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We show how to design an optical device that can perform any linear function or coupling between inputs and
outputs. This design method is progressive, requiring no global optimization. We also show how the device can
configure itself progressively, avoiding design calculations and allowing the device to stabilize itself against drifts
in component properties and to continually adjust itself to changing conditions. This self-configuration operates
by training with the desired pairs of orthogonal input and output functions, using sets of detectors and local
feedback loops to set individual optical elements within the device, with no global feedback or multiparameter
optimization required. Simplemappings, such as spatial mode conversions and polarization control, can be imple-
mented using standard planar integrated optics. In the spirit of a universal machine, we show that other linear
operations, including frequency and time mappings, as well as nonreciprocal operation, are possible in principle,
even if very challenging in practice, thus proving there is at least one constructive design for any conceivable
linear optical component; such a universal device can also be self-configuring. This approach is general for linear
waves, and could be applied tomicrowaves, acoustics, and quantummechanical superpositions. © 2013 Chinese
Laser Press
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1. INTRODUCTION
There has been growing recent interest in optical devices that
can perform novel functions such as converting spatial modes
from one form to another [1–3], offering new kinds of optical
frequency filtering [4–7], providing optical delays [8,9], or en-
abling invisibility cloaking [10–13]. All these operations are
linear. Many other linear transformations on waves are math-
ematically conceivable, involving frequency or time, spatial
form, polarization, and nonreciprocal operations. Despite
the mathematical simplicity of defining such linear operations
[14], it has not been clear how to perform arbitrary linear op-
erations on waves physically, or even in principle whether
such operations are generally possible. The usual linear opti-
cal components, such as lenses, mirrors, gratings, and filters,
implement only a subset of all the possible linear relations be-
tween inputs and outputs [15]. Other components, such as
volume holograms [16,17] or matrix-vector multipliers [18],
can implement some more complex relations; it is difficult,
however, to make such approaches efficient—for example,
avoiding a loss factor of 1=M when working with M different
beams [3]; for high-efficiency devices, interactions between
designs for different inputs leave it unclear how, or even if,
the device is possible. Indeed, some designs resort to blind
optimization based in part on random or exhaustive searches
among designs with no guarantee of the existence of any sol-
ution [4–7,19,20]; such approaches do, however, give exist-
ence proofs of the possibility of some efficient designs for
novel functions [4,5,7,19,20].

In this paper, we show how to design an arbitrary linear
optical device. The method is direct and progressive; once
we decide what we want the device to do, we sequentially

set the various required components one by one. For devices
operating only on spatial modes, the devices could be made
using standard optics and are particularly well suited to inte-
grated optical approaches. In this spatial case, we can de-
scribe the device as a general spatial mode converter. The
spatial approach can be extended to handle polarization by
converting different polarizations in the same spatial input
mode to the same polarization in two different spatial modes
and proceeding thereafter in a similar fashion to the spatial
mode converters.

More generally for a linear optical device, we have to look
beyond fixed spatial structures to ones that also vary in time.
Note, for example, that a device with a refractive index that
varies in a prescribed way in time can be linear in the signal
field in mathematically the same way as a device where that
index varies only in space. Just as a linear spatial optical de-
vice can map an input beam with one shape to an output beam
with another shape, so also in principle can a linear temporal
(i.e., time-varying) optical device map an input beam with one
spectrum to an output beam with another spectrum. Such
temporal devices would require frequency shifters or time-slot
interchangers or equivalent temporal operations. With current
technologies, it is practically much more difficult to make the
required large changes in optical properties at timescales cor-
responding to optical frequencies, of course. As a result, most
conceivable temporal linear optical devices are not currently
practical. It is, however, of some basic interest to understand
at least what devices are possible in principle. Here, in an ex-
tension of the discussion of spatial and polarization devices,
we also examine such temporal devices. We show a construc-
tive design method that could in principle design any linear
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optical device, including temporal aspects, without violating
any laws of physics. In the spirit of a universal machine, like
the Turing machine in computing, we therefore prove here
that any such device is possible in principle. Even with some
design approach for an arbitrary desired linear operation, the
resulting device could be quite complicated [15] and the de-
sign could require a significant amount of calculation. Further-
more, operations on waves can require interferometric
precision, and calibrating and setting many analog elements
precisely to construct such a design could be very challenging
even for the spatial mode converter devices.

Fortunately, we can avoid the calculations and the difficul-
ties of calibration and setting of devices; we can make the de-
vice self-configuring. The self-configuration involves training
the device using the desired inputs and output. It is based on
an extension of the ideas of the self-aligning beam coupler
[21]. This process requires only local feedback loops each op-
erating on a single measurable parameter. Such feedback
loops can be left running during device operation, allowing
continuous optimization and compensation for drifts in devi-
ces. This self-configuration is also progressive, requiring no
global calculations or optimization. This self-configuration
also applies in principle to temporal devices. Note that, as
a result of this self-configuration, arbitrary linear optical de-
vices can be designed without performing any calculations.
Instead, we need only simple progressive training operations.

In this paper, in Section 2, we first describe the general spa-
tial mode converter and its extensions to handling polariza-
tions. We describe this using the self-configuring approach;
this actually involves less mathematics than a direct calcula-
tion of the required design, which we defer to Appendix A.
[Detailed analysis of Mach–Zehnder interferometers (MZIs)
for use in the approach is given in Appendix B.] In Section 3,
we discuss the underlying linear algebra of the approach,
showing how it relates directly to the general description
of linear optical devices [14] and to the related counting of
complexity [15]. The generalization of the device to handle
wavelength or frequency attributes is discussed in Section 4,
including self-configuring operation in these cases also. (An
alternative time- rather than frequency-based approach is
given in Appendix C, and nonreciprocal devices are discussed
in Appendix D.) We draw conclusions in Section 5.

2. DEVICE CONCEPT FOR SPATIAL BEAMS
The concept of the approach for an arbitrary device operating
on spatial modes (a general spatial mode converter) is shown
in Fig. 1, illustrated here first for an example with the inputs
and outputs sampled to four channels. It consists of two self-
aligning universal beam couplers [21], one, CI, at the input,
and another, CO, at the output. These are connected back-
to-back through modulators that can set amplitude and phase;
these modulators could also incorporate gain elements. The
self-aligning couplers require controllable reflectors and
phase shifters together with photodetectors that are con-
nected in selectable feedback loops to control the reflectors
and phase shifters [21]. (Dashed rectangle phase shifters are
not required, but may be present depending on the way
the devices are implemented, and might be desirable for sym-
metry and equality of path lengths.)

We presume that, for our optical device, we know what set
of orthogonal inputs we want to connect, one by one, to what

set of orthogonal outputs. If we know what we want the
component to do, any linear component can be completely
described this way, as discussed in [14]. The simplest case
is that we want the device to convert from one specific spatial
input mode to one specific spatial output mode [Fig. 1(a)].

A. Single Beam Case
To train the device as in Fig. 1(a), we first shine the specific
input mode or beam of interest onto the top of the input self-
aligning coupler CI. Then we proceed to set the phases and
reflectivities in the beam splitter blocks in CI as in [21].
Briefly, this involves first setting phase-shifter P4 to minimize
the power in detector D3; this aligns the relative phases of the
transmitted and reflected beams from the bottom of beam-
splitter 3 so that they are opposite, therefore giving maximum
destructive interference. Then we set the reflectivity R3 to
minimize the D3 signal again; presuming that the change of
reflectivity makes no change in phase, the D3 signal will
now be zero because of complete cancellation of the reflected
and transmitted light shining into it. Next, we set phase-shifter
P3 to minimize the D2 signal, then adjust R2 to minimize the
D2 signal again. Proceeding along all the beam-splitter blocks
in this way will lead to all the power in the input mode emerg-
ing in the single output beam on the right.

