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Understanding bend loss in single-ring hollow-core photonic crystal fibers (PCFs) is becoming of increasing im-
portance as the fibers enter practical applications. While purely numerical approaches are useful, there is a need
for a simpler analytical formalism that provides physical insight and can be directly used in the design of PCFs
with low bend loss. We show theoretically and experimentally that a wavelength-dependent critical bend radius
exists below which the bend loss reaches a maximum, and that this can be calculated from the structural param-
eters of a fiber using a simple analytical formula. This allows straightforward design of single-ring PCFs that are
bend-insensitive for specified ranges of bend radius and wavelength. It also can be used to derive an expression for
the bend radius that yields optimal higher-order mode suppression for a given fiber structure. © 2017 Chinese
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1. INTRODUCTION

Hollow-core photonic crystal fibers (HC-PCFs) permit light to
be guided over long distances in vacuum, gases, or liquids [1].
If light is confined by a full 2D photonic bandgap, such fibers
offer ultralow losses over a limited bandwidth, for example, a
200 nm wide transmission window at 1550 nm within which
the loss is less than 8 dB/km [2–4]. Another type of HC-PCF,
investigated in recent years, guides light with higher loss (typ-
ically 1 dB/m or less) but over a much broader bandwidth (sev-
eral hundreds of nanometers). The confinement mechanism in
this case is anti-resonant reflection from an azimuthally peri-
odic structure of hollow channels surrounding the core [5].
Examples include kagomé-style PCFs [6] and PCFs with a
single ring of capillaries encircling the core [7]. Single-ring
PCFs have recently been receiving increasing attention because
of their relative simplicity and surprisingly low loss, enhanced
recently by the discovery that higher-order modes can be effi-
ciently suppressed when the ratio between the inner diameter d
of the cladding capillaries (anti-resonant elements or AREs) and
the diameter D of the core (defined as the minimum distance
between two diametrically opposite AREs) is close to 0.68 [8].
Earlier experimental studies focused on fibers with d∕D much
smaller than 0.68 [7,9,10]. As d∕D increases, however, the
fiber becomes increasingly bend-sensitive. Although it is
known that this occurs due to coupling between the core mode
and the surrounding capillaries [11–13], no simple analytical

expression has yet been reported that quantifies the bend-
sensitivity for a given structure, although such an expression
would permit easy optimization of the fiber design. Numerical
solutions of Maxwell’s equations yield loss values for specified val-
ues of bend radius, structure, and wavelength (e.g., [14,15]) but
provide only limited physical understanding of the underlying
bend loss mechanisms.

Here we derive, based on an intuitive physical picture,
a simple analytical expression for a “critical bend radius” Rcr,
above which bend loss is negligible (note that the physics
underlying the appearance of Rcr in single-ring PCFs is slightly
different from that seen in conventional step-index fibers [16]).

2. THEORY

Bend loss in fibers comes in two main forms. First, the tran-
sition bend loss, which occurs as the radius of curvature is
gradually reduced, and second the leakage loss of the eigen-
mode of the constant-curvature fiber [17]. In this paper,
we shall concentrate on the second of these.

The analysis starts with an approximate expression for the
effective phase index of the LPpq-like mode in a circular glass
capillary, first derived by Marcatili and Schmeltzer [18]:
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where upq is the q-th zero of the Bessel function Jp, λ is the
wavelength, and d i is the inner diameter of the capillary
{D for the core and d for the capillaries [see Fig. 1(a)]}.

When the fiber is bent to the radius of curvature R, the
refractive index distribution becomes tilted (to first order) as
follows [19]:

n̑�x; y� �
�
1� y

R

�
n̄�x; y�; (2)

where R is the bend radius, and the (x, y) axes lie in the local
transverse fiber plane, the y axis pointing normal to the bend, the
fiber axis being located at y � 0. The effective index of the LP01
mode of a cladding capillary rotated at angle θ to the y axis [see
Fig. 1(a)] is then given by Eq. (2) with y � ��d � D�∕2� cos θ.

