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The exceptional point (EP) is one of the typical properties of parity–time-symmetric systems, arising from modes
coupling with identical resonant frequencies or propagation constants in optics. Here we show that in addition to
two different modes coupling, a nonuniform distribution of gain and loss leads to an offset from the original
propagation constants, including both real and imaginary parts, resulting in the absence of EP. These behaviors
are examined by the general coupled-mode theory from the first principle of the Maxwell equations, which yields
results that are more accurate than those from the classical coupled-mode theory. Numerical verification via the
finite element method is provided. In the end, we present an approach to achieve lossless propagation in a
geometrically symmetric waveguide array. © 2017 Chinese Laser Press

OCIS codes: (230.7370) Waveguides; (080.1238) Array waveguide devices; (160.3918) Metamaterials.
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1. INTRODUCTION

Hermitian Hamiltonians with real eigenvalues and orthogonal
eigenstates are generally used to describe closed (isolated)
systems, while for an open system, there is the additional
interaction of the states with the environment, resulting in a
non-Hermitian Hamiltonian with complex eigenvalues and non-
orthogonal eigenstates [1–3]. The extension of a Hermitian to a
non-Hermitian Hamiltonian is generally achieved by introduc-
ing complex potentials or gain and loss [4–7]. Note that if the
complex potentials have parity–time (PT) symmetry [4,8], the
system experiences a phase transition from the unbroken phase
to the broken one across an exceptional point (EP), where the
eigenvalues and eigenstates coalesce. All these features lead to
many interesting applications in various optical systems, includ-
ing PT-symmetric lasers [9,10], coherent absorption [11], Bragg
reflectors [12,13], nonreciprocal light transmission [14,15], and
others [16–18]. Also, for passive PT-symmetric systems, through
gauge transformation, the structure can behave in a PT-symmetric-
like fashion [19,20]. When the nonlinearity included in these
PT systems has been taken into account, it gives rise to a wide
array of new phenomena. In particular, the gain saturation is
unavoidable in amplifying optical waveguides [21,22].

Among various photonic structures, coupled optical wave-
guides provide one of the most appealing and experimentally

accessible platforms for implementing the idea of PT symmetry
[23,24], while for asymmetric coupling systems arising from
asymmetric geometry or arbitrary gain and loss, the associated
properties of PT symmetry are lost [24,25]. Yet with some
subtle approaches, PT-symmetric-like properties can be recov-
ered to a certain extent [26]. In Ref. [27], we revealed the ab-
sence of EP, even for a situation where the system apparently
fulfills the PT symmetry condition with uniform gain and loss.
This is ascribed to the different modes coupling together with
unequal propagation constants. In addition to the different
modes coupling, the detuning of the coupled modes arising
from nonuniform gain and loss can also eliminate the EP,
but more apparently yields lossless modes, which are of great
importance for photonic signal processing.

In this paper, we present such a study and examine the
evolution of propagation constants for four coupled waveguides
in a square array with nonuniform gain and loss. The non-
Hermitian Hamiltonian obtained from the classical coupled-
mode theory (CMT) [28–30] can be used to describe the
propagation dynamics; however, it fails to capture the influence
of the gain and loss, particularly for heavy gain/loss involve-
ment and for identical modes coupling. In order to deal with
this problem, another well-established approach, referred to as
general CMT, from the first-principle point of view, has been
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developed [31]. Based on this approach, a detailed description
of the effect of the gain and/or loss factor on the propagation
constants is illustrated. In particular, we present the conditions
for the emergence of a purely real propagation constant via
properly designed gain and loss distribution, utilizing the
classical CMT and general CMT simultaneously. All of these
are fundamentally related to the energy balance of the coupled
modes in their spatial propagation channels (locations in the
cross sections of the waveguide array).

2. TWO MODES COUPLING MODEL

We begin with a simple two-states model to describe the system
that has two coupled propagation modes. The Hamiltonian is
written as

H �
�
β1 � jγ1 κ12
κ21 β1 � Δβ� jγ2

�
; (1)

where β1 is the propagation constant, κ12 and κ21 are the cou-
pling strengths of the two modes, γ1�2� defines the intrinsic gain
(γ1�2� > 0) or loss (γ1�2� < 0), and Δβ represents the additional
and tunable propagation constant introduced in the second
mode. In Eq. (1), j is the imaginary unit.