Fig. 1. Schematic illustration of the self-configuring device. Diagonal
gray rectangles are controllable reflectors. Vertical clear rectangles
are controllable phase shifters. Dashed clear rectangles are optional
phase shifters that may be present in the implementation, but are not
necessary. Configurations for (a) one input and output beam pair,
(b) two beam pairs, and (c) all four possible beam pairs.
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The second part of the training is to shine a reversed (tech-
nically, a phase-conjugated [22–24]) version of the desired
specific output mode onto the output coupler CO; that is, if
we want some specific mode to emerge from the device
(i.e., out of the top of CO), then we should at this point shine
that mode back into this “output.” We set the values of the
phase shifters and reflectivities in coupler CO by a similar
process to that used for coupler CI, which will lead to this “re-
versed” beam emerging from the left of the row of beam-split-
ter blocks, for the moment going backward into modulator
SD1 from the right.

Now that we have set reflectivity and phase values in
coupler CO, to understandwhat we have accomplished for cou-
pler CO, we imagine that we turn off the training beam that was
shining backward onto the top of coupler CO and shine a sim-
ple beam instead from the output of modulator SD1 into CO. It
is obvious that will lead to all the power coming out of the top of
coupler CO and that the resulting field magnitudes (and
powers) of beams emitted from the tops of the beam splitters
will be the same as the ones incident during the training. To
understand why the phases are set using a phase conjugate
beam during training, we can formally derive the mathematics
of the design, as discussed in Appendix A; we can, however,
also understand this intuitively. Suppose, for example, that dur-
ing training the (backward) beam incident on the top of beam-
splitter block 4 (of CO) had a slight relative phase lead com-
pared to that incident on the top of beam-splitter block 3 (as
would be the case if it was a plane wave incident from the
top right). Then, during training, we would have added a rela-
tive phase delay in phase-shifter P4 to achieved constructive
interference of these two different input portions as we move
along the line of beam splitters. Running instead in the “for-
ward” mode of operation, then, the beam that emerges verti-
cally from beam-splitter block 4 will now have a phase delay
compared to that emerging from block 3 (as would be the case
if it was a plane wave heading out to the top right). The result-
ing phase front emerging from the top of coupler CO is there-
fore of the same shape (at least in this sampled version) as the
backward (phase conjugated) beam we used in training, but
propagating in the opposite direction as desired.

So, with the device trained in this way, shining the desired
input mode onto CI will lead to the desired output mode emerg-
ing from CO. Finally, we set modulator SD1 to get the desired
overall amplitude and phase in the emerging beam; choosing
these is the only part of this process that does not set itself dur-
ing the training. Modulator SD1 could also be used to impose a
modulation on the output beam, and an amplifier could also be
incorporated here if desired for larger output power.

B. Operating with Multiple Beams Simultaneously
The process can be extended to more than one orthogonal
beam. For beams under conventional optical conditions
(e.g., avoiding near-field effects), orthogonality can usually be
sufficiently understood in terms of the orthogonality of the
electric field patterns of the modes (for each polarization,
if necessary). Our descriptions below take this approach.
More generally, we can always unambiguously establish
orthogonal modes for a device by evaluating the communica-
tions modes of the coupling operators from the original beam
source and to the final wave receiving volume, as discussed in
Appendix A of [15].

In Fig. 1(b), having trained the device for the desired “first”
input and output beams, we can now train it similarly with a
“second” pair of input and output beams that are orthogonal to
the “first” beams. Since the device is now set so that all of the
“first” beam shone onto the top of CI will emerge into modu-
lator SD1, then any “second” beam that is orthogonal to the
“first” beam will instead pass entirely into the photodetectors
D11–D13 (or, actually, through them, since now we make
them mostly transparent, as discussed in [21]). Though this
second beam is changed by passing through the top (first)
row of beam splitters, it is entirely transmitted through them
to the second row of beam-splitter blocks. (Note that,
provided the mostly transparent detectors D11–D13 have sub-
stantially equal loss, that loss does not affect the orthogonality
of the beam passed to the second row; such equal loss could
also be compensated by introduction of gain in the modulator
SD2.) In the second row of beam-splitter blocks, we can run
an exactly similar alignment procedure, now using detectors
D21–D22 to minimize the signal based on adjustments of the
phase shifters and reflectivities in the second row of beam-
splitter blocks in coupler CI.

We can proceed similarly by shining the reversed (phase
conjugated) version of the desired second (orthogonal) out-
put beam into the top of coupler CO, running the self-
alignment process similarly for this second row. Then, shining
the second input beam into CI will lead to the desired second
output beam emerging from CO. If our device requires us to
specify more than two mode couplings, we can continue this
process, adding more rows until the number of rows equals
the number of blocks (here four) in the first row. Figure 1(c)
illustrates a device for four beams. Note that, once we have set
the device for the first three desired orthogonal pairs, then the
final (here, fourth) orthogonal pair is automatically defined
for us, as required by orthogonality. Formally, in the notation
of [15], the number of rows we require in our device here has
to equal the mode coupling number, MC .

C. Implementation with Mach–Zehnder Interferometers
Similarly to such bulk beam-splitter versions discussed in [21],
the configurations in Fig. 1 are idealized. We are neglecting
any diffraction inside the apparatus, we are presuming that
our reflectors and phase shifters are operating equally on
the entire beam segment incident on their surfaces, and we
are presuming that each such beam segment is approximately
uniform over the beam-splitter width. The path lengths
through the structure are also not equal for all the different
beam paths, which would make this device very sensitive
to wavelength; different wavelengths would have different
phase delays through the apparatus, so the phase shifters
would have to be reset even for small changes in wavelength.

An alternative and more practical solution is to use MZIs in
a waveguide configuration [21]; diffraction inside the appara-
tus is then avoided, and equalizing waveguide lengths can
eliminate the excessive sensitivity to wavelength. Figure 2 il-
lustrates such a planar optics configuration. Common mode
(i.e., equal) drive of the two phase-shifting arms of such an
MZI changes the phase of the output; differential (i.e., oppo-
site) drive of the arms changes the “reflectivity” (i.e., the split
ratio between the outputs) (see Appendix B for a detailed dis-
cussion of the properties of the MZIs as phase shifters and
variable reflectors).
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The configuration in Fig. 2 formally differs mathematically
from that in Fig. 1(c) in that we have reflected the output self-
aligning coupler CO about a horizontal axis to achieve a more
compact device. This reflection makes no difference to the
operation of the device; since the device can couple arbitrary
beams, the labeling or ordering of the waveguides is of no im-
portance. Note only that the order of the output beams is re-
versed compared to the input beams—this device links input
beam 1 to output beam 4, and so on. (This reflection would be
equivalent to similarly reflecting the self-aligning output cou-
pler CO in Fig. 1 about a horizontal axis, which would lead to
the output beam coming out of the bottom, rather than the top,
of the device.) Schemes are also discussed in [21] for ensuring
equal numbers of MZIs in all optical paths for greater path
length and loss equality by the insertion of dummy devices,
and such schemes could be implemented here also.

The use of sets of grating couplers connected to the input
waveguides WI1–WI4 and to the output waveguides WO1–
WO4 is one way in which this device could be connected
to the input and output beams, as discussed in [21]. In this
case, although the wave is still sampled at only a finite number
of points or regions, we can at least obtain true cancellation of
the fields in the single mode guides even if the field on the
grating couplers is not actually uniform. The geometry of Fig. 2
also shows that we can make a device that has substantially
equal time delays between all inputs and outputs because all
the waveguide paths are essentially the same length. As dis-
cussed in [21], such equality is important if the device is to
operate over a broad bandwidth.

The example so far has considered a beam varying only in
the horizontal direction, and using only four segments to re-
present the beam. Of course, the number of segments we need
to use depends on the complexity of the linear device we want
to make [15], and the number could well be much larger than
4; we will discuss such complexities in Section 3. Additionally,
we would likely want to be able to work with two-dimensional
(2D) beams, in which case we could imagine 2D arrays of gra-
ting couplers coupling into the one-dimensional (1D) arrays of
waveguides of Fig. 2, as discussed in [21].