The index difference between an LPpq core mode and the
LP01 capillary mode takes the analytical form:
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This equation shows that, as the radius of curvature R falls, a
critical value Rpq

cr is reached when Δnpq01 � 0 for θ � 0°, i.e.,
when one of the cladding capillaries is at its maximum distance
�d � D�∕2 from the x axis. Under these phase-matched

conditions, light couples strongly from the core mode to the
outer capillary mode, where it leaks away rapidly into the sur-
rounding solid glass sheath. If the fiber is carefully aligned so
that θ � 30°, the critical bend radius will be a factor

ffiffiffi
3

p
∕2

smaller. In a typical laboratory setting, however, θ will vary ran-
domly, so that the upper value of Rpq

cr is likely to apply. Overall,
this means that phase-matching between core and capillary
modes can in principle occur for any bend radius R < Rpq

cr .
Starting with a straight fiber, therefore, the bend loss will in-
crease rapidly when the critical bend radius is reached, and the
transmission will remain small for smaller values of R.

Figure 1(b) plots Eq. (3) for the case when d∕D � 0.696,
p � 0, and q � 1 (i.e., the LP01 core mode, u01 � 2.405) for
four different values of the scale parameter λ∕D. This plot
predicts, for example, a critical bend radius of ∼17 cm for
D � 79 μm, d � 55 μm, and λ � 2.8 μm.

Using the approximation λ∕�πD� ≪ 1, Eq. (3) can be
manipulated to yield an explicit expression for R01

cr :

R01
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D
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cos θ; (4)

which shows that, for a given structure, the radius of curvature
at which bend loss becomes significant scales with D3∕λ2. This
functional dependence is similar to that seen in standard step-
index fiber, i.e., Rcr ∝ ρ3∕λ2 where ρ is the core radius (see,
e.g., [20]). The simple expression in Eq. (4) has the advantage
of clearly revealing the dependence of R01

cr on the scale param-
eter D∕λ and the shape parameter d∕D. (Note that a more
complicated analysis, based on similar physical assumptions,
has been reported in connection with THz guidance in a
single-ring polymer structure [11]).

To verify the analysis, we used finite-element modeling
(COMSOL) with perfectly matched layer boundary conditions
[21]. Numerically simulated modal field (axial component of
the Poynting vector) distributions for the structure mentioned
above are plotted in Fig. 2 for three different values of R. At
R � 22 cm, just above R01

cr � 17 cm, the outermost capillary
mode is only weakly excited, and the loss is ∼1.2 dB∕m. At
R � 17 cm, the bend loss rises to ∼21 dB∕m, and the outer-
most capillary lights up brightly. At R � 8.6 cm, the capillaries
at θ � �60° become resonant, and the bend loss drops to
around 5 dB/m, with little difference between polarization
states. Because in a typical experiment a fiber will start out
straight and then gradually bend to smaller values of R, most
of the bend loss will occur when R has values close to R01

cr . If R
remains constant along the whole fiber length, the loss can
attain quite small values provided the core and capillary modes
are phase mismatched, which can occur even when R is small.

The numerically calculated bend loss values are plotted ver-
sus normalized bend radius in Fig. 3, together with the critical
bend radius calculated from Eq. (4) for θ � 0°. The analytical
expression provides a good estimate of the bend radius at which
the bend loss significantly increases. For both fibers, the bend
loss was of order 10 dB/m at the critical bend radius. There is a
small offset between the analytically calculated critical bend
radii and the peaks in bend loss found from the numerical cal-
culations, but this is not unexpected given the approximations
used in deriving Eq. (4).

Fig. 1. (a) Sketch of the geometry of a single-ring HC-PCF, show-
ing the local coordinate system. The inner diameter of the six capil-
laries is d , and the core diameter (the minimum distance between two
diametrically opposite capillaries) is D. (b) Index difference Δn0101
between LP01-like core and capillary modes, plotted against R∕D
for d∕D � 0.696 at four different values of λ∕D.
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3. EXPERIMENTS

To experimentally validate Eq. (4), the bend loss in two differ-
ent single-ring PCFs was measured by first recording the trans-
mission spectra in few meters lengths of straight fiber. The
fibers were then coiled around mandrels of varying radii (in
steps of 1.25 cm) without disturbing the in- and out-coupling
ends of the fibers, and the transmission spectra measured in
each case. Subtracting the transmission spectrum (in dB) of
the straight fiber from that of the bent fiber and dividing by
the length of bent fiber section gave the bend-induced loss,
which is plotted in Fig. 4. The solid white curves in Fig. 4 plot
R01
cr ∕D from Eq. (4) for both fibers. It is clear that the bend loss

remains relatively low for R > R01
cr but increases rapidly as R01

cr

is approached, reaching a maximum as R decreases beyond this
point. No special care was taken to control the polarization
state or the alignment angle θ in Fig. 1(a) because we are only
interested in the bend sensitivity of these fibers under normal
laboratory conditions. This means that the critical bend radius
in some cases will appear at lower values of R, corresponding to
θ � �30°, marked by the dashed white lines in Fig. 4. This
means that the fiber would in principle be slightly less bend
sensitive if carefully oriented at θ � �30°.