The eigenvalues of the Hamiltonian, i.e., Eq. (1), take the
form

β� � β1�
Δβ� j�γ1� γ2�

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Δβ� i�γ2 − γ1��2

4
� κ12κ21

r
:

(2)

Note that the gain/loss of the propagation modes are
characterized by the imaginary parts of the propagation
constants (obtained either from theoretical eigenvalues of
Eq. (1) or from numerical full-wave simulation, such as
COMSOL Multiphysics [32]). In experiments, the gain/loss
may be achieved via erbium doping optically pumped with
a laser beam [27]. In the nonlinear regime, the presence of gain
saturation results in a mismatch with the loss. So a rational
value of the gain/loss coefficient should be carefully adopted
in the experiment in the linear regime, and also in the nonlinear
regime, which is not discussed in this paper.

If Δβ � 0 and γ1 � −γ2, the system reduces to the general
PT-symmetric case, and experiences a transition from a
fully real spectrum to a complex conjugate spectrum [4,8].
If Δβ � 0, γ1 � 0, and γ2 < 0, the system corresponds to
the passive PT symmetry case [33]. If Δβ ≠ 0, the system
no longer has real eigenvalues, and the EP will not emerge.
In this work, we mainly focus on the deviation of the propa-
gation constants, stemming from the additional nonuniform
gain and loss for the coupling of the originally identical modes,
in addition to the coupling of different modes supported in the
four coupled waveguides in a square array [see Fig. 1(a)].

3. FOUR COUPLED WAVEGUIDES IN A SQUARE
ARRAY

To investigate and compare the two different cases (e.g., the
identical mode coupling and different mode coupling cases),
we consider a usual and unique structure: four coupled wave-
guides in a square array [27]. The Hamiltonian of this system is

not transparent, as each waveguide supports two degenerate
fundamental modes. To circumvent that, the system is consid-
ered as a coupled structure with supermodes supported in
diagonal waveguides and the supermodes supported in off-
diagonal waveguides. The supermode here refers to a hybrid-
ized mode from the fundamental ones in each individual
circular waveguide. It turns out that the total structure can
be represented by four isolated 2 × 2 Hamiltonians (the modes
are located in diagonal and off-diagonal waveguides), as shown
in Figs. 1(b)–1(e) (respectively corresponding to coupling
combinations 1–4, labeled as C1–C4). Coupling schemes
C1–C4 are specific combinations of two decoupled modes
(from the four modes, labeled as M1, M2, M3, and M4), sup-
ported in the diagonal and off-diagonal waveguides as shown in
Figs. 1(b)–1(e), respectively.

Here, a more rigorous and systematic approach, (i.e., the
nonorthogonal vector CMT based on the linear superposition
of the modes for individual waveguides [30]) can be utilized to
theoretically analyze the mode interactions in a two-state
model. The coupled-mode equation reads

j
d
dz

�
aA
aB

�
�

�
βA � jγA κA
κB βB � jγB

��
aA
aB

�
; (3)

where βA�B� is the propagation constant for each supermode
supported in diagonal (off-diagonal) waveguides, κA�B� is the
coupling strength, and aA�B� is the corresponding normalized
amplitude. γA�B� denotes the gain (γA�B� > 0) or loss
(γA�B� < 0) coefficient. Here, the wavelength is set to 1550 nm.
We note that κA�B� and γA�B� can be calculated based on
the field distribution of the decoupled modes and their over-
lapping integral [28,29]. The cross-interacting term is essen-
tially treated as a complex inner product between the fields:

(a) (b) (c)

(d) (e)

Fig. 1. Schematic of the proposed structure consisting of four
coupled waveguides in a square array and the coupled-mode schemes
supported in this structure. (a) Top view of the cross section profile,
(b)–(e) four coupled-mode fashions between the modes supported in
the diagonal (A) and off-diagonal waveguides (B). The geometrical
parameters are r � 0.2 μm, d � 0.5 μm. The relative permittivity
of the diagonal (A) waveguides and off-diagonal (B) waveguides are
εA � εco � jεA;I and εB � εco � jεB;I , respectively. Here, εco �
12.25 corresponds to silicon, and the background medium (silica)
has the dielectric function εb � 2.25.
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κA�B� �
ωε0
2