D. Extension to Polarization
So far, we have discussed only linear devices operating on
spatial modes. We can relatively simply extend the concept
to include polarization, as well. Consider a polarization con-
verter as in Fig. 3. In this example, an incident beam of the
desired polarization is split into two orthogonal polarizations,
for example, using a polarization demultiplexing grating cou-
pler [25]. The polarization demultiplexer here is converting

the physical representation from a polarization basis on a sin-
gle spatial mode to a representation in two spatial modes (the
waveguide modes) on a single polarization. Then the simple
two-channel self-aligning coupler CI can combine the fields
and powers from the two polarizations in this one particular
beam losslessly into one single-mode waveguide WIO. Here,
as before, we adjust phase-shifter PI to minimize the power
in detector DI, and then adjust the “reflectivity” of the MZI
(by differential drive of the phase shifters in the two arms)
to minimize the power in detector DI.

In many situations, this may be the desired output, and we
could take this output from waveguide WIO at the point of the
dashed line in Fig. 3. We could therefore run this device as a
polarization stabilizer; leaving the feedback sequence running
continuously, the output will remain in the single polarization
in the waveguide WIO even if the input polarization state
drifts. Note that, in contrast to common polarization state con-
trollers (e.g., [26]), this device requires no global feedback
loop and no simultaneous multiple parameter optimization.
It also requires no calculation [26] in the feedback loop.

If we wish, instead, we can change the wave from the
output grating coupler into any desired polarization using
the second, output self-aligning coupler CO; we can program

Fig. 2. Example planar layout of a device analogous to Fig. 1(c) with MZIs providing the variable reflectivities and the phase shifts. Not shown are
devices, such as grating couplers, that would couple different segments of the input and output beams into and out of the waveguides WI1–WI4 and
WO1–WO4, respectively. The self-aligning output coupler CO is reflected about a horizontal axis compared to Fig. 1(c) for compactness. Grayed
arms of MZIs M14, M23, and M32 in both the input (CI) and the output (CO) self-aligning couplers are optional; these devices are operated only as
phase shifters and could be replaced by simple phase shifters.

Fig. 3. Polarization converter. (a) Plan view. (b) Perspective view.
Light incident on the grating coupler in self-aligning coupler CI is split
by its incident polarization into the twowaveguides, and similarly light
from the waveguides going into the grating coupler in self-aligning
coupler CO appears on the two different polarizations on the output
light beam. PI and PO are phase shifters; the similar but grayed boxes
are optional dummy phase shifters. Optionally, a phase shifter and
its dummy partner could instead be driven in push–pull to double
the available relative phase shift. MZI and MZO are Mach–Zehnder
interferometers, and DI and DO are detectors.
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this desired output polarization by training with the desired
polarization state running backward into that output grating
coupler and running the feedback loops with PO, MZO, and
DO in the same way as we did for the input. With this device
operating with circular polarizations, if we train with a right-
circular polarization going backward “in” to the output cou-
pler from the outside, for example, the action of the device
under “forward” operation is such that the beam emerging
from the output coupler will also be right-circularly polarized.
(Note that, if we only want this polarization conversion, DI
and DO could be the same detector.)

For example, a right-circularly polarized beam can be con-
sidered to have the vertical linear polarization leading the
(right-pointing) horizontal polarization by 90 deg. (Note that,
when we say “right-pointing,” we mean relative to the direc-
tion of propagation.) So, when shining a training beam back-
ward into the coupler CO we would impose a 90 deg phase
delay on the vertical polarization when aligning the coupler
to achieve constructive interference as we combine them into
the desired (backward) linearly polarized mode in WIO in cou-
pler CO. Running a beam now forward in waveguide WIO into
CO will mean that the emerging beam has the vertical polari-
zation lagging by 90 deg compared to the horizontal polariza-
tion because of our introduced phase delay; however, that
horizontal polarization is now left-pointing relative to the
(now forward) direction of propagation, which means the ver-
tical polarization leads a right-pointing horizontal polarization
by 90 deg, which is right-circular polarization again in the
outgoing beam. This is analogous to the behavior of a
phase-conjugating mirror; in contrast, a conventional mirror
would change right-circular polarization to left-circular on
reflection.

If we make the detectors DI and DO mostly transparent and
join them with a waveguide as shown to allow transmission
through them from left to right, then this device converts from
one set of orthogonal polarization states at the input to an-
other set of orthogonal polarization states at the output.
For example, if we had trained the device to convert from
right-circularly polarized light at the input to vertical linear
polarization at the output, then left-circularly polarized light
at the input would appear as horizontal polarization at the
output.

We could also choose to add modulators in the waveguide
WIO and the waveguide between the photodetectors in Fig. 3,
which would allow us to make a fully arbitrary polarization
device. In this case, the device would be selecting two
orthogonal polarization channels that we could choose arbi-
trarily, allowing separate modulation of these two channels,
and presenting them at the output as two orthogonal polari-
zation channels of our choice. (Again, we could operate
this system with DI and DO as the same mostly-transparent
detector.)

3. MATHEMATICAL DISCUSSION
At this point, we can usefully relate this device explicitly to the
mathematical description of linear devices in [14] and the
counting of complexity in [15].

A. General Mathematics of Linear Optical Devices
Quite generally [14,15], any linear optical device can be de-
scribed mathematically in terms of a linear “device” operator

D that relates an input wave, jϕIi, to an output wave jϕOi
through

jϕOi � DjϕIi: (1)

It can be shown [14] that essentially any such linear oper-
atorD corresponding to a linear physical wave interaction in a
device can be factorized using the singular value decomposi-
tion (SVD) to yield an expression

D �
X
m

sDmjϕDOmihϕDImj; (2)

or, equivalently,

D � VDdiagU†: (3)

Here U is a unitary operator that in matrix form has the
vectors jϕDImi as its column vectors, and similarly jϕDOmi
are the column vectors of the matrix for the unitary operator
V. Ddiag is a diagonal matrix with complex elements (the sin-
gular values) sDm. The sets of vectors jϕDImi and jϕDOmi form
complete orthonormal sets for describing the input and output
mathematical spaces HI and HO, respectively [14] (at least if
we restrict those spaces to containing only those functions
that can be connected using the device).

The resulting singular values are uniquely specified, and the
unitary operators U and V (and hence the sets jϕDImi and
jϕDOmi) are also unique (at least within phase factors and
orthogonal linear combinations of functions corresponding
to the same magnitude of singular value, as is usual in degen-
erate eigenvalue problems). An input jϕDImi leads to an output
sDmjϕDOmi, so these pairs of vectors define the orthogonal
(mode-converter) [14] “channels” through the device.

In a practical device, we may have a physical input space
that we would describe with MI modes or basis functions and
similarly an output space that we would describe using MO

modes or basis functions. For example, the input mathemati-
cal space might consist of a set ofMI Gauss–Laguerre angular
momentum beams, and the output space might be a set of MO

waveguide modes or MO different single-mode waveguides,
with MI andMO not necessarily the same number. As another
example, we might be describing the input space with a set of
MI waveguide modes, and the output space might be de-
scribed with a plane-wave or Fourier basis of MO functions,
as appropriate for free-space propagation. In any of these
cases, the actual number of orthogonal channels, MC , going
through the device (the “mode coupling number” MC in the
notation of [15]) might be smaller than either MI or MO (or
both). For example, we could have large plane wave basis sets
for describing the input and output fields of a three-moded
waveguide; no matter how big these input and output sets
are, however, there will practically be onlyMC � 3 orthogonal
channels through the device. In the notation of [15], if MC is
equal to the smaller of MI or MO, then the device is “maxi-
mally connected”—it has the largest number of possible
orthogonal channels from input to output given the dimen-
sionalities of the input and output spaces.

