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In this paper, we examine the tiny polarization rotation effect in total internal reflection due to the spin–orbit
interaction of light. We find that the tiny polarization rotation rate will induce a geometric phase gradient, which
can be regarded as the physical origin of photonic spin Hall effect. We demonstrate that the spin-dependent
splitting in position space is related to the polarization rotation in momentum space, while the spin-dependent
splitting in momentum space is attributed to the polarization rotation in position space. Furthermore, we
introduce a quantum weak measurement to determine the tiny polarization rotation rate. The rotation rate in
momentum space is obtained with 118 nm, which manifests itself as a spatial shift, and the rotation rate in
position space is achieved with 38 μrad∕λ, which manifests itself as an angular shift. The investigation of
the polarization rotation characteristics will provide insights into the photonic spin Hall effect and will enable
us to better understand the spin–orbit interaction of light. © 2017 Chinese Laser Press
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1. INTRODUCTION

The origin of spin–orbit interaction of light in reflection is
attributed to the transverse nature of the photonic polarization:
The polarizations of angular spectrum components experience
different rotations in order to satisfy the transversality. The
photonic spin Hall effect (SHE), manifesting itself as spin-
dependent splitting of light in both position and momentum
spaces, is considered as a result of the spin–orbit interaction
of light [1–3]. In partial reflection, the polarization rotation only
appears in momentum space, and the geometric phase gradient
induces a spin-dependent splitting in position space [4–9]. The
spin-dependent splitting in photonic SHE is generally on
subwavelength scales, which can be observed by the signal
enhancement technique known as quantum weak measure-
ments [10,11].

However, there has been relatively little attention paid to the
tiny polarization rotation effect in position space. In this paper,
we examine the position-space polarization rotation in total in-
ternal reflection. Unlike in partial reflection, we find that the
polarization rotation appears in both momentum and position
spaces. We demonstrate that the spin-dependent splitting in
position space is related to the polarization rotation in momen-
tum space, while the spin-dependent splitting in momentum
space is attributed to the polarization rotation in position space.
To distinguish and detect the two kinds of spin-dependent

splitting, a modified experimental scheme of weak measure-
ments is proposed. The polarization characteristics of each wave-
vector component can be determined by the spin-dependent
splitting, and tiny polarization rotation rates are achieved.

2. POLARIZATION ROTATION IN POSITION AND
MOMENTUM SPACES

We consider a light beam reflection at a prism–air interface.
The xy plane of the laboratory Cartesian frame �x; y; z� is par-
allel to the prism–air interface. We use the coordinate frames
�xi; yi; zi� and �xr ; yr ; zr� to denote incident and reflect beams,
respectively. The zi;r axis attaches to the direction of the central
wave vector. We assume that the wavepacket with jH i or jV i
polarization reflects at the prism–air interface. The correspond-
ing individual wave-vector components of jH �ki�i and jV �ki�i
are expressed by jP�kii and jS�ki�i [3]:

jH �ki;r�i � jP�ki;r�i −
kiy
ki;r

cot θi;r jS�ki;r�i; (1)

jV �ki;r�i � jS�ki;r�i �
kiy
ki;r

cot θi;r jP�ki;r�i: (2)

Here, θi and θr are the incident angle and refracted angle,
respectively; ki and kr are the incident and refracted wave
vectors, respectively. After reflection, jP�kr�i � rpjP�ki�,
jS�kr�i � rsjS�ki�i, and the polarization states evolve as
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jH �ki�i → rp�jH �kr�i � kiyδHr jV �kr�i�; (3)

jV �ki�i → rs�jV �kr�i − kiyδVr jH �kr�i�; (4)

where δHr ��1�rs∕rp�cotθi∕ki and δVr ��1� rp∕rs�cot θi∕ki .
Equations (3) and (4) show that a tiny rotation arises after
reflection at the prism–air interference.

In partial reflection, the Fresnel coefficients are real num-
bers. Thus, both δHr and δVr are also real numbers. In the total
internal reflection, however, the Fresnel coefficients are
complex, and

δHr �
�
1� jrsj exp�iφs�

jrpj exp�iφp�

�
cot θi
ki

; (5)

δVr �
�
1� jrpj exp�iφp�

jrsj exp�iφs�

�
cot θi
ki

: (6)

Here, jrpj and jrsj are the absolute values of the complex re-
flected Fresnel coefficients; φp and φs denote their arguments.
Therefore, the complex shifts arise. From Eqs. (5) and (6), we
obtain

Re�δHr � �
�
1� jrsj

jrpj
cos�φs − φp�

�
cot θi
ki

; (7)

Im�δHr � �
jrsj
jrpj

sin�φs − φp�
cot θi
ki

; (8)

Re�δVr � �
�
1� jrpj

jrsj
cos�φp − φs�

�
cot θi
ki

; (9)

Im�δVr � �
jrpj
jrsj

sin�φp − φs�
cot θi
ki

: (10)

Here, φp � 0 and φs � 0 for partial reflection. However,
φp ≠ 0, φs ≠ 0, and generally φp ≠ φs for total internal
reflection. Note that the phase difference between the two
popularization states can be applied to determine the beam
shifts [12].