Z Z
SA�B�

�εco − εb�u	A�B� · uB�A�dxdy; (4)

γA�B� �
ωε0
2

Z Z
SA�B�

εA�B�;Iu	A�B� · uA�B�dxdy: (5)

Here, uA�B� represents the normalized electric field distribution
of the individual waveguide system, and SA�B� is the integral
cross section where waveguides A�B� are located. In this
work they were obtained numerically by the finite element
method (FEM) [32]. The associated coefficients, especially
κA�B� and γA�B�, for different coupling schemes (C1–C4) are
shown in Table 1, calculated by Eqs. (4) and (5). Note that
γA�B� are assumed to be proportional to εA�B�;I in the conven-
tional CMT.

According to the eigenvalues of Eq. (3) and the coefficients
in Table 1, if the permittivity of the system obeys ε�x� �
ε	�−x� (* stands for complex conjugate), it possesses general
PT symmetry for the combinations C2 and C3, while for the
other two combination schemes, the system loses the EP [27].
The absence of the EP is ascribed to the different propagation
constants between the two decoupled supermodes, which origi-
nate in the intrinsic properties of the structure.

Up to now, we have considered the cases of uniform gain
and loss distributions briefly. But for nonuniform gain and loss,
particularly for εB;I � 0 and εA;I � εI < 0, which are analo-
gous to passive PT symmetry [33], two of the total coupling
cases (C2 and C3) should experience a similar transition
from an unbroken phase with identical eigenvalues to a broken
phase with unequal ones, according to Eq. (3), based on the
classical CMT.

The corresponding numerical results obtained from FEM
simulation are shown in Fig. 2 for varying amounts of gain
and loss. Although they are not consistent with the above pre-
diction, we will carefully demonstrate the reason. Note that the
EPs of all four of these combinations are lost. However, after a
critical amount of loss is added, the total transmission of the
waveguide array increases, even though the loss amount is in-
creased. This is similar to the passive PT symmetry, leading to
loss-induced transmission [34].

4. ANALYSIS BASED ON GENERAL
COUPLED-MODE THEORY

The CMT presented in Section 3 is valid for a definite and
conserved optical power of the whole system [30], while for

non-Hermitian systems with arbitrary gain and loss, and espe-
cially for systems with strong gain/loss, the total integrated
power is not a conserved quantity [31]. Thus, a general
CMT analysis is necessary to deal with these non-Hermitian
systems. This method is based on the variational principles,
in which the scalar inner product for non-Hermitian systems
is used [31].

In this section, we briefly outline the theoretical procedure
for constructing the general CMT; for further details, see
[31,35]. We assume that the forward (�z) propagation modes
supported in the unperturbed systems are expressed as
ϕ � �E�

m H �
m �T � � e�m h �

m �T exp�j�ωt − βmz��. The cor-
responding adjoint fields, i.e., the backward (−z) propagation
modes are φ� �E−

m H −
m�T � �e−m h −

m�T exp�j�ωt�βmz��.
The relationships between the fields are as follows:
e�m � � ex ey ez �m, h�m��hx hy hz �m, e−m��ex ey −ez �m,
and h−m � � −hx −hy hz �m. Here e�m (h�m ) is the vector
electric (magnetic) field in the transverse cross section for for-
ward (+) and backward (−) propagation. Importantly, the coun-
terpropagating modes (e�m and h�m ) have a definite relationship,
so one can be deduced from the other. The subscript m denotes
the index of the supported supermodes.

The normalized forward fields satisfy the Maxwell equations

∇t × e�m − jβmz × e�m � −jωμh�m ; (6)

∇t × h�m − jβmz × h�m � jωε0εre�m ; (7)

where ∇t � x∂∕∂x � y∂∕∂y and x, y, and z are unit vectors.
When a small perturbation (Δε) is taken into account, the
fields of the perturbed system can be approximately written
as a linear combination of the unperturbed adjoint fields, i.e.,

E− �
�X

n

ane−n

�
exp�j�ωt � βz��; (8)

H − �
�X

n
anh−n

�
exp�j�ωt � βz��: (9)

Table 1. Coupled-Mode Components and the
Coefficients of the Hamiltonian in Eq. (3) for Four
Combinations of Modes Coupling, i.e., Cases Shown in
Figs. 1(b)–1(e)