B. Mathematics of General Spatial Mode Converters
In the example devices of Fig. 1, the most obvious choices for
the input and output basis function sets are the “rectangular”
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functions that correspond to uniform waves that fill exactly
the (top) surface of each single beam-splitter block; in this ex-
ample, we have chosen equal numbers (MI andMO each equal
to 4) of such blocks on both the input and the output, although
there is no general requirement to do that, and the numberMC

of channels through the device is the number of rows of beam-
splitter blocks [one in Fig. 1(a), two in Fig. 1(b), and four in
Fig. 1(c)]. In those devices also, the (complex) transmissions
of the modulators SD1–SD4 correspond mathematically to the
singular values sDm.

In these cases of possibly different values for each of MI ,
MO, and MC it is more useful and meaningful to define the
matrix U as an MI ×MC matrix (so U† is a MC ×MI matrix)
and the matrix V as an MO ×MC matrix. With these choices,
the matrix Ddiag becomes theMC ×MC square diagonal matrix
with the (generally nonzero) singular values sDm as its ele-
ments. If there are only MC possible orthogonal channels
through the device, then there are only MC singular values
that are possibly nonzero also. As discussed in [15], using
these possibly rectangular (rather than square) forms for U
and/or V means we are only working with the channels that
could potentially have nonzero couplings (of strengths given
by the singular values) between inputs and outputs.

In the device of Fig. 1, the input coupler CI corresponds to
the matrix U†, the vertical line of modulators corresponds to
the diagonal line of possibly nonzero diagonal elements in
Ddiag, and the output coupler CO corresponds to the matrix
V. In the cases of Figs. 1(a) and 1(b), the matrices U and V
are not square. Because they are not square, in this amended
way of writing the mathematics, they are not therefore uni-
tary, as discussed in [15]. We have, however, eliminated ele-
ments in our mathematics that serve no purpose; we have
essentially avoided having our mathematics describe rows
of beam splitters and modulators that do not exist physically.
For example, for a two-channel (i.e., two-beam) device as in
Fig. 1(b), we could write the form as in Eq. (3) as

D �

2
664

v11
v21
v31
v41

v12
v22
v32
v42

3
775
�
sD1 0
0 sD2

��
u�
11 u�

21 u�
31 u�

41
u�
12 u�

22 u�
32 u�

42

�
; (4)

where

jϕDI1i �

2
666664

u11

u21

u31

u41

3
777775 jϕDI2i �

2
666664

u12

u22

u32

u42

3
777775

jϕDO1i �

2
666664

v11

v21

v31

v41

3
777775 jϕDO2i �

2
666664

v12

v22

v32

v42

3
777775: (5)

Despite that fact that U and V are no longer necessarily uni-
tary, the forms of Eqs. (1)–(3) remain valid. The sets of func-
tions jϕDImi and jϕDOmi are complete for representing input
and output functions corresponding to nonzero couplings

(i.e., nonzero singular values) through this device and are still
the columns of the matrices U and V, respectively. (The set-
tings of the phase shifters and reflectors in the full unitary
forms of couplers CI and CO as shown in Fig. 1(c) would each
correspond to a Gaussian-elimination-like factorization of a
unitary matrix [27,28] as discussed in [28]; other forms, such
as the multilayer binary tree form in [21], would correspond to
other possible factorizations of such unitary matrices.)

At this point, we can make a direct relation between the
number of adjustable parameters in the physical devices in
Figs. 1 and 2 and the “complexity number”ND of real numbers
required to specify the device according to [15]. The number
of independent real numbers required to specify the MI di-
mensional vector jϕDI1i (i.e., to choose an arbitrary specific
first input beam) is 2MI − 2; the “−2” is because (i) the vector
is normalized, removing 1 degree of freedom, and (ii) the over-
all phase of such a vector (i.e., of the beam) is arbitrary. Note
that this number corresponds exactly to the number of adjust-
able parameters in the devices in the first row of the self-
aligning input coupler CI; in Fig. 1,MI � 4, and we have three
adjustable reflectors and three phase shifters, for a total
of 2MI − 2 � 6.

The number of independent real numbers required to
specify jϕDI2i is smaller by 2 because jϕDI2i has to be orthogo-
nal to jϕDI1i—i.e., both the real and imaginary parts of the in-
ner product hϕDI2jϕDI1i have to be zero—so we need 2MI–4
real numbers to specify this second vector, which corre-
sponds to the 2MI − 4 � 4 adjustable elements (two reflectors
and two phase shifters) in the second row in Fig. 1(b) or 1(c).
As discussed in [15], by following this approach to counting
device complexity, the total “complexity number” ND of real
numbers required to specify a “maximally functional” device
(i.e., one for which we can make arbitrary choices of sets of
orthogonal input and output functions within the dimension-
alities of the spaces) is generally

ND � 2MC�MI �MO −MC�; (6)

which corresponds to the total number of physically adjust-
able parameters in the devices of Fig. 1. (Note there are two
adjustable parameters associated with each modulator—
amplitude and phase.) MC is 1 in Fig. 1(a), 2 in Fig. 1(b),
and 4 in Fig. 1(c).

Though here we will emphasize the self-configuring ap-
proach, the specific settings of the phase shifters and reflec-
tors can instead be calculated straightforwardly given the
desired function of the device. See Appendix A for an explicit
sequential row-by-row and block-by-block physical design
process for the partial reflector and phase-shifter parameters.
Appendix B gives the formal analysis for the MZI implemen-
tation of variable reflectors and phase shifters.

C. Use of Finite-Dimensional Hilbert Spaces
One final formal issue for an arbitrary device is that the input
and output Hilbert function spaces, HI and HO, respectively,
in which jϕIi and jϕOi exist mathematically, may well each
have infinite numbers of dimensions, whereas our device
has finite dimensionality. To resolve this apparent discrep-
ancy, note first that the input waves jϕIi come from some
wave source in another volume (generally, a “transmitting”
Hilbert space HT ), through some coupling operator GTI .
Because of a sum rule [14,29], there is only a finite number
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of channels between HT and HI that are strongly enough
coupled to be of interest. A familiar example is the practically
finite number of distinct “spots” that can be formed on one
surface from sources on another, consistent with diffraction
[29]. A similar argument holds at the output with output waves
jϕOi leading to resulting waves in some “receiving” space HR.
This point is discussed in greater depth in [15]. Hence, we can
practically presume that D can be written as a sufficiently
large but finite-dimensional matrix to any degree of approxi-
mation we wish.

4. UNIVERSAL LINEAR DEVICE
So far, we have considered only spatial and polarization input
and output modes for the device concept, although the under-
lying mathematics discussed above and in [14] and [15] can
treat any additional linear attributes also, such as frequency
or time, and could in principle also handle attributes like quan-
tum mechanical spin in other wave systems. We can at least
conceive of a universal machine that would attempt to per-
form any linear mapping between inputs and outputs. Math-
ematically, it is straightforward to construct the necessary
Hilbert spaces, which would be formed by direct products
of the different basis functions corresponding to each attrib-
ute separately (see, e.g., [30]).

A. Universal Device with Representation Converters
One general approach that would work in principle for a uni-
versal device is to physically convert each such direct product
basis function (e.g., one with specific spatial, temporal, and
polarization characteristics) to amonochromatic spatialmode,
amodewe can then feed through a version of the spatial device
we discussed above. In other words, we can propose that we
could convert the representation to a simple monochromatic
spatial one (e.g., in fiber or waveguide modes), perform the
desired mathematical device operation (i.e., the mathematical
operator D), using our spatial approach discussed above, and
then convert the representation back to its full spatial, tempo-
ral, and polarization form. Performing this representation con-
versionmeans that aspects of a light beam that do not normally
“interfere” with one another, such as different polarizations
and frequencies, can now mathematically be scattered into
one another arbitrarily, as required for the most general
mathematical linear operation on the optical field.