In the spin basis set, the polarization of jH i or jV i can be
decomposed into two orthogonal polarization components
jH i � �j�i � j−i�∕ ffiffiffi

2
p

and jV i � i�j−i − j�i�∕ ffiffiffi
2

p
, where

j�i and j−i represent the left- and right-circular polarization
components, respectively. The wavefunction in momentum
space can be specified by the following expression:

jΦi � w0ffiffiffiffiffi
2π

p exp

�
−
w2
0�k2ix � k2iy�

4

�
; (11)

where w0 is the width of the wavefunction.
For jH i input polarization, the reflected wavefunction jψH

r i
in the momentum space can be obtained as

jψH
r i � rpjH i − kry�rp � rs� cot θi

ki
jV i

� rpffiffiffi
2

p ��1� ikryδHr �j�i � �1 − ikryδHr �j−i�

≈
rpffiffiffi
2

p �exp�ikryδHr �j�i � exp�−ikryδHr �j−i�: (12)

Here, exp�iσkryδHr � denotes the spin–orbit coupling, and
jikryδHr j ≪ 1 since the spin–orbit interaction is weak at the in-
terface reflection [13].

Note that the complex shift can be written as δHr �
Re�δHr � � i Im�δHr �. They should have different contributions
to the transverse shift in the far field. We first consider the
real part of the complex shift, and the polarization state after
reflection can be written as

jψH
r i �

rp exp�iφp�ffiffiffi
2

p �exp�ikry Re�δHr ��j�i

� exp�−ikry Re�δHr ��j−i�: (13)

The photonic SHE can be described as a consequence of geo-
metric phase which arises from the spin–orbit interaction. The
spin-dependent phase in position space can be written as

ΦG � σkry Re�δHr �; (14)

where σ � �1. The spin-dependent splitting in position space
is induced by the phase gradient in momentum space, which
can be written as

hyH�i �
∂ΦG

∂kry
� σ Re�δHr �: (15)

We next consider the imaginary part of the complex shift.
The polarization state in position space can be obtained by
Fourier transformation:

jψH
r i �

rp exp�iφp�ffiffiffi
2

p
�
exp

�
−i
kr Im

�
δHr

�
zR

yr

�
j�i

� exp

�
�i

kr Im�δHr �
zR

yr

�
j−i

�
: (16)

Here, zR � kiw2
0∕2 represents the Rayleigh length. The

spin-dependent phase in position space can be written as

ΦG � −σ
kr Im�δHr �

zR
yr : (17)

The corresponding spin-dependent splitting in momentum
space can be obtained as

ΔkHry �
∂ΦG

∂yr
� −σ

kr Im�δr �
zR

: (18)

In fact, the spin-dependent splitting in momentum space man-
ifests itself as an angular shift ΔΘH

ry � ΔkHry∕kr , which ulti-
mately induces a spatial shift in position space. It should be
mentioned that this shift increases linearly during propagation:
zrΔΘH

ry .
The spin-dependent splitting in photonic SHE can be re-

garded as the combined contribution of real and imaginary
parts of the complex shift. For jH i input polarization, the
spin-dependent splitting can be written as

hyH�i � 	Re�δHr � � zr
Im�δHr �
zR

: (19)

Similarly, spin-dependent splitting for the jV i input polariza-
tion can be given by

hyV�i � 	Re�δVr � � zr
Im�δVr �
zR

: (20)
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Here, the real part of the complex shift is related to the spin-
dependent splitting in position space while the imaginary part
is associated with spin-dependent splitting in momen-
tum space.

We now examine the polarization rotation in the photonic
SHE. From Eqs. (13) and (16), the polarization states can be
expressed in term of the Jones matrix:

�
cos γ
sin γ

�
� exp��iφG�j�i � exp�−iφG�j−i; (21)

where γ � Ωpyr and γ � Ωmkry; Ωp and Ωm are the polariza-
tion rotation rate in position and momentum spaces, respec-
tively. Therefore, the polarization rotation rate will induce a
geometric phase gradient which can be regarded as the physical
origin of photonic SHE.