Combination C1 C2 C3 C4

Diagonal M3 M1 M2 M4
Off-diagonal M4 M1 M2 M3
βA∕k0 2.4842 2.4672 2.4702 2.4867
βB∕k0 2.4867 2.4672 2.4702 2.4842
γA∕�k0εA;I � 0.1576 0.1641 0.1638 0.1576
γB∕�k0εB;I � 0.1576 0.1641 0.1638 0.1576
κA∕k0 0.1022 − 0.0054j 0.023 0.0187� 0.0016j 0.103
κB∕k0 0.1022� 0.0054j 0.023 0.0187 − 0.0016j 0.103
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Fig. 2. Propagation constants β� as a function of εI for different
mode-coupling cases C1 (black solid curve), C2 (green solid curve),
C3 (blue dashed curve), and C4 (red dashed curve). (a), (c) The real
parts; (b), (d) the imaginary parts. The corresponding structure has
εB;I � 0 and εA;I � εI < 0.
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Here, they also satisfy the Maxwell equations

∇t ×
�X

n
ane−n

�
� jβz ×

�X
n
ane−n

�
� −jωμ

�X
n
anh−n

�
;

(10)

∇t ×
�X

n

anh−n

�
� jβz ×

�X
n

anh−n

�

� jωε0�εr � Δε�
�X

n

ane−n

�
: (11)

By considering only the effect of the perturbation, we can take
certain operations of Eq. (6) multiplied by Σnh−n minus Eq. (10)
multiplied by h�m, and Eq. (7) multiplied by Σne−n minus
Eq. (11) multiplied by e�m (instead of multiplying by the com-
plex conjugate of the fields); then, taking the integral operator
over the transverse cross section, the equation finally can be
simplified toX

n
an�j�β − βm�pmn � bmn � jkmn� � 0: (12)

The coefficients in Eq. (12) are as follows:

bmn �
Z Z

f∇ · �h�m × e−n� − ∇ · �h−n × e�m �gdxdy; (13)

pmn �
Z Z

fz · �h�m × e−n� − z · �h−n × e�m �gdxdy; (14)

kmn �
Z Z

ωε0Δεe−n · e�mdxdy: (15)

For the unperturbed situation (Δε � 0), it is easy to have
bmn � −j�βn − βm�pmn. As a result, Eq. (12) reduces toX

n

an��β − βn�pmn � kmn� � 0: (16)

Equation (16) can be rewritten as an eigenvalue problem,

H · a � H −1
2 ·H 1 · a � βa; (17)

where a � �a1; a2;…; an�T , �H 1�mn � βnpmn − kmn, and
�H 2�mn � pmn. The eigenvalue β of the Hamiltonian H is
the propagation constant of the propagating modes, and the
corresponding eigenvector a denotes the proportion of the
decoupled modes (i.e., the unperturbed modes) written as
Eqs. (8) and (9). As a consequence, the propagation constant
β is the result of the original unperturbed modes coupling due
to the involved perturbation. This is the key equation referred
to as the general CMT.

In view of Eq. (16), a small perturbation Δε has a great
effect on the final propagation constants. We would utilize
the general CMT to analyze the evolution of the propagation
constants for the cases shown in Figs. 2(c) and 2(d). Intuitively,
it comes from the detuned Δβ due to the nonuniform gain and
loss for the coupling modes. In the preceding section, it was
mentioned that the Hamiltonian was considered as the coupled
modes formed in the diagonal and off-diagonal waveguides,
and therefore we would particularly examine the evolution
of each mode supported in the diagonal waveguides when
the imaginary part of the permittivity is introduced. Here,
the four modes (labeled as M1, M2, M3, and M4) are exactly
orthogonal for the corresponding Hermitian system. As such,

they are treated as single-mode interactions in the general
CMT, i.e., m � n in Eq. (16). In this case, Eq. (16) becomes

am��β − βm�pmm � kmm� � 0: (18)

Here m corresponds to modes M1, M2, M3, and M4, respec-
tively. The propagation constant after perturbation can be cal-
culated step by step through the fields obtained by numerical
simulation based on the FEM. The results are shown in Fig. 3.
It is obvious that as the imaginary part of the permittivity
(εA;I � εI ) increases from zero, the real part of the propagation
constants increases, and the increasing speed accelerates, while
the imaginary part keeps growing linearly. We note that the real
part is even and the imaginary part is odd with respect to εI .
The results of the FEM agree well with the general CMT.
Figure 3 further shows that the imaginary part of the permit-
tivity has great influence on the real part of the propagation
constants, especially for large εI values. This is the main cause
of the introduction of Δβ for the coupled modes, which is
responsible for the results in Figs. 2(c) and 2(d). The emergence
of zero Δβ is also the reason for the formation of PT symmetry
with uniform gain and loss.