Therefore, we need to make “representation converters” to
change into and back out of the single-frequency, single-
polarization, waveguide mode representation we use inside
our universal spatial device, or general spatial mode converter,
as discussed above. The mathematical operator D that de-
scribes that mapping from input modes to output modes is not
changed, but the physical representation of those modes is
changed inside the device, and is changedbackbeforewe leave
the device. The polarization converter discussed above em-
ploys a simple example of such a representation conversion,
changing one spatialmodewith twodifferent polarizations into
two spatial modes in the same polarization so that we can arbi-
trarily “interfere” the two polarizations inside the device.

1. Example Temporal Device Interfering Two Colors
Before proceeding to discussing a hypothetical fully universal
linear device, because such devices can be quite unlike more
common practical optical devices, it may be useful to consider

a simple conceptual example. Suppose that, instead of beams
of two orthogonal polarizations in one incident spatial mode,
as in the polarization device of Fig. 3, we have beams of two
different colors—“red” and “blue”—in the same spatial mode
and we make a “red–blue” interference device, as shown con-
ceptually in Fig. 4. We use “red” and “blue” figuratively here to
mean two different frequencies of input light, not necessarily
actual red and blue colors, although we do presume these are
each monochromatic light fields.

Instead of a grating coupler that separates the two polariza-
tions to two different spatial waveguides, imagine that we use
a dichroic beam splitter to separate the two colors to different
waveguides. Now presume additionally that, in the resulting
“red” waveguide, we insert a frequency shifter that turns the
“red” beam into a “blue” one—that is, it shifts the frequency of
the “red” beam to be exactly that of the “blue” beam. Such
frequency shifters are possible in principle [31–34] though
quite challenging in practice. One conceptual approach would
use a modulator arrangement driven at the difference fre-
quency of the “red” and “blue” beams, with the modulator
drive being derived from the beat signal between the original
“red” and “blue” sources. We make a complementary combi-
nation of a frequency shifter and dichroic beam splitter at
the output.

Just as the polarization device in Fig. 3 can be set up to look
for any particular combination of the two input polarizations
and to output any particular combination of the two polariza-
tions at the output, this device performs an analogous oper-
ation but on two colors rather than two polarizations.

For example, we could train the input side of device to look
for an input that corresponded to a “red” and a “blue” beam
with equal amplitude and a specific phase of their beating (as
defined relative to the phase of the drive to the frequency
shifter). Then, we could set the MZO so that its output was all
in the lower waveguide (i.e., through phase-shifter PO) and so
the output waveguide would contain only a “blue” beam; this
could be accomplished by a training process in which we
shine only a “blue” beam backward into the output waveguide.
(We presume here that a frequency shifter that shifts “blue”
to “red” in the forward direction will shift “red” to “blue” in
the backward direction, as is apparently the case for the
modulator-based device of [31].) Set up this way, the device
operation is analogous to looking for a right-circular polariza-
tion at the input and setting the device to give a horizontal
polarization at the output in the polarization device of Fig. 3.

Now, if we delayed one of the input beams—say the “blue”
one—by 180 deg, the output of the MZO would instead appear

Fig. 4. Red–blue interference device. A mixture of “red” and “blue”
light at the input is split into its “red” and “blue” components by a
dichroic beam splitter. Then the “red” component is converted to
“blue” by a frequency shifter so both components are represented
by “blue” light but in different waveguides. The device can be trained
to look for any particular combination of “red” and “blue” and to out-
put any particular combination of “red” and “blue” as a result.
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only on the top waveguide on the right, therefore passing
through the frequency shifter and leading to a “red” beam
in the output. This could be analogous to changing the input
polarization to left-circular and obtaining a vertical polariza-
tion at the output in the polarization device of Fig. 3.

This hypothetical device therefore performs the operation

“red”� “blue” → “blue”

“red” − “blue” → “red”: (7)

Though this is an unusual operation for a linear optical de-
vice, note that it is linear in the signal field. Note, too, that the
input spectrum “red”� “blue” is orthogonal mathematically to
the input spectrum “red” − “blue”; because we can meaning-
fully define relative phase of two different monochromatic
beams, essentially by mathematically comparing the phase
of their beat frequency to the phase of a standard drive signal
for the frequency shifter, the “�” and “−” signs in Eq. (7) are
mathematically meaningful. This device takes orthogonal
spectral inputs and maps them to orthogonal spectral outputs,
in a 2D spectral space in each case.

This idea of orthogonal spectra is a concept that is not very
common in optics because we more typically consider power
spectra; because power spectra are always positive, two
power spectra can only be simply orthogonal if they do
not overlap at all. Here, however, we have two input
signals—“red”� “blue” and “red” − “blue”—that have identi-
cal power spectra but are nonetheless orthogonal in the sense
considered here, and could be used as separate communica-
tions channels, for example.

We could imagine extending these concepts to multiple
wavelengths; below we discuss in principle how to do so.
As an illustration, one concept that then would become pos-
sible in principle would be optical spread-spectrum commu-
nications. For example, with N different wavelengths, we
could construct multiple different spectra, each of which
would contain all N wavelengths with equal power, but that
were nonetheless orthogonal. (A simple binary approach of
inverting the phases in some channels could give log2 N such
different orthogonal spectra). Such spectra would look the
same to a simple spectrometer or to the naked eye, but they
could in principle be used simultaneously as separate commu-
nications channels, with modulation and detection, using
schemes along the lines considered here.

2. Universal Device
More generally, then, we can expand the idea shown in the
simple polarization controller above with other representation
converters. Figure 5 shows an example device configuration
in which we first convert from a continuous input field to
waveguides using some spatial single mode converters. Then,
in this example, we split the polarizations, converting to
(twice as many) waveguide modes all in the same polarization.
(These two functions could be combined as in the polarization-
splitting grating couplers discussed above [25].) Next we split
each such waveguide mode into separate wavelength compo-
nents. Finally, we use wavelength converters (frequency shift-
ers) to change each of those components to being at the same
wavelength (frequency). Now the input field that was origi-
nally a continuous beam with possibly spatially varying polari-
zation content and with multiple frequency components or
time dependence (possibly different for each spatial and

polarization component) has been converted into a represen-
tation in a set of spatial modes all at the same frequency and
polarization. This set of modes is then fed into our device as
described above, with the U† and V blocks representing the
self-aligning couplers CI and CO, respectively (e.g., in the pla-
nar configuration of Fig. 2) and Ddiag representing the vertical
line of modulators SD1, SD2, …, etc. On the right side of the
device, we perform the inverse set of representation conver-
sions to that on the left to obtain the final output field.

Methods for making each of the “representation converter”
devices in Fig. 5 are known, at least in principle. Various ap-
proaches exist to convert from an input spot or mode to a
waveguide mode, including the grating coupler approach
(see, e.g., [2,14,15,35–40]). If we started with a 2D spatial input
field, we could sample it with a 2D array of such spatial single
mode converters into optical fibers, and then rearrange the
outputs of those fibers into the 1D line of inputs in Fig. 5.
Polarization splitters are standard components that can exist
in many different forms. Many forms of wavelength splitters,
such as gratings, separate different frequencies to different
spatial channels.

For a finite input time range or repetition time, we know we
can always Fourier decompose a signal (in a given spatial
mode or waveguide) into a set of amplitudes each of an
equally spaced comb of frequencies. We can then, at least
in principle (though with greater practical difficulty), convert
each frequency component to a standard frequency using fre-
quency shifters [31–34]. As mentioned above, electro-optic
frequency shifters, which are conceivable at least for small
frequency shifts up to 10s of gigahertz, could in principle
be driven from the beating of the different comb elements,
thus retaining well-defined phase relative to the input field.
In this way, at least in principle, we can convert an arbitrary
Fourier decomposition in different frequency modes emerging
from the wavelength splitters into different spatial modes all
at the same frequency. (Note, incidentally, that such fre-
quency shifters are linear optical components in that they
are linear in the optical field being frequency shifted; in the
case of modulator-based frequency shifters [31], it is largely
a matter of taste whether we regard them as being nonlinear
optical devices in any sense.) Such devices can all, at least
in principle, be run backward at the output to convert
frequencies back.