We plot the polarization distributions in total internal and
partial reflection as shown in Fig. 1. In total internal reflection
at the prism–air interface, the polarization rotation present in
position and momentum space [Figs. 1(a) and 1(c)]. Therefore,
the geometric phase gradient and spin-dependent splitting
should also occur in momentum space and position space.
In partial reflection at the air–prism interface, the polarization
rotation is only present in the momentum space [Figs. 1(b)
and 1(d)]. Correspondingly, the geometric phase gradient only
appears in momentum space, which ultimately induces the
spin-dependent splitting in position space as shown in Eq. (15).
Therefore, the spin-dependent splitting in position space is
attributable to the polarization rotation in momentum space,
while the splitting in momentum space is attributed to the
polarization rotation in position space.

3. POLARIZATION ROTATION AND WEAK
MEASUREMENTS

The tiny polarization rotation rate can be determined by the
measurements of the spin-dependent splitting. Here, a modi-
fied experimental setup of weak measurements is proposed (see
Fig. 2). A linear Gaussian with the wavelength λ � 632.8 nm
is generated by the He–Ne laser. The lenses of L1 and L2 have
corresponding 50 and 250 mm focal lengths; they are used for
focusing and collimating the light beam. Glan laser polarizer
(GLP1), together with quarter-wave plate (QWP) and
GLP2, provides the preselected and postselected states, respec-
tively. After the preselection of state, weak interaction, and
the postselection of state, the wave function evolves to the
final state:

jΦf i � hψ f j exp�iσkryδH;V
r �jψ iijΦii

� hψ f j1� iσkryδH;V jψ iijΦii

≈ hψ f jψ ii
�
1� ikryδH;V

r
hψ f jσjψ ii
hψ f jψ ii

�
jΦii

� hψ f jψ ii�1� ikryAwδ
H;V �jΦii: (22)

Here, Aw is the so-called weak value and is given by

Aw � hψ f jσjψ ii
hψ f jψ ii

; (23)

where σ is the Pauli operator, and ψ i and ψ f are the polariza-
tion states of the preselection and postselection in the Poincaré
sphere, respectively.

In our case, both Aw and δH;V
r are complex. However, only

the imaginary part of Awδ
H;V
r can be amplified and is given by
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Fig. 1. Polarization rotation of light beam in total internal reflection
at glass–air interface and in partial reflection at air–glass interface.
(a) and (c) Polarization rotation in momentum space. (b) and
(d) Polarization rotation in position space. The incident angle is
chosen as θi � 45°. To make the polarization rotation characteristics
more noticeable, we amplify the rotation angles by 100 times.

Fig. 2. Experimental setup for observation of the spin-dependent
splitting in photonic SHEwith complex weak values. The He–Ne laser
inputs a linearly polarized Gaussian beam; prisms have refractive index
n � 1.515 (BK7 at 632.8 nm); the half-wave plate (HWP) for adjust-
ing the intensity of light beam; the lenses L1 and L2 have 50 and
280 mm focal lengths, respectively; the GLP1 and GLP2 and the
QWP together provide the preselected and postselected states; and
the CCD will be used for capturing the intensity profiles. The inset
represent the preselected and postselected angles on a Poincaré sphere.
Note that the experiment setup is slightly different from those in
Refs. [5,6]; in the present case the QWP has been introduced to
modulate the preselected state.
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Im�Awδ
H;V
r � � Re�Aw�Im�δH;V

r � � Im�Aw�Re�δH;V
r �: (24)

Here, the imaginary and real parts of complex shifts are deter-
mined by the real and imaginary parts of the weak values,
respectively. Note that the complex weak value has been inter-
preted as spatial and angular shifts in the Goos–Hänchen and
Imbert–Fedorov effects [14,15].

The preselected and postselected states can be on a Poincaré
sphere:

jψ ii � cos

�
Θ� 2α

2

�
j�i � eiΦ sin

�
Θ� 2α

2

�
j−i; (25)

jψ f i � sin

�
Θ
2

�
j�i − e−i�Φ�2β� cos

�
Θ
2

�
j−i; (26)

where Θ andΦ represent quantum state on the Poincaré sphere
[16], α and β are preselected angle and postselected angle, re-
spectively. For jH i input polarization Θ � π∕2 and Φ � 0,
while for jV i input polarization Θ � π∕2 and Φ � π.
Substituting Eqs. (25) and (26) into Eq. (23), we obtain the
complex weak value as

Aw � sin 2α

cos 2α cos 2β − 1
� i

sin 2β cos 2α

cos 2α cos 2β − 1
: (27)

Here, the real and imaginary parts of the complex weak value
can be switched by preselection and postselection of states,
respectively.