5. REALIZATION OF STABLE PROPAGATION

According to the above analysis and the results presented in
Fig. 3, it is possible to achieve a stable propagation mode (with-
out any attenuation and amplification during the propagation)
in systems with nonuniform gain and loss distributions.
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Fig. 3. Propagation constants as a function of εI for different modes
supported in the diagonal (off-diagonal) waveguides: M1 (black circles,
real; black solid curve, imaginary), M2 (red squares, real; red dashed
curve, imaginary), M3 (green plusses, real; green solid curve, imagi-
nary), and M4 (blue X’s, real; blue dotted curve, imaginary). (a) FEM
results, (b) general CMT results. The left y axis corresponds to the real
parts of the propagation constants, and the right y axis is for the
imaginary parts. Here, εA;I � εI .
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Lossless propagation modes are ubiquitous in PT-symmetric
systems, for example, in coupled waveguides with balanced gain
and loss below the EP, and attenuation is frequently encoun-
tered in the absence of PT symmetry. In this section, we show
the possibility of achieving purely real eigenvalues in waveguide
systems with nonuniform gain and loss, combining the classical
CMT and the general CMT. Here, we use the coupling com-
bination C1 as the example, and the results can be applied to
the other cases (e.g., C2, C3, and C4).

To simplify the discussion, we introduce the degree of free-
dom α (εA;I � −εI , εB;I � αεI ). A stable propagation mode
requires that Im�β�� � 0. By inserting into Eq. (3) the param-
eters (listed in Table 1) obtained from the classical CMT, we
get a phase diagram describing the properties of the mode
coupling (M3 and M4) as shown in Fig. 4, where the black
solid line corresponds to the case of Im�β�� � 0, representing
one lossless eigenstate and one lossy one. Notice that the red
dashed line corresponds to Im�β−� � 0, for which the system
has a gain eigenstate and a lossless one. For parameters in the
black and the red lines, the system is tuned to a point (let us call
it the ‘α- point’ for convenience) where one of the two superm-
odes we considered conserves its energy during propagation.
For this reason, the whole parameter space is separated into
three regions labeled I, II, and III in Fig. 4. It is easy to see
that region I consists of double lossy eigenstates, region II
has a gain eigenstate and a lossy one, and region III contains
two gain eigenstates. Importantly, we can see that there exist
two independent solutions for Im�β−� � 0 (for a certain εI
value range) and a single solution for Im�β�� � 0. Also, there
exists a limit for the choice of εI to fulfill Im�β−� � 0. Thus,
the properties of the entire system can be distinguished by the
specific parameter pair (εI , α). The propagation behaviors of
the system are then discussed in some detail, essentially using
Fig. 4 as a rough guideline. The numerical results for a purely
real propagation constant are also shown in Fig. 4 with different
symbols (circles and squares).

To check the detailed modal properties, we first focus on a
specific α-point of �εI ; α� � �0.6; 0.9459�, which falls right on
the black solid curve in Fig. 4. With these settings, the system

supports two supermodes: one of effective index β�∕k0 � 2.53
and the other of β−∕k0 � 2.44 − 0.005j. To see the conse-
quence of such a nonuniform combination of gain and loss,
we use the fourth-order Runge–Kutta method to solve Eq. (3).
Figure 5 shows the evolution of the slowly varying intensity
jai�z�j2 (i � A; B) as a function of the propagation distance
z. This is for the case when the lossy waveguide mode aA is
initially excited. It is seen that the optical field is able to be
coupled into the gain waveguide mode aB . There is also obvious
beam oscillation for both modes, resulting from the interfer-
ence of the asymmetric mode and their reciprocal coupling.
The oscillation period Lo ≈ 17.2 μm is determined by the
mismatch of the real parts of the supermode refractive indices
as Lo � 2π∕Re�Δβ 0�, where Δβ 0 � β� − β−. Alternatively, for
the case of the initial excitation of the gain waveguide mode aB ,
there is similar propagation behavior.