Fig. 5. Example general apparatus for performing arbitrary linear
mappings from input fields with spatial, polarization and frequency
content to corresponding output fields, illustrated here for four spatial
modes and three different frequency components. Each of the result-
ing 4 × 2 × 3 � 24 orthogonal channels can be separately modulated
using the modulators in the middle column, corresponding to the
elements of Ddiag.
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The spatial modes, now all in the same polarization and at
the same frequency, pass through the general spatial mode
converter (e.g., like Fig. 2). Finally, we pass back through an-
other representation converter to create the output field. In
this way, we can in principle perform any linear transforma-
tion of the input field, including its spatial, spectral, and polari-
zation forms. As an alternative to frequency shifters, it is
possible at least in principle to use time multiplexing; we dis-
cuss this in Appendix D. It is important to note that, to imple-
ment an arbitrary linear optical device, it is not sufficient
merely to process each frequency or wavelength component
on its own without the option of frequency conversion; such a
process can implement an arbitrary filter, but it cannot in gen-
eral perform the linear transformation of one spectrum into
another arbitrary spectrum, for example. This point is dis-
cussed at greater length in [15].

The apparatus in Fig. 5 is reminiscent of switching fabrics in
optical telecommunications, and this approach can certainly
implement the permutations required in such fabrics. The
present approach, however, goes well beyond permutations,
allowing arbitrary linear combinations of inputs to be mapped
to arbitrary linear combinations of outputs, including as other
special cases all broadcast and multicast functionalities. Note,
too, that it can in principle perform operations mapping be-
tween different kinds of representations, such as converting
different orthogonal spatial modes at one frequency at the in-
put into different orthogonal spectra all in the same spatial
mode at the output, as well as a many other kinds of linear
mappings involving spatial, polarization, and frequency
attributes.

3. Devices with Forward and Backward Waves
So far, we have considered only devices that operate with in-
put waves coming from one side or port and output waves
leaving from the other. If the device is to be truly universal,
it has to handle waves going in the opposite directions also. If
the device function is optically reciprocal, then we can merely
run the beams backward into the device and it will work cor-
rectly also in the backward direction. If, however, we want a
nonreciprocal function from the device [41] (a Faraday isola-
tor being a simple example), the device as described so far
cannot provide such functions. We discuss in Appendix C
how further additions of nonreciprocal elements can handle
such cases.

4. Cloaking
To implement “cloaking” [11–13] in principle, we flow the
waveguides (e.g., as optical fibers) connecting any two adja-
cent vertical blocks of devices (Fig. 5) around the volume to
be “cloaked” and use the general spatial mode converter to
implement the required mapping between input and output
fields to emulate free-space propagation through the cloaked
volume. Note that, as with all “transmission” cloaks [13], we
generally have additional propagation delay that prevents
truly perfect cloaking. The overall additional time delay in
our universal device is the one sense in which it cannot be
made perfect.

B. Self-Configuring Operation
So far, for this universal device, we have shown that in
principle any such linear transforming device can be

made, although we have not explicitly discussed the self-
configuration in this general context. The basic principle of
self-configuration is not changed for the universal device.
We need to take some care when discussing the time-domain
behavior, however, when training the output side of the
device.

Suppose first that we are operating with the wavelength-
splitting version of the universal device, as in Fig. 5. We pre-
sume that we work with frequency converters that, when run
with waves propagating in the opposite direction, perform the
opposite frequency conversion; that is, if when run with a “for-
ward” wave a converter changes the wave frequency from ω
to ω� δω, then with a wave propagating backward into it, it
will convert from ω� δω to ω. The electro-optic frequency
converter of [31] can operate in this way, for example. With
such a frequency converter, the mapping from spatial to fre-
quency modes and the mapping from frequency to spatial
modes are just inverses of one another.

Suppose, then, that we want to train the device to output a
pulse f �t� in a particular spatial mode in response to some spe-
cific input. Then, in training, we send the same pulse f �t�
propagating backward, i.e., in the phase-conjugated version
of the spatial mode. Phase conjugation changes the spatial di-
rection of propagation by changing the sign of the spatial
variation of the phase, but it does not time-reverse the pulse
envelope (despite the occasional, and somewhat misleading,
description of phase conjugation as time-reversal; see [24] for
a discussion of this point); the different frequency compo-
nents in this phase-conjugated pulse have the same relative
complex amplitudes at any point in space in both the “for-
ward” and phase-conjugated versions, consistent with the
time behavior of the pulse being of the same form. Hence,
we need make no change to the frequency splitting and con-
version in the apparatus of Fig. 5 to allow it to be self-
configuring, as long as the frequency converters operate as
discussed here when run backward.

Self-configuration of the time-multiplexed version of the de-
vice is discussed in Appendix D; in that case, a time-reversed
pulse should be used during training of the output. For non-
reciprocal devices, we have to reverse the circulation direc-
tion (e.g., by changing the static magnetic field direction in
optical circulators) when training with the backward beams,
as discussed in Appendix C.

5. CONCLUSIONS
In conclusion, we have shown that there is at least one con-
structive method to design an arbitrary linear optical compo-
nent capable in principle of any spatial, polarization, and
spectral linear mapping, in any combination. This method
can also be self-configuring, extending the concepts of the
self-aligning universal wave coupler [21]. Only local feedback
loops, optimizing one parameter at a time, are required. This
feedback-based operation avoids the necessity of setting cal-
culated analog values with interferometric precision in collec-
tions of optical components. This approach can also allow
simultaneous and separately modulated conversions from
multiple orthogonal inputs to corresponding orthogonal out-
puts. Though discussed here in the language and technology
of optics, the method can be extended to other linear
wave problems generally, including radio-frequency electro-
magnetics, acoustics, and quantum mechanical waves and
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superpositions. Versions for certain specific optical uses, such
as arbitrary polarization and spatial mode conversions and
modulations, appear practical with current planar optical
technology.

APPENDIX A: PROGRESSIVE
CALCULATION OF REFLECTIVITIES AND
PHASE SHIFTS
Though the device can operate in a self-configuring mode, we
can also formally calculate what the reflectivities and phases
need to be in all of the beam-splitter blocks. Figure 6 shows
one unitary transformer (here for U†) with the reflectivities
and phase shifts labeled, analogous to coupler CI in Fig. 1.
(Detectors are omitted here.)

The reflectors and phase shifters in Fig. 6 (and in Fig. 1) are
shown as rectangles only in the middle of the beam-splitter
blocks, but it is understood that they act on the entire beam
passing through each block. A completely arbitrary unitary
transformer would require the phase shifters at the right in
the dashed rectangles so as to set the overall phases of the
outputs on the right, and we will use these in our algebra here,
although we do not need these in the architecture of Fig. 1
because the singular value modulators SD1–SD4 can set
any specific phase required between the beam-splitter blocks
for U† and V.

To discuss the phases involved in the beam splitter, we
need some formal definitions. Figure 7 shows a (lossless)
beam splitter (without any additional phase shifter). We
can define complex field transmission factors t�TB� from top
to bottom and t�LR� from left to right, and similarly define field
reflection factors r�TR� and r�LB�. These complex factors in-
clude the phase shifts between the respective inputs and out-
puts as their arguments: for example, the phase delay between
top and bottom is θ�TB� in the expression

t�TB� � jt�TB�j exp�iθ�TB��; (A1)

and similarly for the other transmission and reflections.

Because the beam splitter is lossless [42],

jt�TB�j2 � 1 − jr�TR�j2 � jt�LR�j2 � 1 − jr�LB�j2; (A2)

and, obviously from Eq. (A2), jr�TR�j2 � jr�LB�j2. Also,

θ�TR� � θ�LB� − θ�TB� − θ�LR� � �π (A3)

(at least within some additive phases in units of 2π, which we
neglect for simplicity in the algebra).