The gray-shaded rectangle in Fig. 4(a) marks the wavelength
range where there was no measurable transmission even in the
straight fiber, which is a consequence of phase-matching to a
resonance in the walls of the ring capillaries at wavelengths
given by λm � 2h�n2 − 1�1∕2∕m, where h is the capillary wall
thickness, n is the refractive index of the glass, and m is the
order of the resonance [5,22]. For the PCF in Fig. 4(a)

Fig. 3. Numerically calculated bend loss for the fibers for θ � 0°,
plotted against normalized bend radius R∕D. A:�d ; D; λ� �
�55; 79; 2.8� μm, i.e., d∕D � 0.70 and λ∕D � 0.035. B:�d ; D; λ� �
�22; 36; 1.2� μm, i.e., d∕D � 0.61, λ∕D � 0.033. The dashed ver-
tical lines mark the corresponding analytical solutions for the critical
bend radius using Eq. (4) with θ � 0°. The dotted vertical line shows
the bend radius for phase-matching to the capillaries at θ � �60°.
In each case the loss is calculated for modes polarized normal to
the bend, i.e., in the y direction in Fig. 1(a).

Fig. 4. Experimentally measured bend loss in two fibers with the
same shape parameters as in Fig. (3). (a) d∕D � 0.70 and
(b) d∕D � 0.61. The bend radii were changed in steps of
1.25 cm, and between these steps the colors are interpolated. The mea-
sured loss versus wavelength in (b) was smoothed with a moving aver-
age filter. The gray rectangle in (a) marks the region where the core
mode phase-matches to a resonance in the walls of the capillaries, caus-
ing high attenuation. In each case, the white solid and dashed lines are
solutions of Eq. (4) for θ � 0° and θ � 30°, respectively.

Fig. 2. Numerically calculated axial Poynting vector distributions
and loss α of a single-ring PCF with d � 55 μm, D � 79 μm, λ �
2.8 μm and capillary wall thickness t � 1.15 μm, for (a) bend radius
slightly greater than R01

cr � 17.2 cm, (b) close to R01
cr , and (c) and

(d) close to the radius of curvature that phase-matches the LP01 core
mode to capillaries placed at θ � �60°. The arrows indicate the
polarization of the electric field.
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h � 1.15 μm, yielding λ1 � 2.36 μm (D2∕λ2 � 1121). For
the PCF in Fig. 4(b) λ ∼ 0.97 μm (D2∕λ2 ∼ 1377,
h ∼ 0.46 μm), which lies outside the wavelength range consid-
ered. Because in practice a low-loss single-ring PCF will always
be used at wavelengths far away from the capillary wall reso-
nances, we do not discuss here how bending might broaden
these loss bands.

4. HIGHER-ORDER MODE SUPPRESSION

Moving on now to bend loss for the LP11-like core mode
(u11 � 3.832) and applying the same approximations as used
in deriving Eq. (4), we arrive at the result

R11
cr

D
� D2

λ2
·

π2�1� d∕D�
�u01D∕d �2 − u211

cos θ: (5)

Under certain conditions, Δn1101 can be negative in the straight
fiber, which has the interesting consequence that light will leak
away toward the inside of the bend for bend radii less than R11

cr .
This occurs when d∕D > u01∕u11 ≈ 0.63. As previously re-
ported [8], efficient suppression of higher-order core modes
in a straight single-ring PCF occurs when d∕D ≈ u01∕u11.
Equation (5) shows that higher-order core modes can be sup-
pressed in cases when d∕D < 0.63 by bending to the correct
radius of curvature.

5. CONCLUSIONS

The critical bend radius in single-ring HC-PCFs can be accu-
rately predicted using an analytical expression derived from
simple physical principles, resulting in values that agree well
with experiments. The analysis can also be applied to structures
with different numbers of ring capillaries, e.g., eight [13].
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