We now consider the amplified spatial shift in the far
field. After a free evolution, the wavepacket moves to its final
position,

hyH;V
w i � zr

kr

hΦf jkryjΦf i
hΦf jΦf i

: (28)

When the initial shift is complex, it is difficult to distinguish
and detect the real and imaginary parts, since they have com-
bined contribution to the transverse shift in the far field.
Therefore, a single measurement with a purely real weak value
has difficulty distinguishing them.

To detect the complex shifts, two different schemes should
be involved: First a purely imaginary weak value and second a
purely real weak value. We first consider the case where the
weak value is purely imaginary. The preselected angle is chosen
as α � 0 in Eq. (27); Re�Aw� � 0 and Im�Aw� � − cot β are
obtained. The imaginary weak value will only amplify the
spin-dependent shifts in position space. From Eq. (28), the am-
plified shift in the far-field region can be written as

hyH;V
w i � −

zr
zR

Re�δH;V
r � cot β: (29)

The large beam shifts will be obtained in the far-field region for
zr ≫ zR . The amplified spatial displacement varies with β as
shown in Figs. 3(a) and 3(c). For jH i input polarization,
the initial shift in position space is 118.2 nm, while for jV i
input polarization, the initial shift is 117.8 nm [Figs. 3(b)
and 3(d)]. We find that the initial shifts remain unchanged
with the postselected angle β. The tiny shift in position space
can be regarded as the result of the geometric phase gradient in
momentum space as shown in Eq. (15). Therefore, the tiny
polarization rotation rate in momentum space with Ωm ≃
118 nm is achieved. Note that the modified model of weak

measurements should be introduced when the preselected
and postselected states are nearly orthogonal [17].

We next consider that the weak value is purely real. We thus
choose the postselection angle as β � 0 in Eq. (27), and then
get Im�Aw� � 0 and Re�Aw� � − cot α. The amplified shifts for
jH i and jV i polarization are given by

±
±

β β

ββ

(a) (b)

(c) (d)

Fig. 3. Transverse spatial displacement of initial and final displace-
ment when the polarization states of the incident light beam are jH i
and jV i, namely Φ � 0 and Φ � π. (a) and (c) show the amplified
shift of jH i and jV i, respectively. (b) and (d) are the corresponding
initial spin-dependent splitting in position space. Insets in (a) and
(c) represent the preselected and postselected angles on Poincaré
spheres, respectively.

α α

αα

Theory
Experiment

ΔΘ
×

Theory
Experiment
Theory
Experiment

ΔΘH
-

ΔΘH
+

ΔΘ
×

ΔΘ

ΔΘV
+

(a) (b)

(c) (d)

Fig. 4. Transverse angular displacement of initial and final displace-
ment as a function of preselection angle. (a) and (c) show the amplified
shift of jH i and jV i, respectively. (b) and (d) are the corresponding
initial spin-dependent splitting in momentum space. Insets in (a) and
(c) represent the preselected and postselected angles on the Poincaré
spheres.
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hyH;V
w i � −

zr
zR

Im�δH;V
r � cot α: (30)

Here, the weak value will only amplify the spin-dependent
shifts in momentum space. The amplified spatial displacement
varies with α as shown in Figs. 4(a) and 4(c). The angular shifts
with ΔΘry � 6.8 × 10−6 rad are obtained for both jH i and
jV i input polarization [Figs. 4(b) and 4(d)]. The initial spin-
dependent splitting in momentum space of the two spin
components are the same in size while opposite in direction,
which is independent of the postselection angle. The tiny
polarization rotation rate in position space with Ωp �
krΔΘry � 38 μrad∕λ is achieved.

4. CONCLUSION

In conclusion, we have revealed the tiny polarization rotation
effect in total internal reflection due to the spin–orbit interac-
tion of light. We have found that the spin-dependent splitting
in position space is related to the polarization rotation in mo-
mentum space, while the spin-dependent splitting in momen-
tum space is attributed to the polarization rotation in position
space. The quantum weak measurement with complex weak
values has been applied to detect the tiny polarization rotation
effect. The tiny effect of polarization rotation in both position
and momentum spaces should occur when the Fresnel coeffi-
cients are complex. Therefore, these results are not restricted
to the total internal reflection and could be extended to other
optical systems, such as metallic reflection [18,19], layered
nanostructures [20], and two-dimensional atomic crystals [21].
In addition, the spin–momentum locking and unidirectional
propagation of evanescent wave in total internal reflection
has attracted much attention [22–24]. Analogous with the
behavior of electrons in the quantum SHE, this phenomenon
can be called the quantum SHE of light. The investigations of
polarization rotation in the SHE may provide insights into the
fundamental properties of spin–orbit interaction of light.
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