We will formally write any of our input basis functions
jϕDImi as a linear combination of the “modes” (rectangular
functions) corresponding to the inputs to the individual
columns:

jϕDImi �
XM
n�1

amnjϕ1ni; (A4)

where by jϕ1ni we mean the (input) mode (rectangular func-
tion) incident on the top row in the nth column.

As discussed in the main text, the idea of this unitary trans-
former is that, if we illuminate from the top with the function
jϕDI1i, all the power will come out of port 1 at the right. Sim-
ilarly, illuminating with function jϕDI2i will lead to all the
power coming out of port 2 at the right, and so on. To under-
stand how to set the reflectivities r and phase shifts θ in the
top row mathematically, we imagine for the moment that we
are running the device backward, shining a beam into port 1
on the right and looking at the beams coming out of the ports
at the top. We presume that we are dealing only with recip-
rocal optics in our beam splitters and phase shifters so that
the phase delays and the magnitudes of the reflectivities
are the same forward and backward. The output amplitudes
that we want our device to generate at the top in this back-
ward case should therefore be the complex conjugates a�1n
of the amplitudes in Eq. (A4); if we generate some phase de-
lays in running the device backward, then we should have cor-
responding phase leads in the input beams when running the
device forward so all the beams add up with the correct phase
at output 1 on the right.

Hence, for the top right block in Fig. 6, we should choose

r�TR�11 exp�iθ11� � a�11: (A5)

In operation, when we choose the magnitude of a given
r�TR�, for example by setting phase delay in a MZI implemen-
tation of a variable beam splitter, the phase θ�TR� associated
with r�TR� will also be set as a result and we will know what

Fig. 6. Mode transformer for the operator U† for M � 4 with the
reflectivities and phase shifts labeled for each beam-splitter block.
The diagonal mirror has 100% reflectivity.

Fig. 7. Beam splitter with definitions of field reflection and transmis-
sion factors and nominal labels of the beam-splitter ports as top,
bottom, left, and right.
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it is. (Note in our mathematics here that we are allowing for
possible changes in phase associated with changes in reflec-
tivity, although in the self-configuring versions of the device
discussed in the main text, we prefer to work with compo-
nents that do not change phase as they change reflectivity be-
cause it makes the feedback loops simpler.) We will then
choose the phase-shifter phase delay [e.g., the θ11 in Eq. (A5)]
so as to satisfy the necessary overall design requirement on
phase, as in Eq. (A5) here.

Now knowing r�TR�11 (and hence, from Eq. (A2), also t�LR�11 )
and θ11, we can proceed to the next block in this first row.
The field that will emerge from top in the second column is

t�LR�11 r�TR�12 exp�i�θ11 � θ12�� � a�12; (A6)

so we should choose

r�TR�12 exp�iθ12� � a�12 exp�−iθ11�=t�LR�11 : (A7)

We can continue progressively along the top row, with
the reflectivity and phase in the nth column being chosen
to satisfy

r�TR�1n exp�iθ1n� � a�1n exp
�
−i

Xn−1
p�1

θ1p

�.Yn−1
q�1

t�LR�1q ; (A8)

where we understand that, when n � 1, the summation term
will be 0 and the product term will be 1. (Note that the
magnitude of the last reflectivity, jr�TR�1M j, will always be 1,
which is ultimately guaranteed by the lossless nature of
this set of beam splitters and the consequent unitarity of
the operators.)

Now we consider what happens when we shine the second
basis function jϕDI2i into the top of the set of beam splitters.
First we need to set up some notation. For a field arriving at
the top of the uth row of beam-splitter blocks, we can choose
to write

jϕ�u�i �
XM−u�1

j�1

a�u�j jϕuji; (A9)

where, in an extension from the kind of notation used in
Eq. (A4), by jϕuji we mean the (input) rectangular “mode” in-
cident on the uth row in the jth column. Given that we know
all the reflectivities (and hence transmissivities) and phases of
the first row of beam-splitter blocks, given some field jϕ�1�i
incident on the top row, we can deduce what field jϕ�2�i will
arrive at the top of the second row. We can formally write this
linear relation in terms of a matrix C�1�:

jϕ�2�i � C�1�jϕ�1�i; (A10)

where C�1� is the first of a family of �M − u� × �M − u� 1�
matrices

C�u� �

2
666666664

t�TB�u1 c�u�12 c�u�13 	 	 	 c�u�1�M−u� c�u�1�M−u�1�
0 t�TB�u2 c�u�23

..

.
0 t�TB�u3

. .
. ..

. ..
.

..

. . .
. . .

.

0 0 0 … t�TB�u�M−u� c�u��M−u��M−u�1�

3
777777775
;

(A11)

where c�u�sj is the “complex fraction” (i.e., the multiplier) of the
field incident on column j of row u that contributes to the field
incident on the top of column s of row u� 1. For the diagonal
elements,

c�u�ss � t�TB�us : (A12)

For the elements to the right of the diagonal,

c�u�sj � r�TR�uj r�LB�us

" Yj−1
p�s�1

t�LR�up

#
exp

"
i
Xj

p�s�1

θup

#
: (A13)

This element is the product of (i) the field reflectivity r�TR�uj
of the “sideways” reflecting beam splitter in block uj that re-
flects into row u, (ii) the field reflectivity r�LB�us in the “down-
ward reflecting” beam splitter in block us that reflects down
into row u� 1, (iii) the product of all the “sideways” transmis-
sions in all the intervening blocks, and (iv) the phase factors
from all of the phase shifters encountered on this path.

So, given that we have calculated all the reflectivities and
phases for the first row, we can now calculate C�1�, and,
hence, when we shine the second basis function jϕDI2i onto
the top of the whole device, we will obtain a field

jϕ�2�
DI2i≡

XM−1

j�1

a�2�2j jϕ2ji � C�1�jϕDI2i (A14)

at the top of the second row.
Now to calculate the settings of the reflection and phase

factors for the second row, we proceed in a similar fashion
to that used for the first row, but with input amplitudes on
the top of the nth column of the second row of a�2�2n instead
of the amplitudes a1n we used in calculating the first row
reflection and phase factors.

For the third row, having calculated all the reflections and
phases in the second row, we can calculate the matrixC�2� and
hence calculate amplitudes a�3�3n that will appear at the top of
the third row when we illuminate the top of the device with
the third basis function jϕDI3i:

jϕ�3�
DI3i≡

XM−2

j�1

a�3�3j jϕ3ji � C�2�C�1�jϕDI3i: (A15)

We proceed similarly to calculate progressively all sub-
sequent rows, thereby completing the design mathematically.

Note that shining the second basis input jϕDI2i on the top of
the structure produces no output from port 1 on the right. The
unitarity of the overall operation means that orthogonal inputs
always give orthogonal outputs (unitarity preserves all inner
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products). Because jϕDI2i is orthogonal to jϕDI1i, then their
outputs must also be orthogonal. Since the output with
jϕDI1i is solely from the top port, jϕDI2i can therefore have
no component emerging from the top port. Similar behavior
follows for all subsequent orthogonal inputs, each of which
leads only to output from one (different) port at the right
of the structure.

To calculate the reflections and phases in the device imple-
menting the unitary transformation V, for which we want
output functions

jϕDOmi �
XM
n�1

bmnjβ1ni: (A16)

where, by jβuji, we mean the (output) mode leaving the top of
the uth row in the jth column, we can proceed similarly. Here,
when we shine light into a port on the left of the output cou-
pler structure (as in CO in Fig. 1 of the main text), we want to
create the actual output fields for a given output basis func-
tion, so we do not take the complex conjugates of the ampli-
tudes bmn for our calculations. That is, where we have a�mn in
Eqs. (A5)–(A8), we will use bmn in the analogous equations
for V.

