literature, Eq. (6) is regarded as the polari-
zation of VBs, where the light beam is simplified as a plane
wave [32,40–42]. As we shall show in the following, this plane
wave model is not enough to describe the practical polarization
of VBs.

To derive the polarization of VBs generated by q-plates,
we assume for simplicity an incident Gaussian beam
E0�x; y� � exp�−�x2 � y2�∕w2

0�, where w0 is the beam waist.
In the paraxial approximation, the light through an anisotropic
slab can be derived by using the Fresnel vector diffraction
integral [46],

E�r; z� � eikz

iλz

Z
∞

0

Z
2π

0

ρdρdϕE�ρ; 0�

× exp
�
ik
ρ2

2z
− i

krρ
z

cos�ϕ − θ�
�
; (7)

in the cylindrical coordinate system. Therein, x0 � ρ cos ϕ
and y0 � ρ sin ϕ denote a source point on the plate, while x �
r cos θ and y � r sin θ describe a point in the far field. Using
the Jacobi–Anger expansion eiu cos ψ � P∞

m�−∞i
mJm�u�e−imψ ,

the integration over ϕ can be calculated [39]. After complicated
but straightforward calculations [47], the far field is obtained:

E�r; z� � 1ffiffiffi
2

p �E i�r; z� − iE1∕2�r; z��: (8)

Here, E i�r; z� is just the incident beam,
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E i�r; z� � A1�cos ϑe−iφj�i � sin ϑeiφj−i� (9)

and −iE1∕2�r; z� equals to the exit beam from an HWP:

E1∕2�r; z� � A2�sin ϑe−i�2α−φ�j�i � cos ϑei�2α−φ�j−i�: (10)

The coefficients A1 and A2 are, respectively,

A1 � e
ikz− kr2

kw2
0
�i2z kw2

0

kw2
0 � i2z

; (11)

A2 � eikz�ikr
2

2z
kw2

0

kw2
0 � i2z

�
−ik2r2w2

0

2kw2
0z� i4z2

�jqj

×
2−2jqj

ffiffiffi
π

p
Γ�1∕2� jqj� 1F 1

�
1� jqj;1� 2jqj;− ik2r2w2

0

2kw2
0z� i4z2

�
:

(12)

Here 1F 1�a; b; u� is a confluent hypergeometric function
where Re�b� > Re�a� > 0 [47]. Clearly the incident light
j�i acquires an additional Pancharatnam–Berry geometric
phase �2α [31].

It needs to be pointed out that: (i) because A1 and A2 are
functions of �r; θ; z; q�, the polarization of the resulting light
beam in Eq. (8) is dependent on its spatial position and the
value q, and (ii) if the incident wave is a plane wave with a
constant amplitude E0, the exit polarization can be described
by Eq. (6); it is independent of �r; z; q� and is different from the
polarization in Eq. (8). The reason for this difference is that

when a light beam propagates through a q-plate, only part
of this beam is transformed into a vortex beam, i.e.,
−iE1∕2�r; z�∕

ffiffiffi
2

p
in Eq. (8), while the other part remains un-

changed, i.e., E i�r; z�∕
ffiffiffi
2

p
in Eq. (8). Because they have differ-

ent amplitudes, both of which are also different from that in the
case of a plane wave, i.e., E0∕

ffiffiffi
2

p
in Eq. (6), the two parts

superpose into a hybrid polarization distribution of Eq. (8),
which is clearly distinct from that of Eq. (6).

In the following we present the polarization results for two
types of VBs to validate the theoretical model. We will disclose
the difference between our results and that using the plane
wave model.

Vector vortex beams and full Poincaré beams. If the
incident light beam is circularly polarized j�i (2ϑ � 0 or π,
corresponding to north or south poles on the Poincaré sphere),
the emerging light beam can be derived by using Eq. (8) as

E��x; y; z� �
1ffiffiffi
2

p �A1j�i − iA2e�i2αj	i� (13)

� Ae�iβ�cos χe	iβj�i � sin χe�iβj−i�; (14)

where we denote A �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�jA1j2 � jA2j2�∕2

p
, β � α	 π∕4�

�argA2 − argA1�∕2, and χ � arctan�jA2j∕jA1j�. The
subscripts� identify the incident circular polarization j�i.
Equation (14) stands for a vector vortex beam with hybrid
elliptical polarizations. Specifically, the orientation β and the

Fig. 1. Polarization distributions of vector fields generated by q-plates for different incident waves. The first column shows the theoretical results
for an incident plane wave, while the others show an incident Gaussian beam. The four rows correspond to incidences of right, left, and right circular
and linear polarizations �σ � �1; −1;�1; 0�, respectively. The q-plates used have q � 1 and α0 � π∕4 in the upper two rows and q � 1 and
α0 � 0 in the other rows. The dimension for all images is w0 × w0, where w0 � 1.75 mm.
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ellipticity tan χ of the polarization ellipse vary with the space
position and the q value because they are both functions
of �r; θ; z; q�.