For another particular pair �εI ; α� � �0.5; 0.9459�, which
falls into the phase region I in Fig. 4, similar beam oscillation
can be observed [see Figs. 5(c) and 5(d)]. However, the optical
field propagation suffers from overall attenuation, decaying
approximately to zero after a distance z ≈ 400 μm. For this
system, the two supermodes are both lossy, in agreement with
the phase diagram in Fig. 4. It is noted that the attenuation at
relatively small εI values in region I is quite small, which in-
dicates that light can propagate over long distances (in the order
of millimeters).

We emphasis that the differences between the results of
classical CMT and FEM in Fig. 4 are partially due to the fact
that the coefficients in Table 1 are obtained by the original field
distributions of the corresponding Hermitian system. This
treatment neglects the perturbation of mode profile and cou-
pling by including the imaginary part of the permittivity. To
have a clearer and more exact theoretical modeling, the above-
mentioned general CMT in Section 4 is applied here. Our
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Fig. 5. (a) Evolution of the intensity jaAj2 (red dashed line) and
jaB j2 (black solid line) as functions of z for the initial condition that
only the lossy waveguide mode aA is excited, (b) the total intensities
(jaAj2 � jaB j2) for the cases where the loss (red dashed line) and gain
(black solid line) waveguides modes are excited. (a) and (b) show the
system at the α-point �εI ; α� � �0.6; 0.0.9459�; (c) and (d) are similar
to (a) and (b), but for the point �εI ; α� � �0.5; 0.9459� in phase I.
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system can be represented by a two-mode coupling model, so
based on Eq. (16), the corresponding general coupled-mode
equation can be written as�

β1p11 − k11 β2p12 − k12
β1p21 − k21 β2p22 − k22

��
a1
a2

�
� β

�
p11 p12
p21 p22

��
a1
a2

�
:

(19)

Here, the perturbation isΔε � jεA;I (diagonal waveguides) and
Δε � jεB;I (off-diagonal waveguides).

Figure 6 shows the corresponding results from the FEM, the
classical CMT, and the general CMT. For different α values,
the results of the FEM and general CMT all agree quite well.
When α increases from the loss-dominated value (α < 1) to the
gain-dominated value (α > 1), the real parts of the two bands
approach, and the imaginary parts experience a transition,
meaning that the system goes from two lossy eigenstates to
two gain ones. This exactly illustrates and corroborates the
phase region partition in Fig. 4. For Im�β−� � 0 at εI ≈ 0.6,
there exist two choices of α, and the corresponding dispersion
relations are shown in Figs. 6(c)–6(f ). This clearly demonstrates
the difference between the selection of Im�β−� � 0 and
Im�β�� � 0 in order to have a stable mode. Despite the very
good agreement with respect to the FEM results, we note that
the general CMT could not directly provide a phase boundary
prediction as shown in Fig. 4, while the classical CMT can give
a rough estimation of these phase boundaries. Therefore, the
classical CMT and the general CMT can be complementary
to each other in terms of verification and prediction, apart from
brute force numerical methods.

In conclusion, we have revealed the eigenvalue dynamics for
a system of four geometry identical waveguides with nonuni-
form gain and loss. Based on the first principle of the Maxwell
equations, the general CMT is used to understand the origin of
the offset of originally equal propagation constants in the pres-
ence of permittivity perturbation, especially for the real part.
The offset leads to asymmetric mode coupling and the absence
of EP. Also, the system can be tuned to support supermodes
with real propagation constants, via a carefully designed gain/
loss ratio in the individual waveguides. We show that such a
system has a phase transition that interfaces two regimes:
one with both coupled propagation modes being lossy, the
other with one gain and one lossy mode. It can also be opti-
mized to demonstrate a different transition from the phase with
all gain states to a phase with one gain and one lossy. The re-
quired tuning parameter is the gain/loss ratio α: for the former,
α < 1, while for the latter, α > 1. The additional degree of
freedom α is introduced to modify the energy distribution,
in order to compensate the mode asymmetry-induced imbal-
ance. It is noted that α closely relies on the propagation con-
stant of the decoupled modes. Furthermore, our results may be
extended to plasmonic or plasmonic–dielectric hybridized
waveguide systems.
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