APPENDIX B: IMPLEMENTATION WITH
MACH–ZEHNDER INTERFEROMETERS
The Mach–Zehnder waveguide modulator [43] configuration
used in the main text as in Fig. 2 implements the necessary
control of reflectivity and phase using two phase shifters
within the modulator. Figure 8 shows the modulator configu-
ration in detail. The phase shifting could be accomplished
with electro-optic materials with voltages applied through
electrodes or with thermal devices, which here for simplicity
of description we take to have phase shift also set by some
voltage. (For such thermal phase shifters, negative voltages
would not, however, give negative phase shifts, so in that case,
we can imagine the voltages we discuss here to be in addition
to some positive bias so that all actual voltages are positive in
the thermal case.)

Nominally defining the phase delays in the phase shifters as
being between points C and F (D and G) for the upper (lower)
phase shifter, the average voltage controls the common-mode
phase-shift θav and the difference between the voltages con-
trols the differential phase-shift Δθ. The device is presumed
perfectly symmetric; in a real device we might add one or
more control phase-shifting electrodes inside the beam-
splitter sections to achieve symmetric behavior in practice.
Here we formally analyze the MZIs, showing how to relate

their behavior and settings to those of the “conventional”
beam splitters and phase shifters of Fig. 1 and the discussion
of Appendix A on the required values in an actual design.

In a symmetric Mach–Zehnder device as in Fig. 8, the 50%
splitters are each identical symmetrical lossless beam split-
ters. Reflection within these 50% splitters corresponds to
the paths Top—C; Left—D; F—Right; and G—Bottom. The
phase delays associated with these reflections, θTC, θLD,
θFR, and θGB, respectively, are all equal, i.e.,

θrefl � θTC � θRD � θFL � θGB: (B1)

Similarly for the transmission phases, with obvious
notation,

θtrans � θTD � θLC � θFB � θGR: (B2)

Similarly, the magnitudes of the various transmissions and
reflections through these 50% splitters are all equal at a value
1=

���
2

p
(which leads to the 50% power splitting). There may be

an additional fixed phase delay θex associated with any other
waveguide propagations not accounted for in phase delays in
the 50% splitters and the phase shifters.

Adding the fields on the two “transmission” paths through
the different 50% splitters and phase shifters, the overall com-
plex field transmissions t�TB� and t�LR� are both, therefore,
given by

t�TB� � t�LR� � t exp�iθS� exp�iθav�; (B3)

where

t � cos�Δθ=2�; (B4)

and the background “static” phase θS is the sum

θS � θex � θtrans � θrefl: (B5)

Before adding up the phases for the reflection paths, we
note from Eq. (A3) above, with Eqs. (B1) and (B2), that we
can write

θtrans � θrefl � π=2: (B6)

Whether we use the “�” or the “−” here depends on the de-
tailed design of the 50% splitters. (It is also possible in prin-
ciple that there are additional amounts of phase in units of
π that could be added to the right of Eq. (B6), but we neglect
those for simplicity.) Adding the fields on the two “reflection”
paths, we obtain

r�TR� � −r�LB� � ∓r exp�iθS� exp�iθav�; (B7)

where

r � sin�Δθ=2�: (B8)

In formally designing using this kind of dual phase-shifter
Mach–Zehnder device, we can drop the additional phase fac-
tors of the form exp�iθup� as in Eqs. (A5)–(A8) and (A13), be-
cause all the necessary phase factors are included in the field

Fig. 8. Symmetric Mach–Zehnder waveguide modulator configura-
tion with 50% (“3 dB”) splitters notionally implemented here with
coupled waveguides and two arms each with a phase-shifting element.
The gray rectangles represent the phase-shifting control elements
(e.g., electrodes). The labeling of the ports corresponds with the
notation used in Fig. 7.
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reflection and transmission coefficients r�TR�, r�LB�, t�TB�, and
t�LR�. We use the choice of Δθ to set the magnitude of r�TR�

and the choice of θav sets its phase, with the magnitudes
and phases of r�LB�, t�TB�, and t�LR� being therefore set also.

When used as an amplitude modulator as part of imple-
menting the singular values sDm in an architecture such as that
of Fig. 2 of the main text, the power out of the “bottom” port
will be dumped.

APPENDIX C: NONRECIPROCAL DEVICES
To handle nonreciprocal optical elements in this approach, or
any element where we want separate control of forward and
backward waves in the ports of the device, we can in principle
add forward/backward splitters to the left and right sides of
the apparatus of Fig. 5 as shown in Fig. 9; the example con-
figuration in Fig. 9 shows a general four-port optical device
with input and output modes in all four ports.

This example approach is based on the use of three-port
optical circulators [44–45] to separate forward and backward
waves. Backward waves coming into the right of the structure
are separated from the forward waves and fed as additional
inputs into the left of the general spatial mode converter in
the middle. Two of the four outputs from the general spatial
mode converter are fed to the optical circulators on the left to
give the backward-propagating output beams on the left.

The addition of such circulator devices, which are nonre-
ciprocal by definition, allows the whole optical arrangement
to be nonreciprocal if required, while leaving the core general
spatial mode converter itself as a reciprocal device that al-
ways runs only from front to back (left to right). We could
add circulator optics to the apparatus of Fig. 5, for example,
by putting the circulators between the polarization and wave-
length splitters in half of the channels on each side, in a fash-
ion similar to that of Fig. 9.

For self-configuration using the nonreciprocal device ap-
proach of Fig. 9, during training for setting the output V cou-
pler with the reversed versions of the desired output beams,
we need to reverse the sense of the circulators; i.e., the rota-
tion arrows should be flipped from clockwise to anticlockwise
at the input and from anticlockwise to clockwise at the output.
Such a change might be achieved by changing the direction
of the static magnetic fields in circulators based on Faraday
isolation.

APPENDIX D: TIME-MULTIPLEXING
REPRESENTATION CONVERTERS
As an alternative to the frequency splitting and frequency con-
version of Fig. 5, in principle we could split an input pulse into
different time windows, then pass each of those through the
general spatial mode converter. Idealized time-delay units for
implementing a time (rather than frequency) version of the
approach are shown in Fig. 10. At the input side, the paths
connected to points 2 and 1 have additional propagation
delays compared to the path connected to point 3 of Δt and
2Δt, respectively.

Thus the signals from three successive time windows of du-
ration Δt appear simultaneously at the three outputs on the
right in Fig. 10(a), allowing them then to be fed into the
general spatial mode converter (or into the next stage of
the preparatory representation conversion stages). A similar
apparatus can be used at the output, but operated with the
delays reversed to reconstruct a signal segment of duration
3Δt at the final output, with each Δt time slot in that signal
being an arbitrary linear combination of three incidentΔt time
slots. See [46] for a summary of time-multiplexing schemes
and [47] for a recent example, thoughmany such schemes also
convert frequencies, which is not desirable here.

If we are operating using the time-domain rather than
frequency-domain devices, i.e., using units as in Fig. 10 rather
than the wavelength splitters and converters of Fig. 5, and we
want to train the device to output a pulse of temporal form f �t�
for a given input, then, at least if using the time-delay units of
Fig. 10, we would need to train with a time-reversed pulse,

(a)

(b)

Fig. 9. Use of optical circulators with forward and backward modes.
(a) Schematic of a three-port optical circulator. The dashed lines show
the effective paths of waves in different directions between the three
ports. (b) Universal four-port “two-way”, potentially nonreciprocal de-
vice, with input and output beams in each of two paths at both the left
and right of the device. The central U†, Ddiag, and V units form a
general spatial mode converter as in Figs. 1, 2, and 5.

Fig. 10. Illustration of an idealized time-delay unit. The switches rotates through positions 1, 2, and 3, with a dwell time of Δt at each position,
taking a total time of 3Δt to cycle through all three positions before returning to position 1. (a) Switch used at input side. (b) Switch used at output
side.
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i.e., of form f �−t� running in each spatial mode back into the
device; otherwise we do not get the desired relative delays of
each segment of the pulse so that they are all lined up in time
within the central general spatial mode converter.
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