In contrast, for a circularly polarized plane wave, the
resulting light is

E p��x; y; 0� �
E0ffiffiffi
2

p �j�i − ie�i2αj	i�

� E0e�i�α	π∕4�
�
cos�α	 π∕4�
sin�α	 π∕4�

�
: (15)

The subscript p denotes the result for a plane wave.
Equation (15) shows that the exit light is a vector vortex,
i.e., a vortex with azimuthal polarization.

In comparing Eqs. (13) and (15), one can see that the exit
polarization for an incident Gaussian beam is different from
that for an incident plane wave. This difference is also shown
in the examples of the first three rows in Fig. 1. The left column
depicts the vector field for the incidence of plane wave, while
the right three columns correspond to the transverse polariza-
tion distributions of the VBs for an incident Gaussian beam at
three propagation distances. It is very clear that the former is
composed of azimuthally varying linear polarizations with the
center a polarization singularity, whereas the latter consists of
hybrid elliptical polarizations with the center being circularly
polarized definitely.

The difference between the two results can be seen clearer in
terms of the evolution of polarization on the Poincaré sphere.
As an example, the polarization states along a radial line on the
image plane in Figs. 1(i) and 1(j) are shown in Fig. 2(a). It
shows that, for an incident plane wave, the exit polarization
states along a radial line (for a given θ) correspond to a point
on the Poincaré sphere; for an incident circularly polarized
Gaussian beam, the polarization states along the same radial
direction correspond to a curve starting from the north pole,
after spiraling many rounds, ending at the south pole. One
can show that the states for a different θ follow a trajectory
that is a rigid rotation of the above curve around the S3 axis.
Therefore, all the polarization states on a transverse plane cover
the whole surface of the Poincaré sphere, so the resultant VB of
Eq. (13) is a full Poincaré beam [43]. Note that for the full
Poincaré beams in [43], the polarization states along radial
lines map onto meridians on the Poincaré sphere, distinct from
the spiraling curve in Fig. 2(a). Therefore, the present VB in
Eq. (13) is a new family of full Poincaré beams.

VBs with hybrid polarizations. If the incident light beam
is linearly polarized (2ϑ � π∕2, corresponding to the equator
of the Poincaré sphere), Eq. (8) shows that the emerging light
beam is hybridly polarized:

E�r; z� � 1ffiffiffi
2

p
�
A1 cos φ − iA2 cos�2α − φ�
A1 sin φ − iA2 sin�2α − φ�

�
: (16)

In comparison, the exit light for an incident plane wave can
be obtained from Eq. (6) by setting E0 constant:

E p�r; z� �
E0ffiffiffi
2

p
�
cos φ − i cos�2α − φ�
sin φ − i sin�2α − φ�

�
: (17)

Equivalently, E p�r;z��E0e−iπ∕4�cos�α−φ�π∕4�e−iαj�i�
sin�α−φ�π∕4�eiαj−i��E0e−iπ∕4R�−α��cos�φ−α�;isin�φ−α��T .

This indicates that the exit light has a transverse distribution of
hybrid polarizations with azimuthal-variant orientations and
ellipticities.

Generally, A1 ≠ A2, so the polarization in Eq. (16) cannot
be simplified as that in Eq. (17). They represent different
hybrid polarizations. We present an example in the last row
of Fig. 1. Figure 1(m) corresponds to the result of Eq. (17),
while Figs. 1(n)–1(p) correspond to Eq. (16). Evidently, the
two fields both vary azimuthally, but the polarizations in
Figs. 1(n)–1(p) change with the radius r and propagation
distance z, as well.

In order to visualize such a difference, we map the polari-
zation states along circles with different radii in the beam cross
section onto the Poincaré sphere in Fig. 2(b). It can been seen
that the polarization around all circles for the incidence of a
plane wave corresponds to an 8-shaped curve, which is mirror
symmetric with respect to the S1 axis, while the polarizations

Fig. 2. Polarization evolution on the Poincaré sphere. (a) For the
vector vortex beam in Fig. 1(j), the polarization states along a radial
direction (from r � 0 to∞ for a given θ) evolve from the north pole to
the south pole. For the vector field in Fig. 1(i), the states in a radial
direction correspond to a single point that does not change with propa-
gation. (b) For the VB in Fig. 1(n), the polarization states on circles
with different radii around the beam center evolve along different
8-shaped curves. Here, r0 � 0.3 mm is the radius of the first circle
in Fig. 1. For the vector field in Fig. 1(m), the states on all circles
evolve along the same 8-shaped curve.
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along different rings for an incident Gaussian beam correspond
to entirely different 8-shaped curves. Interestingly, such curves
degenerate into the equator for states on the beam periphery
with a radius far larger than the beam waist.

3. EXPERIMENTAL RESULTS

To demonstrate the polarization distributions of VBs, we
constructed q-plates by using dielectric metasurfaces. These
metasurfaces were fabricated by etching continuously varying
grooves in a fused silica sample using a femtosecond laser
[48]. The resulting self-assembled nanogratings produce a form
birefringence with optical axes periodically varying in the
azimuthal direction, as in Eq. (5). By controlling the etched
depth of grooves, a retardation of π∕2 is achieved and then an
effective inhomogeneous QWP is realized.

The experimental apparatus is depicted in Fig. 3. An He–Ne
laser (632.8 nm, 17 mW, Thorlabs HNL210L-EC) outputs a
linearly polarized fundamental Gaussian beam with a waist
w0 � 1.75 mm. A Glan laser polarizer (GLP1) and QWP1
are employed to obtain an appropriate incident polarization
state. The laser beam then passes through the q-plate, and
the output intensity is recorded by a CCD camera
(Coherent LaserCam HR). Another QWP (QWP2) and a
polarizer (GLP2) are inserted to measure the Stokes parameters
of the exit beam.

A. Vector Vortex Beams
First, we illuminated a q-plate of q � 1 and α0 � π∕4 with left
and right circularly polarized Gaussian beams to generate the
vector polarization in Figs. 1(b) and 1(f ). The transverse inten-
sities of the resultant radial and azimuthal beams are measured
at z � 50 cm and shown in Fig. 4. It is seen that the intensities
exhibit concentric rings determined by the hypergeometric
function in Eq. (13). We also measured the Stokes parameters
and then used them to retrieve the polarization states [38,39].
The results are depicted in Fig. 4. The experimental results
agree with the theoretical ones very well.

To uncover its construction, we evaluated the VB by using a
linear polarizer and the CCD. The result is shown in Fig. 5(d).
An S-shaped pattern typical for radial polarization is observed.
This is due to the superposition of a vortex beam and a
Gaussian beam with opposite circular polarizations [49], as

indicated in Eq. (13). We also measured the two components,
as presented in Figs. 5(e) and 5(f ). The agreement between
the experimental and theoretical results confirms the theory
of Eq. (13).

Similar experiments were done for the azimuthally polarized
beam in Fig. 4(d) and the results are presented in Fig. 6.
Different from the radially polarized beam, the azimuthally po-
larized beam has a reversed S-shaped pattern for the intensity
through a linear polarizer; it has a left circularly polarized solid
beam and a right circularly polarized vortex component.

To study the polarization evolution during propagation, we
generated a spiral polarization determined by Eq. (15) for q = 1
and α0 � 0 and measured its transverse intensity at different
propagation distances. The experimental results are given in
Fig. 7. The overall tendencies of vector polarizations are in
agreement with the theoretical ones. Nevertheless, there are

Fig. 3. Schematic of experimental setup to generate VBs. The inset
is a schematic drawing of the q-plate with q � 1 and α0 � π∕4. White
short lines denote the orientations of local optical axes.

Fig. 4. Intensities and polarizations measured on the transverse
plane z � 50 cm. The top and bottom rows result from the incidence
of right and left circularly polarized Gaussian beams, respectively. The
left and right columns are the theoretical and experimental results, re-
spectively. Here the q-plate with q � 1 and α0 � π∕4 is used. The size
for all images is 2.4 mm × 2.3 mm.

Fig. 5. For the radially polarized beam in Fig. 4(a), (a) is the inten-
sity through a linear polarizer with the transmission axis indicated by
the arrow; (b) and (c) are the intensities of the left and right circularly
polarized components, respectively. The bottom row shows the
experimental results corresponding to the top one.
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some discrepancies, particularly in the case of z � 150 cm.
This may result from the fact that the intensity decays upon
propagation, thus a small error in the measurement can lead
to a very large deviation of the retrieved polarization state.

For the purpose of quantitative study, we drew the inten-
sities in Fig. 7 along a radial line as a function of the radius.
The results are shown in Figs. 8(a) and 8(b), where the

experimental results agree remarkably well with the theoretical
ones. Evidently, the intensity is not a single ring, but rather
consists of concentric rings and a non-zero intensity center.
According to Eqs. (8)–(12), the multi-ringed profile is mainly
attributed to the term −iE1∕2�r; z�∕

ffiffiffi
2

p
in Eq. (8). It can be

understood as that the diffraction through the q-plate not only
converts the incident light into a vortex, but simultaneously
imposes a modification of the confluent hypergeometric func-
tion in Eq. (12) onto the otherwise ideal single-ringed vortex
[39,50]. As for the non-zero central intensity, it is the residual
incident light E i�r; z�∕

ffiffiffi
2

p
in Eq. (8).

To shed light on the formation of the spiral polarization, we
measured the transverse intensities of the circularly polarized
components at z � 50 cm, and the results are plotted in
Fig. 8(d). The theoretical results calculated by Eq. (13) are
shown in Fig. 8(c). According to the magnitudes of j�i and
j−i, one can derive the polarization state along r. For example,

Fig. 6. For the azimuthally polarized beam Fig. 4(c), (a) is the in-
tensity through a linear polarizer with the transmission axis indicated
by the arrow; (b) and (c) are the intensities of the left and right cir-
cularly polarized components, respectively. In the bottom row are the
experimental results corresponding to the top one.

Fig. 7. Transverse intensities and polarizations for a spirally polar-
ized VB at different propagation distances. The top, middle, and
bottom rows correspond to z � 50, 100, and 150 cm, respectively.
The left and right columns are the theoretical and experimental results,
respectively. Here the incident Gaussian beam is right circularly
polarized and the q-plate with q � 1 and α0 � 0 is used. The size
for all images is 2.4 mm × 2.3 mm.
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Fig. 8. (a) Theoretical and (b) experimental results of the radial in-
tensity distributions for the spirally polarized beam in Fig. 7. The
intensities are normalized by the center intensity of the incident
Gaussian beam. (c) Theoretical and (d) experimental results of the
radial intensity distributions for the spirally polarized beam and its
two circular polarization components measured at z � 50 cm. On
top are the local polarization states. (e) is the evolution of polarization
states along a radial line (0 ≤ r ≤ 2.5 mm and θ � π∕4).
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there is no j−i at point A, so the polarization state is j�i; there
are equal magnitudes of j�i and j−i at point B, so it is linear
polarization. Similarly, one can conclude that it is right- and
left-handed elliptical polarization from A to B and between
B and D (including point C , which has the maximum inten-
sity), respectively. When approaching the periphery E, the
polarization state spirals near the equator, changing successively
between right-handed and left-handed elliptical polarizations.

Then we mapped the polarization states onto the Poincaré
sphere. As an example, we show in Fig. 8(e) the states along the
radial line with the radial coordinate r ≤ 2.5 mm and the ori-
entation θ � π∕4. The intensity becomes very weak, even ap-
proaching zero, at the beam periphery. On the one hand, it may
be out of our CCD’s capability of measurement. On the other
hand, a weaker intensity is prone to bring a larger error in mea-
surements. For these reasons, we chose the radial separation as
r ≤ 2.5 mm. The variation tendency of the experimental
polarization states in Fig. 8(e) shows reasonable agreement with
the theoretical curve. Nevertheless, there are some deviations.
These experimental errors may be ascribed to the measured in-
tensity of the right circular polarization component, which is
larger than that of the left one for r > 1 mm, as evidenced in
Fig. 8(d).

It is worth noting that the results of Figs. 8(a) and 8(c) not
only apply to the beam in Fig. 7(a), but also to that in Fig. 4(a).
This is because, in Eq. (13), the amplitudes of the components
j�i and j−i for the incidence of j�i, jA1j, and jA2j are both
independent of α0. Therefore, the intensities of the beam and
the components of j�i and j−i in Fig. 7(a) are the same as
those in Fig. 4(a). For the same reason, Figs. 8(a) and 8(c)
can also represent the beam in Fig. 4(c), except exchanging
j�i and j−i in Fig. 8(c). Hence, the handedness of the polari-
zation ellipses in Fig. 4(c) is opposite to those in Figs. 7(a) and
4(a). Therefore, we conclude that the beams in Figs. 7(a), 4(a),
and 4(c) have the same intensity and the same ellipticities of the
polarization ellipses. However, the three beams do not have the
same polarization distributions. This is because the phases of
the j�i and j−i are different for these beams, whereby the
polarization ellipses have different orientations, as indicated
in Eq. (13).

B. VBs with Hybrid Polarizations
In the following we consider the incidence of a linearly polar-
ized beam. The result for an incident horizontal polarization is
shown in Fig. 9. Different from the above cylindrically sym-
metric VBs, the present beam is specularly symmetric. There
are two off-center cores in its transverse intensity, like the over-
lap of two vortices reported in [51].

To reveal the mechanism to this intensity distribution, we
further measured the intensities of the circular polarization
components. The results given in Fig. 10 show that the two
components exhibit opposite S-shaped profiles. According to
Eqs. (8)–(10), the component j�i equals the superposition
of a Gaussian beam and a vortex beam with a topological charge
l � −2. Because the two beams, respectively, have planar and
helical wavefronts, their interference results in a characteristic
S-shaped intensity pattern composed of two clockwise spiraling
arms. This result is well known to the vortex beams. Actually, it
consists of the common method to determine the topological

charge of a vortex by the profile of the spiral arms [52]. For the
component j−i, the constituent vortex beam has an opposite
topological charge, so the resultant intensity exhibits an oppo-
site S-shaped pattern. If the two S-shaped intensities were
overlapped, one should obtain the total intensity with two
minimum-intensity points in Fig. 9.

The Stokes parameters were obtained by the standard
experimental method to discover the polarization states. The
polarizations retrieved are plotted on the intensity profile in
Fig. 9. Obviously the VB consists of hybrid elliptical polariza-
tions in the transverse plane, which is specularly symmetric as
the intensity. In particular, the results of the Stokes parameter
S3 are given in Fig. 10. This shows that the two circularly com-
ponents are separated completely. This is the well-known azi-
muthal spin splitting effect, namely, the azimuthal spin Hall
effect of light [53,54]. Note that this effect was first investigated
numerically in the Fraunhofer diffraction zone in [42]. Here we
demonstrate this effect analytically and experimentally in the
Fresnel diffraction zone.

To visualize the polarization evolution, we chose the third
string of polarization states around the propagation axis for
the VB in Fig. 9 and projected them onto the Poincaré sphere.
The results are shown in Fig. 11. Despite some deviations, the
experimental results agree well with the theoretical curve.
Therefore, the theory of Eq. (16) or Eq. (8) is verified.

Fig. 9. Transverse intensity and polarization distribution for the VB
generated by a linearly polarized Gaussian beam passing through a
q-plate. (a) Theoretical results calculated by Eq. (16) and (b) experi-
mental results measured at z � 50 cm. Here, the q-plate with q � 1
and α0 � 0 is used. The size for all images is 2.4 mm × 2.3 mm.

Fig. 10. (a) and (b) are the transverse intensities for two circularly
polarized components, respectively, and (c) the Stokes parameter S3,
corresponding to the VB in Fig. 9. The second rows are correspondent
experimental results.
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4. CONCLUSION

We have investigated the polarization evolution of VBs gener-
ated with q-plates. An explicit model of VBs beyond quarter-
wave q-plates was first established based on vector diffraction
theory. Then it was found that VBs possess hybrid polarization
distributions, which vary not only azimuthally but radially and
axially, and are dependent on the value q. Interestingly, for the
incidence of circular polarizations, the exit vector vortex beam
has polarization states that can cover the whole Poincaré sphere
and then belong to full Poincaré beams. For the incidence of
linear polarization, the VB is not cylindrically but is specularly
symmetric and exhibits an azimuthal splitting of spin. By
applying our model, the underlying mechanisms to the polari-
zation and intensity profiles of VBs were revealed. Further
experiments verified the theoretical results, where q-plates were
constructed by using dielectric metasurfaces.

The results are in sharp contrast with those for the incidence
of a plane wave, where the vector field is only azimuthally
varying. Our results demonstrate the importance of the prac-
tical spatial dimensions to VBs as well as full Poincaré beams.
Since it reveals the underlying physics behind the VBs, the
present model may be used to investigate the propagation dy-
namics of VBs. For example, it can be applied to dynamical
effects of the aforementioned vector vortex beam since it has
a radially variant polarization, which may produce orbital an-
gular momentum [55,56]. Apart from the polarization, the re-
sults may also be applied to study the spin–orbital interactions
involving q-plates or metasurfaces [54], such as the spin-
to-orbital angular momentum conversion [33,50] and the spin
Hall effect of light [53,54].
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